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Summary

Information carried by a visual pattern is invari-
ant under translations, rotations and so on, although
the features of the pattern change under these trans-—
formations. A feature space admits a transformation
group, waen a pattern transformation induces a well-
defined feature transformation. General forms of the
feature spaces admitting various invariant groups are
given. The normalization procedure can be carried out
in such a2 feature space in the sense that the features
of the normalized or standardized pattern are obtained
from the features of the unnormalized pattern. A
transformation group is said to be detectable, when any
transformation can be identified by the change in the
features. The detectability condition is given, and

the feature spaces with which a three-dimensional motion

of an object is detectable are given.
L]

I. Introduction

It is important in designing a pattern recognition
system or analyzing human perception to know the invar-
iant transformations under which information contents
of patterns are kept unchanged. Visual patterns, for
example, are in most cases invariant under translations
and rotetions. These transformations form a Lie group.
The problem was investigated by a classic paperl! by
Pitts 'and McCulloch in relation, to the neural mechanism
of invariant perception. The features of patterns
which are invariant under these trang?orm&tions were
also searched for by many authors .2 The Lie group
structures of invariant transformations have also been
investigzted in rela&ion to the humen perception of
visual patterns,T‘lo and the neuronel mechanisms of

invariant information processing have been studied.11‘13)

Given a pattern, = set of features are measured at
first in a pattern recognition system as well as in the
human brein system. It is these feature signals that
are procassed in the system. It is, hence, important
to study the effect, on the feature signals, of the
invariant transformations of the original patterns.

The present paper treats two problems: 1)To determine
the inveriant transformation from the changes in the
features of a pattern under transformation. 2)Given
features of a pattern, to obtain dirsctly the features
of the standardized or normalized version of the
original pattern. We solve these problems in linear
feature spaces.

A feature space is said to be detectable when the
transfornmation of the original pattern can be detected
from its features only. We give a necessary and
sufficient condition for a linear feature space to be
detectable. We give a general form of the feature
space in which the Euclidean motion of an object, that
induces = projective transformation of a pattern mapped
on the retina, can be detected. The second problem is
related to the standardization or normalization of
patterns, which is carried into effect in the feature
space. The feature space is said to admit the
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normalization in this case. We 'shall give a necessary
and sufficient condition for a feature space to admit
normalization. Examples of detectable feature spaces
and admissible feature spzces are given.

II. Invariant Transformation Groups

2.1. Invariant transformations

We consider visual pattern signal drawn on a
plane. Let (x, y) be Cartesian coordiantes of the
plane. Then, a pattern is represented by a non-
negative function s(x, y), which denotes the brightness
at point (x, y) on the plane. The set S of these
signals is called the signal space.

Every signal carries information. Géherally,
there are some transformations under which information
of signals is kept invariant. We call them invariant
transformations. We can consider, for example, the
following transformations:

goglu) s(x, y) — els(x, y)

glO(U) s(x, y) — s(x - u, y)

gop (u) s(x, y) — s(x, v - u)

g5 (0 s(x, y) —— slxcosu - ysinu,
xsinu + ycosu)

Bop (1) s(x, y) —— emus(e_uz,-y)

goz(u) s(x, y) ————»—e"us{x, e_uy)

Transformation goo(u) increases the brightness
of a pattern s(x, y) by a factor e%. Transformations
£10 (u) ana gOI(u) move patterns by u in the
directions of the x- and y-axes, respectively.
Transformation gll(u) rotates a pattern counterclock-
wise by an angle u, while gon(u) and gno(u) enlarge a
pattern in the x- and y-directions, respectively,
without changing the total amount of brightness. All
of these are linear transformations of S to itself.

The above transformations generate transformation
groups. Tor example, gng, 810 and gy; generate a
group consisting of all the parallel translations as
well as changes in the brightness of patterns. We
simply call it the translation group and denote it by
Gy . The group generated by Gy together with gyq
includes all the translations and rotations. It is
denoted by Gp. The group generated by Gp together with
29 and gy, includes all the affine transformations of
patterns ?and hence dilatations). It is denoted by G3.
All of these are Lie groups.

2.2 Generators

For a pair (p, g), transformations g, (u) forms a
one-parameter subgroup of the Lie group. ~The
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scinitesimal transiormation Bpq of the subgroup is
.F;ined by
oaslx, y) = L (gpgsix, y)} (1)
BpqSt du Bpast% ¥
i is known that the one-parameter subgroup is uniquely
.ermined by the generator g, . Transformation gpq(u)
. denoted symbolically by

gpq{u) = exp {uépq}. (2)

; The infinitesimal transformations are obtained in
fur case as follows:

; goo = T
f10 = -3/3%, Boy = -3/9y,

Ell = x3/dy - ya/9x,

E;Qo = -I - x3/3x, égg = -1 - y3/3y,

ere I is the identity operator.

It can be shown that any element g€ Gz can
iquely be decomposed into the following form

g = exp {uopBop}-exp (upooo}-exp (u1811}-

exp {“Dl-éol}' exp { ul()ém} - exp {UOOEOD} .

e cannot change the order of factors because the
oup is not commutative. Any g € G3, hence, can
iquely be represented by a set of g numbers

u = (895> Ups Y32 Yo1> Pa0° Yoo’

that it is denoted by

g = glw) (3)

This u is known as the canonical coordinates of G3 of
e second kind associated with the generators épq.

puti g &
o

2.3, Normalization of patterns

Two patterns s(x, y) and r(x, y) are called
Hequivalent, when they are connected by an invariant

ftransformation g,
r(x, y) = es{x, ¥)-

The invariant transformation group, therefore,
Spartitions S into equivalence calsses. Normalization
@ is a procedure to transform a pattern invariantly in
=“, standard form. To this end, we define a standard
@ form of signals by using the following linear mappings
,l?q_(O >p+aq22) from S to the real values,

apgs = J apg(Xs y)s(x, y)axdy, (L)

# “here we put
apq(x, y) = xPyd, (5)

i€ "= call a set of numbers ¢ = (cpq) the deformation
*8 coordinates of the pattern. When ¢ takes a specific
o value g_o, the pattern is said to be in the standard
,.,.:- form. In the present case, we put

_-.-‘: _ ~ 0 g ;

COOO =1, Cloo =cgy =C11 T 05

ca® = 1, eg2’ = 2-

! T'fl'ls implies that a pattern is in its stendard form
when the total amount cgg of brightness is 1, the

center of gravity (cjg, coy) is at the origin, and the
second-order moment matrix is a diagonal matrix with
the first diagonal entry cog = 1 and the second entry

cop = 2.

Let g{u) be the transformation which changes a
signal s to its standard form. Then,

a  {glu)st =c_0 : 6

pq (B Pq (6)
holds. This is the equation to obtain the u or glu).
The pattern g(E)s is called the normalized pattern or
the standard form of s.

2.). Transformations induced by motion

Let us consider the case where pattern s(x, y) is
a map of an object on the retina, whose coordinates are
denoted by x and y. Let X, Y, % be the coordinates of
the object space. Ve consider a simple projective

Y

h

R
Fig.1

mapping from an object point to the retina plane
through a center O (Fig. 1). Let R andl be,
respectively, the distances from the center 0 to the
origins of the object and retina spaces. Then, an
object point (X, Y, 7) is mapped to a point (x, y) of
the retina by

x=%X/(R-2), ¥y = Y/(ﬁ = 2L

We consider a flat object put on the X-Y plane.
It produces an image pattern s(x, y) on the retina.
The image pattern s(x, y) changes as the object
undergoes the Euclidean motion. The Euclidean motion
includes three independent translations and three
independent rotations. It is easy to see that, the
translations along X-—, Y- and Z- axes induce mappings
g0, gy (u) and g5 (u) -ggolu), respectively, applied
to s(x, y). The rotation around Z- axis induces
gll(u). The rotations around X- and Y- axes induce,

respectively
— R S—— __ycosu
321(“) : S(Xs Y) S(l = ysinu, 1 - YSinu)’
R Xcosu Y
512(1'1) :os(x, y) o s(l = xsing; 1 - xsinu).

These are projective transformations, and their -

infinitesimal generators are

By = —xy(3/3x) - y2(a/3y),

_x2(a/3x) - xy(3/3y).

&2

The group generated by a1l of these is denoted by Gp-
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III. Admissibility, Detectability and Hormalizability

in Feature Spaces

.3.1. Linear feature space

A linear feature f of a pattern s is a quantity
obtained by a linear mapping m as f = ms. We treat the
following type of mappings

f =ms = S m(x, y)s(x, ¥)dxdy,

and call m{x, y) the measuring function of the feature
T.

Let f = (fl, Tos 43y fn) be a set of n features
and let m = (ml, Cecntii mn) be a'set of the corresponding
measuring functions. An n-dimensional vector

f=ms (1

is called the feature signal of a pattern s, where
£ = mys =/ m(x, y)s(x, y)axdy. (8)

Let M be the vector space spanned by n measuring
functions m;(x, y). We call M the measuring space.

3.2. Admissibility

ASSume‘that, for an invariant transformation g,
there exists a linear mapping g of the feature space
such that

n(gs) = §(ms) _ (9)

holds for any s. In this case, the feature ' = m(gs)
of the pattern gs after transformation can be obtained
directly from the feature f of the original pattern by
the linear transformation

4 (10)

£ = gt.
Therefore, transformation g can be carried into effect
in the feature space. We say in-this case that g is
admissible in the feature space F or in the correspond-
ing measuring space M. When all the elements of G are
admissible, F or M is said to admit the transformation
group G.

We show the condition that M admits g. Let g* be
the conjugate of g defined by

m(gs) = (g*m)s. (11)
for all s, where g* is operated on m(x, y). The

conjugates é*pq of the generators épq are as follows:
8% = I
8*10 = 3/3x, é*ol =3/3y

= —x(3/3y) + y(a/ax)

€711 =

8*20 = x(3/3x), g*o2 = y(a/ay)

B%21 =y + xy(3/0x) + y(y + 2)(a/sy),
g%12 = x + xy(3/3y) + x(x + 2){3/3x) -

We show only one example of the derivation:

mgyos = S m(-3/9x)sdx = r { (3/2x)m}sdx

(g*1gm)s,

which yields g*;45 = 3/dx.

Theorem 1. A necessary and sufficient condition
for a feature space F or a measuring space M to
admit g 'is that the measuring space M is closed
under g¥*,
g*¥M C M.

Proof. When g*M C M holds, there exists Eij such that
.
g*m; (x, y) =3§1§i‘jm‘](x’ ¥). (13)
Hence
T3' = mjgs = g¥mys = & Eﬁjmjs =T E;ij,

which shows that the matrix g = (8;4) is the feature
transformation corresponding to g. “The converse also
holds.

Let us define G*M and G*M, respectively, by

G*M = {g*m | g€ G, me M},

G*M

1]

{g*m | g: generators of G, m € M}.

" Theorem 2. If an M admits all the generators of G,
the M admits G itself. In other words, G*McM
implies g¥McCM.
3.3. Detectability
Let g(u) be the invariant transformation by
vwhich a pattern s is changed in the standard form. It
is defined by

epg? = a (u)s (14)

j=} pqBL/S -
When the u or the g(g) can be obtained from the feature
signal f = ms without referring to the original s, the
group G is said to be detectable in the feature space
F or the measuring space M. Let A be the space spanned
by the set of the functions apq(x,_y).

Theorem 3. A group G is detectable in M, when and

only when

G*A C M. (15)
Proof. When (15) holds, we can write

* e

g¥(ulayy = % hpgi(wm; .
From (14), we have

cpqo = g¥(u)apgs = ¢ hpos (wWnys

=z hpqi(g)fi. (16)

This is the equation determining u from f;'s. (We
posit that the equation has a unique solution, because
q's are independent functions responsible for
invariant changes by g's: The number of the equations
is the same as that of the variables u.)
3.4, Normalization in the feature space
Given a pattern, we need to apply the normaliza-
tion procedure to obtain the standard form of the
pattern. If we can obtain the features of the
standardized pattern directly from the features of the
original one which is not in the standard form, the
normalization can be carried into effect in the feature
space. Such a feature space inecludes sufficient

information so far as invariant transformations are
454"
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concerned.

Theorem 4. The normalization can be carried into
effect in the feature space, when and only when
G*a c M, G*M < M. (17)

If AC M holds, the condition coincides with the

admissibility

GFMC M.

proof. In order to perform normalization, we need to
xnow u or g(u) by which the given pattern is put in the
standard form. This requires G*A < M. In order to
carry the normalization into effect in the feature
space, the admissibility G*M C M is required.
Conversely, when (17) holds, we can obtain u from (16)
2nd hence £' = mg(u)s from (10).

IV. Feature Spaces Admitting and Detecting various G

4.1. Feature space admitting Gy

Let F; be a feature space admitting Gy, and My
‘be corresponding measuring space. We look for the
general form of M.

Theorem 5. The measuring space Mj is a space
spanned by functions
(xPyQeX*BY R S
2
or the direct sum of such spaces, where p and q
are integers satisfying

0Spsk, 05qsk

for some k and k', and o and B are arbitrary com-
plex numbers where o denotes the complex conjugate
of a. A ’

oroof. Let m(x, y) be a function belonging to Mj.
Since M) is closed under the generators of Gi,

g¥gm = am(x, y)/9x
rust be included in Gy. By the same reason, azm/ax2,
a3m/ax3, ..., must be included in Gy. However, My
should be spanned by a finite number of measuring
functions, because we are considering a finite-
dimensional feature space. Hence, all of the above
derivatives cannot be linearly independent, so that we
have for some I

r-1 . .
9Tm/3xT =_ZO ai(Bl/axl)m
i=

where aj are constanis. The independent solutions of
the above equation are given by
xpeux3 xpeqx 0<psk

£l =

where a is a characteristic root of the equation and k
is its multiplicity. The same argument holds for g¥*py -
Combining these results, we have the theorem.

The theorem shows that a set of moment features,

for example,
_ -9 '
foq = IxFy¥s(x, y)axdy, O0<pgk,0ca < k

constitutes an admissible feature space (o =B = 0).
A set of Fourier components

qu = fexﬂ:i(upx + qu)}s(x, y)dxdy

also constitutes an admissible feature space, vhere ve
put k = k' = 0 in the theorem.
4.2, Feature spaces admitting 02 and G3

We have the following theorem.

Theorem 6. The measuring space Mp is spanned by

functions

ax+B ax+p
{xpyqe Y, xpyqea y],

where p and q are integers satisfying O <p + q £k
for some k. The measuring space Mz is spanned by
{ xPy9 }, where 0< p+ g k.

Proof. Since G) is a subgroup of Gp, M2 admiEs Gy and

hence it is a special case of Mj. Moreover, g¥ 1Mo CMp
should be satisfied. By calculating g*11M, we obtain

the former part of the theorem.— Since G2(:93, M3_is a

special case of Mp, satisfying g*p2M3C M3, g*poM3C M3.

This yields the latter half of the theorem.

We have thus proved that the moment features of
orders less than a constant constitute the only type
of the feature space admitting G3, i.e., the affine
transformation group. It is easy to give the procedure
of obtaining the features of the normalized pattern

from the features of the unnormalized pattern. The
features of the normalized pattern is obviously
invariant under the transformations.
4.4, Detection of motion

Let us consider the detectability G*ACM. This

implies that repeated applications of G¥* on A must be
ineluded in M. Let us consider Gp induced by the
Fuclidean motions. It is easy to see, for example,

- . +1

2% Py = (p +q + 1)xPyd™ + 20xPyt
holds. This shows that G¥*pA (which is obtained by
repeated applications of G*p on A) is never included
in a finite-dimensional M. Hence Gp is neither detect-
able nor admissible in any feature spaces.

It is, however, sometimes possible to detect the
velocity of motion from the rate of change in the
measured features. Let us consider a moving object,
whose image s(x, y, t) depends on time t. We can
write

s(x, v, t) = glu(t))s,

u We assume that the
object is on the X-Y plane at time O, glu(0)) =TI, and
consider to detect u(0) from £(0), vhere - denotes the
time derivative d/dt and

£(t) = mglu(t))s.

(18)
where u(t) represents the motion.

(19)

Theorem 7. The motion velocity of G is detectable
when M includes independent functions br(x, ¥y)'s

such that
G*bp(x, y)C M,

and the number of these functions is the same as
the number of the generators of the motion.

Proof. Since byr&M,
cplt) = bps(t)

can be represented by a linear combination of the
features fi, where s(t) demotes s(x, ¥, t). By
differentiation, we have

(20)

brﬁPquqs(t)
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ép(0) = o Bpqrifi(0)upg(0),
because of

(a/at)glult)) =L &pqépq:
where we put

E*qur = § qurimi‘
We obtain gﬂO} from f and iﬂO) by solving (21).

It should be noted that, for B = {b.(x, y)}, G*B
is in general of infinite dimensions. However, G¥B is
of finite dimensions. Therefore, the detection of
motion velocity may be possible even when g(u) itself
is not detectable. The measuring space M = {B, G* B}
generally gives an example of the motion-detectable
space. We can consider, for example, the motion
detectable spaces given by the following B.

(vl o
{ ei(ux + By

case 1) B = f +q< 2}

P 2 = = . =

case 2) B s 0= 0, 0,5 B 81’62}
The features of the first case consist of the moments
of patterns of orders less than 5, because 533 consists
of xPyd, p + g < 5. The second feature space consists,
of Fourier components

s(a, B) = fei(ax * B"’r)s(:\c, y)dxdyr

with the derivatives ug to the second order, 38/3a,
3S/38, 325/3c2, 325/38B ,_andd25/3u3B at points @ = Oy,
¢p, B = By, Bp, because G¥pB includes these derivatives.

Conclusions

We have studied how the features of a pattern
changé when the pattern suffers invariant transformat-
ions. This is important, because invariant informat-
i?n processing should be performed based on the feat-
ures only. We have proposed the concepts/of the
admissibility, detectability, motion-detectability
and normalizability in the featrue space. All of these
concerns the invariant processing of pattern signals
in the feature space. The general forms of admissible,
detectable and motion-detectable feature spaces are
given. One of the remaining problems is to study the
neural mechanisms and architectures of performing the
invariant operations in the feature space.
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