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Nets of Threshold Elements
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Abstract—Various information-processing capabilities of self-
organizing nets of threshold elements are studied. A self-organizing
net, learning from patterns or pattern sequences given from outside
as stimuli, “remembers” some of them as stable equilibrium states
or state-transition sequences of the net. A condition where many
patterns and pattern sequences are remembered in a net at the same
time is shown. The stability degree of their remembrance and recall-
ing under noise disturbances is investigated theoretically. For this
purpose, the stability of state transition in an autonomous logical net
of threshold elements is studied by the use of characteristics of
threshold elements.

It is also shown that & self-organizing net forms a representative
pattern from a given set of stimulus patterns and fixes it as a stable
state. The representative pattern can be recalled from any member
of the set. This kind of self-organizing net may be regarded as a
model for associative memory, sequential recalling, and concept
formation.

Index Terms—Associative memory, brain model, concept forma-
tion, logic nets of threshold elements, self-organization, sequential
recalling, stability of state transition.

I. INTRODUCTION

INCE the nerve cell is considered to be a kind of
S threshold element, it is expected that some aspects
of information processing in the brain may be re-
vealed by investigating the characteristics of nets of
threshold elements. Nets of threshold elements have so
far been investigated, from various standpoints and
many interesting results have been obtained (see e.g.,
[1]-[12]). However, by virtue of their nonlinear char-
acter, it is extremely difficult to analyze the behavior
of nets of threshold elements in general, and we are yet
far from a full understanding of information-processing
capabilities of nets of threshold elements. This paper
aims at elucidating theoretically those characteristics of
self-organizing nets of threshold elements that may
have some relation to learning and recalling of patterns
and pattern sequences. The present model may be con-
sidered as a simplified version of the self-organizing
random net system proposed in [1], and has close rela-
tion with the four-layer perceptron [5], the associatron
[11], and the correlation matrix memories [16].
A self-organizing net has the property that its struc-
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ture gradually varies, depending on the stimulus pat-
terns applied to the net from the outside, When stimulus
patterns or sequences of patterns are repeatedly applied
to the net, it is expected that the net learns from these
stimuli .and fixes some of them by self-organization as
stable equilibrium states or sequences of state transi-
tions. It may be said that the net “remembers” these
patterns or pattern sequences. Once a pattern is re-
membered as a stable equilibrium state, it will be re-
called and reproduced correctly when a neighboring
pattern is given as a stimulus. Similarly, once a pat-
tern sequence is remembered, by giving a pattern in the
sequence as a cue stimulus, the part of the sequence

that follows the cue pattern is successively recalled. A

self-organizing net also has the capability to form a
representative pattern for each of the given sets of
pattern stimuli. All of these capabilities are studied
theoretically. )
The present paper is Uivided into two parts. In the
first part, the stability of state transition is investigated
for a general autonomous net of threshold elements.
Stability numbers of equilibrium states, state transi-
tion, and state-transition sequences are defined, and
they can easily be calculated from the constants of a
net. It will be shown, for example, that a net reaches an

‘equilibrium state within % state-transition times if its

initial state is located within a distance of the kth
stability number [rom the equilibrium state, in the
sense of the Hamming distance. Similar results are
proved for the stability of state-transition sequences.
In the second part, three features of self-organizing
nets are investigated by the use of stability numbers.
One feature is concerned with learning many patterns
under noise disturbances. A condition where many
patterns are remembered in the net at the same time
as equilibrium states is given, and by the use of stability
numbers, the stability of remembrance and recalling is
shown. Another feature is the learning of many pattern
sequences at the same time. A condition for remem-
brance is given and the stability of sequential recall is
shown. The third féeature is concerned with the forma-
tion of a common pattern from a given set of stimulus
patterns, The condition for two representative patterns
to be formed, respectively, from two given sets of pat-
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terns is given. The representative pattern of a set is
recalled from any member in the set.

. This paper might give a new theoretical method of
approach to self-organizing nets such as the perceptron
[5], the associatron [11], and the nerve network model
[13].

II. STABILITY OF STATE TRANSITION IN A NET
oF THrESHOLD ELEMENTS

A. Nets of Threshold Elements

A threshold element having # inputs is specified by
n quantities wy, s, - - -, w,, called weights, and a
quantity %, called a threshold. The element is denoted
by E{wy, - - -, ®as; k) or briefly E(w;; k). Let the  input
variables be 4, + + -, ¥a and assume that the variables
take on two values 1 and —1. The output is 1 when the
weighted sum E,- w;y; exceeds k. Otherwise, the output
is —1. Therefore, the input-output relation of the ele-
ment is described as

x=sgn ( 2 wiyi — k) C(ap

where
1, uw>90 ‘
wm@={ ' @

From this it can easily be shown that two elements
Efw;; &) and E(cws; ck), where ¢ is a positive constant,
have the same characteristics. Therefore, for the sake
of definiteness :

fwi] =1

is assumed. It is desirable that the weights he so nor-
malized as to satisfy
max Iw.| = 1.
i

Consider an autonomous net composed of % threshold
elements E,y, - - -, E,, E; being E(wpn, wp, - -+, win k).
These elements are interconnected in such a manner
that the output of E;, denoted by x, is connected with
the 4th inputs of all the elements with unit time delay.
Therefore, output signal x; of E; is multiplied by w;:
when it enters into E; The net is assumed to work
synchronously at fixed time intervals. The net is
specified by the w;; and k; We call the #n X2z matrix
W= (w;) a weight matrix and n-vector h=(h;) a
threshold vector where [w,-‘-! =1 is also assumed.

An n-dimensional column vector x={(x;}, where x;
is the present output of E,, is called the present state
of the net. The next state x’ is uniquely determined by
the present state, because output x:’ of E; at the next
time is determined by

! In order to avoid unnecessary complicated discussion, it is as-
sumed throughout the paper that the case 2 aviy:~h =0 never oc-
curs,

1EEE TRANSACTIONS ON COMPUTERS, NOYEMBER 1972
af = sgn ( 20w — k). 3y
i

By denoting the state-transition operator by T, the
next state is written as

x' = Tx.

Only a few properties are yet known about the state-
transition operators of nets of threshold elements.?
A state x which is invariant under T,

x = Tx

is called an equilibrium state. An ordered set of states
B={xi, %3, * +, xm}, for which

Xipr = Txy, i=12 -, m—1

holds, is called a state-transition sequence of length .
A state-transition sequence C={x, -, xa.}, for
which Tx,, =x, holds, is called a length m cycle.

Since the number of states in a net is finite, the se-
quence of states beginning at an arbitrary x,

X, TXo, T2Xo, e

either converges to an equilibrium state or falls into a
cycle within a finite number of state transitions.
Equilibrium states and cycles can be considered as pat-
terns that the net can retain persistently without any
input from the outside.

B, Stability Numbers of'State Transition

Several preliminary definitions are given first, Let
dis (x, y) be the distance between two states x = (x;} and
¥ =(v,) defined by

i
-dis({f,J’)=EZ fﬁ?c—yil-

This is the well-known Hamming distance, representing
the number of different components. The set of those
states that are Jocated within a distance of % from x,
is called the k-neighborhood of x and is denoted by
N(x, k). Hence,

N(x, &) = {y| dis (v, x) < &}.

We define » functions ui(x, y) (=1, 2, - - ., n) of
two states x and y by ’

* This may be regarded as an approximate expression of the state
equation of a random net system [1]. It has been shown in [1] that
the activity level =" at the next time of the ith component random
net is given by

z’ = & Z Wiz — 6)
i

where z; is the present activity level of the jth component random
net, wy; 15 the coupling coefficient from the jth to the sth random net,
0 is the average threshold of the ith random net, and & is defined by

v 1
S(u) = 2 f —— iy
(e} , -\/2#6 d!

If function ® is approximated by the sgn function, then the above
state equation reduces to (3). In this approximation, a component
random net plays the same role as a single threshold element does in
the present mode],

I See, e.z., [6]-[9].
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w(x,¥) = vyl 2 wyny — ). (4)
>

Obviously, u:{x, y) is positive when the {th component
of Tx coincides with that of y, and is negative otherwise.

The following operators min (&), k=1, 2, -, play
an important role in studying the stablllty of state
transition. For # real numbers u;, 2., - - - , n, min
(®) {u:} denotes the (#+1)st smallest number of
#y's (the largest number when 22#), i.e., when the u;
are rearranged in order of magnitude as

= =

iy é iy, = -

when0= k< n

Higris

min (k) {u;} = {

%5, when 2 Z ».

The following lemma elucidates the role of functions
ui(x, y) and operators min (k).

Lemma 1: A necessary and sufficient condition that
state x falls in the k-neighborhood of ¥ after a single
step of state transition, i.e., TxEN(y; k) holds, is

min (k){u.(x, y)} > 0. (5)

Proof: The inequality min(k) {u.-} >0 implies that
the number of negative #; is not more than % and vice
versa. On the other hand, ui(x, ¥) is negative, when,
‘and only when, y; is not equal to sgn( > _; wix;—k;) or
the <th component of 7x. Therefore, the number of
negative u; is equal to dis (Tx, ). Hence, inequality (5)
is equivalent to

dis (Tx,y) = %

which means TxE N{y, k).

We can now define the degree of stability of state
transition. The E-stability number s(x, %) of state
transition x—Tx is defined, for nonnegative £ by

s(x, &) = [r(x, B)] {6)
r(x, £) = } min (&) {u;(x, Tx)} {7+
where [r] denotes the integer part of . Obviously, for
=k,
s(x, B) = s(x, &)

holds. The foliowing lemma clarifies the meaning of the
k-stability number.

Lemma 2: When z belongs to the s(x, k)-neighborhood
of x (i.e., when zGN{x, s(x, &) }), Tz belongs to the k-
neighborhood of Tx (i.e., TzEN(Tx, k). In particular,
if z belongs to the s(x, 0) neighborhood of x, then Tz
—_ Tx .

FProof: Let z be a state belonging to N{x, s(x, B)}.
Then,

dis {z, x) = s(x, k).

If we put
z=x+ 2e

i Note that u;(x, Tx) = | Z,— wiic; —hil .
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e is a vector whose components are 0 or +1, and

Z | ei| =dis(z,x) 5 s{x, k)

because |e:| =1 when x;72;, and ¢; =0, otherwise. For
the purpose of obtaining the distance between Tz and
Tx, a lower bound of u«z, Tx) is obtained as follows
where we put x' = T'x:

uilz, Tx) = 2/ ( ) wiyz; — k) .
i

=2/ ( X wgr;— b+ 2, wije;)
Z v (2w — k) — 2 3 | wy | |es]
= ux, Tx) — 2 Z| e,-[ = uilx, Tx) — 25(x, k)

where || <1 is used. From this follows:
min (&) {#:{z, Tx)} = min (&) {uilx, Tx)} — 25(x, &)
= 2r(x, k) — 2[r(x, k)] > 03
which by virtue of Lemma 1 means
Tz & N(Tx, k).

By putting k=0, the latter half of the lemma is ob-
tained.

C. Stability Numbers of Equilibrium Siales

A necessary and sufficient condition for x to be an
equilibrium state is easﬂy obtamed by putting y=x
and 2=01in Lemma 1.

Theorem 1: State x is equilibrium iff

.min {ui(x, x)} > 0.
' -

The stability numbers of an equilibrium state x are
defined by the use of s(x, k) as follows. The first stability
number 5)(x) of x is defined by

510 = 5x, 0) = [3 min (0) {aCx, 1)} .

The jth stability number s;(x) is recursively defined by
using the {f —1)th stability number as

5ix) = s{x, 5,09} ®

In other words, s;(x) is the s;_( x) -stability number of
state transition x~T'x=x,

Lemma 3: The sequence s;(x), sa(x), - - - of the
stability numbers is monotonically nondecreasing, con-
verging to the limit s(x) within a finite number of termis.

Proof: Since x is an equilibrium state, s1(x}=0
holds. From the monotonicity that s(x, ) =s(x, &) for
b=k .

5a2(x) = s{x, .n(x)} z 5(x, 0) = 51{x)

holds. Similarly, s;.{x)=si{(x) can be proved from
s;{x) 2s;-1(x). Hence, s5;(x) is monotonically nonde-
creasing. Since s;(x) coincides with one of (%, x)'s,
55,(x) =5;,41(x) must hold for some jo=#. In this case,

# It has been assumed that w:{x, Tx, is not equal to 0.
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Sia{x) =5;30(x} = + - -, and the sequence converges
to s{x) =s;,(x}. The limit s(x) will be called the stability
‘number of equilibrium state x. .

We call an equilibrium state x stable if s(x) >0 and
unstable if s(x) =0. Obviously, when and only when
s1{x) =0, s(x) =0 holds and the state is unstable.

Let us call the si{x)-neighborhood N{x, sk(x)} of an
equilibrium state x the kth stability domain, and de-
note it by Di(x)

Di(x) = N{x, ()} (%)
Let Dy(x) and D{x) be, respectivelv,

Dox) = N(x,0) = {x} (10)

and -

D(x) = N{x, s(x)}. (11)

We call D{x) simply the stability domain of x. From
the monotonicity of {si(x)}

Do(x) C Di(x) C Do(x) C - - - C D(x)

holds.

Theorem 2: Let x be an equilibrium state. Then, the
net arrives at state x after a finite number of state
transitions if its initial state belongs to D(x). More
specifically, the net arrives at state x within % transition
times if the initial state belongs to Dy(x).

Proof: Let z be a state belonging to Di{x). Then,

z & N{x, sk(x)}.

Since sp{x) =s {x. Se—1{x) }, z belongs tothes {x, Se{x) }—
neighborhood of x. Hence, by virtue of Lemma 2, Tz
belongs to the s.a(x)-neighborhood of Tx=x, i.e.,
TzE& D4 (x). Therefore, TkzC& Dy(x) = {x} which veri-
fies the latter half of the theorem. The former half is
trivial, since D(x) coincides with some In(x), 2=u.

Example: The stability numbers are calculated for a
net consisting of three elements. Let the weight matrix
and threshold vector be, respectively,

0.6 1.0 0.5 0
W = (wu'j) = 10 0.6 0.6 h= (h'-) = |—128
05 1.0 038 —40

There are eight states. For state x=(1, 1, 1)¢, where “”
denotes the transposition of a vector, wi(x, x)=2.1,
Ha(x, x) =4.0, and #,{x, x) =6.3, so that min {ul(x, x)}
=2.1>0. Hence, this is equilibrium. It is easy to show
that there are no other equilibrium states. The stability
numbers of x=(1, 1, 1)}* are calculated recursively

sifxy = [AX21] =1
s2(x) = [ X min (1) {u;}] = 2
s3(x) = [3 X min (2) {u;}] = 3.

Hence, x is a stable equilibrium state and its stability
number is s(x) =3.
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Fig. 1. State-transition diagram.

The stability domain of x is given by

1
Dy(x) = 1
!
1 ~1 1
Dilx) =Dy, |- 1], 1, |—1
-1 1 |1
_ i ~1 (—1
Do(x} = {Dy, | —11, 1], |—1
| ~1] -1 1)

D(x) = Dy(x) = {all states}.

Therefore, in whatever initial state it is, the net arrives
at state (1, 1, 1} at most after three state transitions.
This can indeed be shodvn by the state-transition dia-
gram of the net in Fig. 1.

D. Stability Numbers of Sequences and Cycles

Let B= {_Yl, Y2, o, ym} be a state-transition se-
quence satisfying y ., =Ty, Starting at

sp(¥m) = 0

the following quantities are calculated recursively
sp(yi-1) = S{y.'—l, 33(}’{)}, t=mm—1---,2. (12)

We call sp(y:} the stability number of y, in state-transi-
tion sequence B.

It is obvious from the definition and Lemma 2 that,
if state z belongs to the sa(y.)-neighborhood of y., Tz
belongs to the sg(y:y1)-neighborhood of y... Hence, if
the initial state is in the sa(y;)-neighborhood of y;, the
net, passing successively through the sz(y;)-neighbor-
hood of y; (=41, i4+2, -+, m—1), arrives at yn
after m —1 state transitions.

Similarly, we can proceed with the definition of
stability of a cycle. Let €= {YI: Y5+, ¥n} be a
cycle of length . Starting at s'(y.) =0, the following
s'(y:) are recursively caiculated

s'yi1) = s(yioy, s1(yy).
Then we define s¥(y,.) by ‘
$*(¥m) = s(¥m, s{(r1)).
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The s¥(y;) are defined from s*(y.) similarly (i=m
—1,- .-, 2, 1), and we can then define $*(y.), and
so on. Since the sequence s!(yy), s*(¥:), + - - is mono-
tonically nondecreasing, it converges within a finite
number of terms, The limit

se(y:) = lim s%(y3) (13)
k— 0

is called the stability number of y; in cycle C, and

s(C) = min se(y))

the stability number of C. The following theorem is a
direct consequence of the above definition and Lemma 2.

Theorem 3: Let s¢(y:) be the stability number of y;
in cycle C. Then, the state of the net falls into cycle C
after a finite number of state transitions, provided the
initial state belongs to the sc(y:)-neighborhood of y:
for some 7.

III. SELF-ORGANIZATION OF THRESHOLD-
ELEMENT NETS

It is believed that the structure of a nerve net changes
adaptively according to the stimuli given from the
outside. Such a net may be said to have self-organizing
capability. The hypothesis that the brain is organized
by changing the synaptic weights of neurons was pro-
posed by Hebb [14]. Although the hypothesis is not
yet proved physiologically, various engineering models
of self-organization have been proposed based on this
hypothesis (e.g., [5], [13]). The self-organization in the
present paper is also of this kind.

Assume that patterns are applied to the net as
stimuli from the outside, and that a pattern is repre-
sented by an n-dimensional vector whose components
are +1, like a state vector where n is the number of
elements in the net. It is also assumed that the net is
forced to be in state x when stimulus pattern x is ap-
plied. Let x(f) be the stimulus pattern applied at time
tt=1, 2, - - ). The weights of the net change accord-
ing to these stimulus patterns.

Two types of self-organizing nets are considered in
the present paper. In a type I net, weight w;; connecting
the output ol E; to the input of E; increases by a unit
when the ith component of the stimulus pattern coin-
cides with the jth component and decreases by the
same unit, when they differ with each other. In a type
II net, w;; increases by a unit when the ¢th component
of the present stimulus pattern coincides with the jth
component of the previous stimulus pattern and de-
creases when they differ. In both nets, the weights al-
ways attenuate with a fixed time constant. The incre-
ments of the weights can be represented by

Awi() = —oawy(®) + Bfu() {14)
where & and 8 are small positive constantsand

fii (B = x:(O) (D)
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for a type I net and
fiu(®) = xi(t}x;(t — 1)

for a type 11 net. Equation (14) can be solved to yield

-t
ws) = (1 = Qs + £ 2 (L~ @~ Yy(r)

o)
where w;? is the initial value of wy(2). Evidently, as ¢
becomes large, the first term attenuates and the second
dominates. :

When sequence x() can be regarded as an ergodic

stochastic process, fi;(t) can also be regarded as such,
and the average

ki;' = f"j

where the overbar denotes the expectation, coincides
with the time average of fy;(v) almost everywhere.
Matrix K, defined by K = (k;;) may be called a correla-
tion matrix, In the case of 2 type I net

K = x(Hx )"

and in the case of a tjrpe IT net

K = x(0)x{t — 1}

When ¢ is sufficiently small, for large ¢, the weighted
average ’

o X (= a)rifiy(r)

of fi;(f) can be approximated by the ordinary time aver-
age ) ‘

1 i—1
ko= — 3 fulr).
! =
Therefore,
8
wi(l) = — ki
24

holds approximately for large . When a =8, w;;(£) con-
verges to k;;.* In this case, wi;(f) satisfies the require-
ment

|'w.-,-[ =1,

Therefore, it is assumed in the following that the weight
matrix of the net approaches the correlation matrix of
applied stimulus patterns by self-organization.

The self-organization manner of a type 1] net seems
to be more natural and reasonable than that of a type I
net. However, self-organization of a type I net may be

¢ More precisely speaking, wi;{f) converges to ki; only on the
average, fluctuating around it. The fluctuation can be made as small
as desired by keeping o small, As « becomes large, the convergence
speed of wi;(f) to ki becomes high, whereas the deviation of (¢}
from ki; becomes large. Such a tradeoff between convergence speed
and accuracy exists in various learning problems (see e.g., [15]).
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regarded as a ‘version of type II. Consider the case
where each stimulus continues for a considerably long
period compared with a state-transition time. In this
case, x(f) =x(t—1) holds except at the time when a
stimulus is replaced by another. Hence, x{#)x(t—1)* can
be approximated by x(fx{{}*, and the type I sell-or-
ganization can be realized by a special training program
in a type Il net.

Self-organization of a type I net is treated in the next
section and that of a type II net in Section V.

IV. PaTTERN LEARNING BY TyPE I NET
A. Learning a Single Pallern under Noise Disturbance

If the initial weights of a type I self-organizing net
are given by
1,
wy? = [0’,

and if #;=0, then all the states are initially equilibrium
because

i=j

1:(x, X) = % p, wid =1
i

and hence min {ui(x, x}} >0. Therefore, the net can
persistently retain any initial state. In this sense, it can
be said that the net is not organized at all. However,
their stability numbers are 0, and all the states are un-
stable.

We assume, hereafter, z;=0 for all 7 for simplicity’s
sake. It means that every component threshold element
is self-dual. This implies that when the relation Tx=y
holds, T(—x) = —y also holds. The behavior of —x is
completely determined by that of x. Therefore, if x is
stable, then —x is stable, and the stability numbers of
x and —x are the same. Hence, —x can be regarded as
the reverse expression of the same pattern x, and these
two patterns are treated as one pattern in the following.

First of all, the net organization is shown, when a
single stimulus pattern is applied repeatedly under noise
disturbances. When only pattern x is applied repeatedly
to the net, obviously the weight matrix converges to
xx'. If x is disturbed by noises, it changes to another
similar pattern. Let % be a random pattern whose com-
ponents are obtained by reversing the sign of each
component of x independently with probability p. In
other words

~ { x4, with probability 1 — p
xl. = - ey
—xy, with probability #.

When the applied stimulus pattern is disturbed by
noises of probability p, it changes to %. In this case the
weight matrix of the net converges to

K = %% (15)

wdr

From

E‘- E3 (1 ---.2[));\,';
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it follows that

ki = &k = . =i (16)
‘ ({1 — 2p)%y, i 7,
‘Therefore, by putting 1 —e2=(1--2p)% or
ot = 4p(l — p) an
KE=({1—o%xx'+ o’E (18)

is obtained, where E is the unit matrix. The weight
matrix eventually coincides with the above K by ap-
plying x under noise disturbances.

Parameter o? represents the intensity of noise dis-
turbances. It satisfies

0

2

[F

1

o

IIA

and, when =0, iLe., when no noises exist, ¢?=0.
When $=1, o2=1. In the latter case % includes no in-
formation about original x.

Let cos (x, ) be the cosine of the angle between x
and y. Then

o8 (5,3) = - x:7
n
holds, where the center dot denotes the snmer product.

Theorem 4: When pattern x is applied repeatedly
under noise disturbances of intensity o2, the net is self-
organized in such a manner that we have the following.
a) Pattern x is stored in the net as an equilibrium

state and its stability number is

() = I:l — g ol 19
s{x) = 5 7 - 7] (19}
b) Those y that satisfy
2
| cos (x,7) ] < m’ (20)

remain unstable equilibrium states with stability num-
ber 0. All the other patterns change to x in a single state
transition.

Proof: After the self-organization is completed

W= (1 — )xxt + 2E
holds. Therefore, for an arbitrary y

wily, ¥y = v 2o wiyi = o + (1 — eDxiyix-y.
7

Fory=x
#i(x,x) = (1 — e 4 o2 > 0.

Therefore, x is equilibrium and s(x) is given by (19).
For yx )

min {ui(x, )} =2 — (1 — ¢%) | xy]
=g —(1-— O'Z)HI cos (x,y)[ < g? < 1.

Hence, y is unstable equilibrium when {20) is satisfied.
Lastly, when y is not equilibrium and x-y >0
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iy, x) = :t:,-{:v;-(l —aeYx-y 4+ cr?y.-}
= (1 - a'"’)HICOS(X y)| — o> 0.

Consequently, Ty =x is proved. Similarly, w hen Xy <
0, 'y = —x holds.

It may be said that the net remembers x correctly as
an equilibrium state. Even when the intensity of noises
is very strong, the met can remember x with a large
stability number if » is sufficiently large. When a pat-
tern y not satisfying (20} is given from the outside after
the learning is completed, the net, being set in state y
by the pattern, changes the state automatically to state
x and remains in it, Thus, it may be said that the net
recalls x from all the unstable patterns. In other words,
the correct pattern x is recalled and reproduced from a
noisy pattern y.

Let us find the number of elements which are needed
for x to be recalled from all the patterns belonging to
the k-neighborhood of x, i.e., from y satisfying

(<2

: 2
cos (x,¥) = 1 — —dis (x, )
"

dis (x,5) = £
By virtue of the identity
the above inequality is rewritten as
2
cos (x,¥y) = 1 — - &
: n

Since x can be recalled from all ¥ not satisfying (20), the
condition is

2 o
1—-kz
" 1#(l — o?)
or
2
H = 4 2k.
R

‘When the noise probability is given by

i 1 d 2
=—,p=-, an ==
? 1 ? 3 a ? 5’
the condition gives, respectively, n= 2843, n=2k+8,
and 7 Z2k-+24. If = and % are large, the noise effect be-

comes relatively small. For 2 =50, these conditions are

7n=103, =108, and #2124, respectively. It is rather
surprising that, even when the noise disturbances are as
strong as above, x can be recalled correctly in a net of
such a number of elements.

B. Learning Many Patterns

When m patterns x, {a=1, 2, -, m) are applied
repeatedly to the net x, with relative frequency A, under
noise disturbance, a condition that the net is organized
to remember them correctly is obtained. Let ¢,? be the
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intensity of noise disturbing x., and put
e = (1 — 6N - (21)
a2 = 3 Aoal. (22)

Then by learning these patterns, the wexght matrix
converges to

W= D RaxaXo! + o2E

Let €5 be the cosine of the angle between two pat-
terns x, and xz,

€x3 = COS (%, Xa).

Let &, be

fe= 3 Ra cas| .

This is a weighted sum of the absclute values of the
cosines of the angles betwen x, and all the other pat-
terns. When x, is orthogonal to all the other patterns,
&=0.

Theorem'5: The net remembers x, as an equilibrium.
state when

fo > f— — - (23)

Moreover, the net recalls x, correctly from z.belonging )
to N(x., 5s.) where ¢

2

~ (i) 2 (24)
Sa = — o« — Ca = :
2 =Y
Proof: Let x.; be the i¢th component.of x,. Then
Xai {Z ig:tﬁ;xs-x, -f— o'zx.,,- }
;i
o 4+ wha + 1 D NgCan¥aita:

Bt
= o? -+ nh, — ni, = 2s,.

i (Xa, Xo) =

Therefore, when (23) is satisfied #:{xs, %.) >0 and x.
is equilibrium, Since the stability number s(x,) of
equilibrium x, is not less than [s5,], x. is recalled from
z belonging to N{x,, 5.).

As A, becomes large, or & becomes small, or ¢,? be-
comes small, x. can be remembered better. When the
X, are orthogonal to one another, & =0 holds, Hence all
the patterns are remembered in this case. If their rela-
tive frequencies are the same, x, can be recalled from
a pattern belonging to N(x, s.), where

(1—eHn o2

Fq =
2 2

Obviously s. becomes small as m becomes large. By the
mutual interactions of patterns, the domain of patterns
from which x, is recalled decreases, as the number of
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remembered patterns increases. This shows that the
number of patterns remembered with positive stability
numbers at the same time is at most ».

This explains the capacity of a type I net as well as
the associatron [11]. The net can remember a set of
mutually orthogonal patterns. One of these patterns
has » bits of information amount, However, the second
pattern is restricted to be orthogonal to the first, and
hence it has #—1 degrees of freedom, carrying # —1 bits
of information. Similarly, the third pattern is restricted
to be orthogonal to the first and second patterns, and
hence it carries #—2 bits of information, and so on.
Therefore, a set of # orthogonal patterns has

i=3n(n 4+ 1)

bits of information. This is the information capacity
of a type I net.

I't should be noted that the number of independent
synaptic weights is $n(n+1), because, in a type I net,
wi;=wy; holds. It is noteworthy that the net has the
same bits of information capacity as the number of its
independent synaptic weights.

V. LEARNING PATTERNS AND PATTERN SEQUENCES BY
Type II NET

A. Learning Pattern Sequences

When a sequence of patterns B= {xl, S X, x,,,+1}
-is applied for many times to a type II net as stimuli,
weight matrix W of the net is expected to converge to

1 m
W =—3 xaxt.

" =1

Noise disturbances are disregarded in this section for
simplicity’s sake, although it is easy to evaluate the
effect of noises in a similar manner.

Let Bo= {x% %, + -+, xn 1}, =1, 2, , &, be
% pattern sequences, B, being of length m,+1. Some of
B. may be cycles of length m,, for which x. 1= X®
holds. When these sequences are applied to the net, B,
with relative frequency A,, W is expected to converge to

Ao Mo
Z -— E Xig14;

a Mo i=1

(25)

A condition, .that the net remembers these B, at the
same time as state-transition sequences or cycles is
studied. Put

e = cos (x, x)

and

g.¢ M3 ’ M

¢;* is the average of the absolute values of cosines of
x,;* to all the other patterns.

Theorem 6: By applying £ sequences, B, with relative
frequency A,, the net remembers B, as a state-transition
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sequence or cycle, when
Aa > Biae”

for all j=1, 2, <, ma+1. The stability number
selx;%) of x;#in B, is not less than

(26)

Proof: From

I Wy = Z - Z Xpe P (208 x,%)
Mg h

1i{%%, x;0%) = x;'+1".»'( E —— Wyt i e, ")

mg

e As A
"{ —(Z— | — )}
Mea a6 Mg Mo

Aa
n — &~
My

is obtained, where x;*; is the 7th component of x,~.
Hence, when (26) is satisfied, u:(x,%, x;,*)>0 and
T'xj*=x;1,* Moreover, the stability number of x,~ is
not less than 5,2

Corollary: When the patterns constituting the se-
quences are orthogonal to one another, all the sequences
are remembered, and the stability number of B, is

T nAs
Se = | ——1.
“ I:Zm,] ‘

After the remembrance of B., if a pattern
zEN(x;*, 5;°) is given as a stimulus pattern, the net,
being in state z in the beginning, changes the state
successively to x,1*, ¥;2% - -+, and x%m,y;. The net
may be said to recall successively the part of B, that
follows %%, from cue pattern z resembling x,%. The net
does not recall the part before x;# from it. It is interest-
ing that this property of sequential recalling resembles
that of our memory in the brain (cf. [17]).

When A, <m.¢;® holds for x; in B., sequence B. is

I\

' not necessarily remembered, and Tx;# may be unequal

to x;11% In this case, the sequence is cut apart at x;°,
and it may be absorbed in some other sequence. Even
after B, is remembered, if another sequence B; is re-
peatedly applied, relative frequency A\, decreases, so
that B, may be cut apart and absorbed in a stronger
sequence.

B. Formation of an Equilibrium Slate from a Set of

Patterns

When a number of stimulus patterns are randomly
applied to a type II net, these patterns, organizing the
net, are expected to form a common equilibrium state,
as has been shown in the four-layer perceptron [5]. Let
Sy= {xl, Xa, v, x,,.} be a set of patterns, and assume
that all the patterns are applied equally likely, irre-
spective of the patterns applied previously. In this

L
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case, the weight matrix converges to
i 1
W=-— Z X,'XJ:!.
m®
If we put
|
X = Z X
mo
W is rewritten as

IV = XX

Since the components of X are not necessarily equal to
+1, the following pattern

x = sgn X, (x: = sgn X)) . (2n

is defined, where every component X; of X is assumed,

not to be equal to 0.7
Theorem 7: When pattern set Sx is applied, x be-
comes an equilibrium state of the net, and

TX.'=X

holds for all 4, pi’ovided x;- X>0.
Proof : Calculation of #:(x, x) yields

u;i(x, x) = £:X:(X-x) = IXf > inl >0
¥

Therefore, x is equilibrium. Moreover,

‘l;’-"(Xk, X) = x.-X.-(X-xk) = X.;| (X'Xk).

Hence, if X x>0, min (0) {u‘-} >0, and Tx;=x holds
(f X -z <0, Txp=—x).
Consider the case where two sets of patterns are

applied. Let Sy= {x;, Xa, » 0 v, xm} and .Sy
= {Yh h £ TR Yk} be two sets of patterns, and let
X and Y be, respectively,
1
X=— Z X
k7
1 R
Y =- Z}"g.
kB

When a pattern is applied, the probability of applying
a pattern in the same set at the next time is assumed to
be nearly equal to 1. Inside a set, all patterns are
equally likely. Then, after organization, the weight
matrix cenverges to

W = }{(XX' 4+ YY) (28)

where terms relating to small probability are ignored.
Assume that X; and ¥; never vanish, and put
x =sgn X
y =sgn Y. 29

Il

It is also assumed that x=#+y. In general x-X

7 When m is odd, no component of X can vanish.
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=2 | X} is considered to be much larger than |x-¥].
Let €. and ¢, be, respectively,

& = min HI Xix-X) | + aVilx- ¥)) (30)

o= min (| Vi V)| 43X 20}, (D)
The following theorem shows a condition that two
equilibrium states are separately formed, each cor-
responding to Sx and Sy. The result is similar to that
of the four-layer perceptron [5]. The present net may
be regarded as a model for concept formation.

Theorem &: A necessary and sufficient condition for x
to be equilibrium is

e > Q.
When x; satisfies the condition

min ([e.)) | Xi(x;- X) | + 2. Vi(x; ¥)} > 0

TZX,' = .'_*'..X- (32)
Similar results hold for y.
Proof: From
wix, x) = 3 | Xi| (¢ X) + x:Vilx- ¥)}

min (0) {u;} e,

is obtained. Therefore, x is equilibrium iff >0 and
s1(x) = [e:]. When x;- X >0

wilx %) = 3 Xo| (0 X) + %V il )}

is obtained. Hence, when (32) holds, min (s;(x)) {u.-(x,-,<
x)} >0 and Tx;EN{x! 51(x) }, so that

T%x; = x.
When x;- X <0, Tx,;= —x.
VI. CoNcLUSIONS

Stability of state transition, especially of an equi-
librium state and cvele, in autonomous nets of threshold
elements is elucidated by defining the stability numbers
of state transition. By presuming that patterns or pat-
tern sequences are remembered in a self-organizing net
of threshold elements in a form of equilibrium states or
state-transition sequences, the condition for many pat-
terns or pattern sequences to be remembered correctly
at the same time is shown. By calculating stability
numbers, the stability of remembrance is shown and the
domain of cue patterns from which a remembered pat-
tern or pattern sequence is recalled, is presented. One
of the features is that patterns or pattern sequences are
remembered and recalled correctly even under strong
noise disturbances. A condition that a representative
pattern is formed by self-organization from a given set
of stimulus patterns is also given.

Self-organizing nets of threshold elements seem to be
more capable of interesting information processing. The
present paper touches upon only one facet and there
remain many interesting features of nets of threshold
elements to be studied further.
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