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Abstract— Neurons in a network can be both active or inactive.
Given a subset of neurons in a network, is it possible for the
subset of neurons to evolve to form an active oscillator by
applying some external periodic stimulus? Furthermore, can
these oscillator neurons be observable, that is, is it a stable
oscillator? This paper explores such possibility, finding that an
important property: any subset of neurons can be intermittently
co-activated to form a stable oscillator by applying some external
periodic input without any condition. Thus, the existing of
intermittently active oscillator neurons is an essential property
possessed by the networks. Moreover, this paper shows that,
under some conditions, a subset of neurons can be fully co-
activated to form a stable oscillator. Such neurons are called
selectable oscillator neurons. Necessary and sufficient conditions
are established for a subset of neurons to be selectable oscillator
neurons in linear threshold recurrent neuron networks. It is
proved that a subset of neurons forms selectable oscillator
neurons if and only if the real part of each eigenvalue of the
associated synaptic connection weight submatrix of the network
is not larger than one. This simple condition makes the concept of
selectable oscillator neurons tractable. The selectable oscillator
neurons can be regarded as memories stored in the synaptic
connections of networks, which enables to find a new perspective
of memories in neural networks, different from the equilibrium-
type attractors.

Index Terms— Fully active oscillator neurons, intermittently
active oscillator neurons, oscillators, recurrent neural networks,
selectable oscillator neurons.

I. INTRODUCTION

THERE have been many studies on the dynamics of
recurrent neural networks (see [6], [23], [30]). They

have single or multiple point attractors [1], [2], [15], [25],
oscillations [7], [11], [18], [21], and chaotic dynamics [10]
under constant inputs. Associative memory has also been
studied by using such networks, where point attractors corre-
spond to memorized patterns [3], [12], [13] under symmetric
connections. In the asymmetric case, they can store sequences
of patterns or cycles of patterns [3]. When external inputs are
appropriately selected, they also show interesting phenomena,
including selectable excitation patterns [8], [9], [22], [28]. The
bump solutions of a neural field are also such an example [5].
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This paper studies selectable oscillation patterns in recurrent
neural networks evoked by adequate external periodic stimuli.

Oscillations are ubiquitous in the brain [4], playing an
important role not only in periodic behaviors but also in
memories and integrating cortical activities of various areas.
Furthermore, due to their property of feature binding, neural
oscillators have been used to model perceptual processing in
the brain [16], [26]. Can such a property also be possessed
in artificial recurrent neural networks? Moreover, how can
we describe such a property? [17], [19], [24], [29] provided
clues in the regard. A recurrent neural network contains many
neurons, each which can be active or inactive. Co-active
neurons can form interesting dynamical patterns. In this paper,
we ask. Do oscillator neurons exist universally in recurrent
neural networks? That is, can the dynamics of any subset of
neurons have the ability to evolve into co-activating toward a
stable oscillator under adequate external periodic inputs? We
demonstrate that any subset of neurons can intermittently co-
activate into a stable oscillator by adequately selecting external
inputs. Interestingly, no condition is required on the synaptic
connections for the network to have such a property. This
suggests that all neurons in a network have equal potential to
act as oscillator neurons. As far as we know, the property of
“intermittently active oscillator neurons” has not been studied
in related work yet.

In this paper, we also explore under which conditions a
given subset of neurons in the network can evolve into a
fully active oscillator by applying adequate periodic outside
stimulus. Furthermore, can these oscillator neurons be observ-
able? That is, can they form a stable oscillator? We call such
neurons “selectable oscillator neurons” and identify the nec-
essary and sufficient conditions for a subset of neurons to be
selectable oscillator neurons. Selectable oscillator neurons can
be regarded as memories stored in the synaptic connections of
the network, this is because that by applying some periodic
outside stimulus to the network, some selectable oscillator
neurons can be selected.

Different from traditionally regarding the equilibrium-type
attractors as memories in recurrent neural networks, the con-
cept of selectable oscillator neurons enables to find a new
perspective of memories. The differences are obvious. First,
the equilibrium-type attractors require that the external inputs
of the networks must be constant. On the other hand,
the selectable oscillator neurons require the external inputs be
variable. From the mathematical view, the dynamics between
these two types of networks have quite different properties.
Second, the memory retrieving methods are different. The
memory retrieving in equilibrium-type attractor’s networks
is via internal inputs, while in the networks with selectable
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oscillator neurons, the memory retrieving is via external inputs.
From the view of network design, memory retrieving via
external inputs is more flexible.

The rest of this paper is organized as follows. Preliminaries
are given in Section II. The concepts and basic theories of
the intermittently active oscillator neurons, and the selectable
oscillator neurons are presented in Sections III and IV, respec-
tively. Finally, conclusions are given in Section V.

II. PRELIMINARIES

The model of recurrent neural networks studied in this paper
is described as

ẋ(t) + x(t) = [W x(t) + h(t)]+, t ≥ 0

or in a components form

ẋi (t) + xi (t) =
⎡
⎣

n�
j=1

wi j x j (t) + hi (t)

⎤
⎦

+
, t ≥ 0

where [s]+ = max{s, 0} is the linear threshold function,
xi (i = 1, 2, · · · , N) represents the activity of neuron i ,
x(t) = (x1(t), x2(t), · · · , xN (t))T ∈ R

N denotes the state of
the network at time t , W = (wi j )N×N is the synaptic weight
connection matrix of the network, and h(t) ∈ R

N denotes
the external stimulus assumed to be a nonconstant continuous
periodic function with period ω, i.e., h(t + ω) = h(t).

The output of the network is defined as

y(t) = [W x(t) + h(t)]+ ∈ R
N

for t ≥ 0. Each yi (t) is regarded as the output of neuron i at
time t , so that clearly, yi (t) ≥ 0 for any t ≥ 0. The activity of
a neuron at time t is defined according to the value of yi (t).

Definition 1: If yi (t) > 0, we say neuron i is active at time
t . If yi (t) = 0, we say neuron i is inactive at time t .

Next, we define the oscillator of the network.
Definition 2: An output y∗(t) of the network is called an

oscillator if y∗(t + ω) = y∗(t) for all t ≥ 0.
In practice, only stable oscillators in a network can be

observed, while unstable oscillators cannot be observed since
any small disturbance could easily destroy them. An oscillator
is stable if any output starting from points sufficiently close to
the orbit stay close to the orbit all the time. The mathematical
definition is given as follows.

Definition 3: The oscillator y∗(t) is called stable, if for any
� > 0, there exists a δ > 0 such that �y(0) − y∗(0)� ≤ δ
implies that

�y(t) − y∗(t)� < �

for all t ≥ 0. If an oscillator is not stable, it is called unstable.
It is well known that there are two viewpoints for inputs in

recurrent neural networks. An external input h is fixed in one
viewpoint and the initial vector is used as a network input. The
other is that an initial vector x(0) of the network is fixed and
instead an external stimulus is used as the network input. In
this paper, we take an external stimulus as the network input
because this is in favor of network design. Fig. 1 gives an
intuitive illustration.

Fig. 1. Relationship between input and output of the network.

The two viewpoints for inputs imply two different methods
of computing essentially. In fact, the network structure is
unchanging when initial point x(0) is used as computing input
and external input h is fixed, while the network structure is
changing by taking h as computing input since h is changing.
It is well known from basic theory of differential equations that
different structures of differential equations result in different
dynamical behaviors.

Many research on dynamics of recurrent neural networks
fix external input h and take initial point x(0) as computing
input, then the equilibrium-point attractors can be looked as
memories stored in networks (see [14], [20], [27]). However,
in this way, the attractors cannot encode external inputs.
In order to encode more information of external input in the
computing of networks and for easy of network design in prac-
tical applications, we take external inputs as computing inputs
and present the concept of “selectable oscillator neurons” to
indicate memories stored in networks. This mechanism is
different from conventional equilibrium-type attractors.

Given a subset of neurons indexed by P , the dynamics (1)
can be decomposed as
�

ẋ P(t) + xP(t) = [WP · x P(t) + WP Z · xZ (t) + h P (t)]+
ẋ Z (t) + xZ (t) = [WZ P · x P(t) + WZ · xZ (t) + h Z (t)]+

where P ⊆ {1, 2, · · · , N} is a given index set and Z =
{1, 2, . . . , N} \ P , x P and xZ are subvectors of x constructed
from x by removing the elements in x not indexed by P and
Z , respectively, h P , and h Z are subvectors of h, WP , and WZ

are principal submatrices of W constructed by removing from
W all rows and columns not indexed by P and Z , respectively,
WP Z is a submatrix constructed from W by removing from
W all rows not indexed by P and all columns not indexed
by Z , and WZ P is constructed in similar way. Accordingly,
the output can be decomposed into yP(t) and yZ (t).

In recurrent neural networks, we are always interested in
long time evolution of the output of each neuron. We are
interested in knowing if a given subset of neurons can evolve
to form some kind of active oscillator by adequate external
stimulus.

III. INTERMITTENTLY ACTIVE OSCILLATOR NEURONS

In this section, we address the problem of given any subset
of neurons, does there exist any external periodic input to
stimulate the network so that these neurons will evolve into
stable active oscillators without any condition? If so, this
would be a natural property existing in the network. The
oscillator must be stable so that it can be observed, and
it must also be active so that interesting patterns can be
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Fig. 2. Intermittently active oscillator neurons {1, 2} in the network (1). The
external periodic input is h(t) = (sin(t), cos(t),−20 + cos(t))T .

formed. To illustrate this point, we consider a network in three
dimensions and randomly generate the connection matrix W
as

W =
⎡
⎣

0.1220 0.3317 0.1217
0.2684 0.1522 0.8842
0.2578 0.3480 0.0943

⎤
⎦ .

Given a subset of neurons with index set P = {1, 2},
we choose the external periodic input as

h(t) = [sin(t), cos(t),−20 + cos(t)]T .

Fig. 2 clearly shows that network dynamics evolve into a
stable oscillator, and those neurons indexed by P evolve
into intermittently active oscillator neurons while the rest of
neurons evolve into 0. We can easily check that any subset
of neurons are all intermittently active oscillator neurons by
adequate external inputs. It can be observed in Fig. 2 that the
intermittent activity of neurons exhibit an interesting property
that they are periodically active in some intervals and inactive
in others.

Next, we give a formal definition to this phenomenon. First,
we provide some notations. A vector x ∈ R

n is said to be
nonnegative, denoted by x ≥ 0, if each component of x is
nonnegative. A vector x ∈ R

n is said to be positive, denoted
by x > 0, if each component of x is positive.

Definition 4: When there exists periodic input h(t) such
that a stable oscillatory solution x∗(t) exists that satisfies
y∗

P(t) > 0 in some intervals and y∗
P(t) = 0 in the other

intervals periodically, and y∗
Z (t) = 0, P is called a set of

intermittently active oscillator neurons.
Theorem 1: For any set of neurons with index set P , there

exists a periodic input h(t) for which a stable Intermittently
Active Oscillator x∗(t) exists.

Theorem 1 explores an important property that any subset
of neurons can be intermittently co-activated to form a stable
oscillator by applying some external periodic input without any
condition. It shows that the existing of intermittently active
oscillator neurons is an essential property possessed by the
networks.

Next, we are going to prove this theorem. We will try our
best to put the proof in an easy understand way.

It is clear that, when h Z (t) is chosen to be negative enough,
the activity of neurons in Z is suppressed so that we may put
y∗

Z (t) = 0. Then we only need to consider the subsystem

ẋ P(t) = −xP(t) + [W x P(t) + h P (t)]+, t ≥ 0.

For convenience, we omit suffix P in the proof, considering
only neurons in P , and denote A = (I − W )P . We further put
ω = 1 without loss of generality by choosing an adequate time
scale. Before describing a formal proof, we consider a linear
differential equation

ẋ(t) =
�

−Ax(t) + a, 0 ≤ t < τ

−x(t), τ ≤ t ≤ 1

where a > 0 is constant. This coincides with the original (1)
with the input

h(t) =
�

a, 0 ≤ t < τ

−b, τ ≤ t ≤ 1

where a > 0 is large enough to hold W x(t) + a > 0 and
−b < 0 is small enough to hold W x(t) − b < 0. Clearly,
it holds that

y(t)

�
> 0, 0 ≤ t < τ

= 0, τ ≤ t ≤ 1.

The solution of (1) is

x(t) =
�

e−At x0 + (I − e−At )A−1a, 0 ≤ t ≤ τ

e−(t−τ )x(τ ), τ ≤ t ≤ 1

where x0 = x(0). We define two matrices

X = e−(1−τ )e−Aτ

Y = e−(1−τ )(I − e−At )A−1

which depend on τ . We then have

x1 = Xx0 + Y a, where x1 = x(1).

We search for a solution x∗(t) that satisfies

x∗ = x∗(0) = x∗(1).

From (1), its initial (and final) state is given by

x∗ = (I − X)−1Y a

and hence

x∗(t) = e−At x∗ + (I − e−At )A−1a = G(t, τ )a

for 0 ≤ t < τ , where

G(t, τ ) = e−At (I − X)−1Y + (I − e−At )A−1.

The proof of Theorem 1 then consists of the following four
lemmas.

Lemma 1: There exists a constant 0 < τ < 1 and two
vectors a > 0 and −b < 0 such that

W x∗(t) + a > 0, 0 ≤ t ≤ τ

W x∗(t) − b < 0, τ ≤ t ≤ 1.
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Proof: Since x∗(t) is bounded, the existence of b is
obvious. We evaluate G(t, τ ) for sufficiently small τ and
t < τ . Since Y and I − e−At are of order τ while e−At

and (I − X)−1 are bounded, we have G(t, τ ) = O(τ ). From
(1) there exists a > 0, at least for sufficiently small τ . This
proves the lemma.

By using the property of continuity, the result below follows
directly from Lemma 1.

Lemma 2: There exists a small neighborhood Nx∗ of x∗
such that for any x0 ∈ Nx∗ , it holds that

�
W x(t) + a > 0, 0 ≤ t ≤ τ

W x(t) − b < 0, τ ≤ t ≤ 1

where x(t) is the trajectory starting from x0.
Based on τ , a, and b in Lemma 1, we now choose an input

of network (1) with a period of 1 (the case with an arbitrary
period ω is also true) as

h(t) =
�

a, n ≤ t < n + τ

−b, n + τ ≤ t < n + 1

where n = 0, 1, 2, . . .. Since x∗(0) = x∗(1) and h(t) are
periodic, the following lemma extends the solution to t ∈
[n, n + 1], n = 0, 1, 2, . . ., thus proving that there exists a
periodic solution x∗(t) of network (1) with this input.

Lemma 3: With the input defined by (1), the solution x∗(t)
is extended over all t ≥ 0 with period 1 by x∗(t + 1) = x∗(t).

There is only one step left to complete the proof of
Theorem 1: the stability of period solution x∗(t) defined by
(1). The following lemma ends it.

Lemma 4: Given any x(0) ∈ Nx∗ , there exists η > 0 such
that

�x(n) − x∗(n)� ≤ e−ηn�x(0) − x∗(0)�

for all n = 0, 1, 2, . . .
Proof: Let x(t) be the solution starting at x0. Then, it

becomes x1 = Xx0 + Y a.
The mapping x0 → x1 is the Poincaré map of the periodic

orbit x∗(t). Therefore, the initial deviation δx0 � x0 − x∗
changes to δx1 � x1 − x∗ as δx1 = Xδx0.

Let λi be the eigenvalues of A with corresponding eigen-
vectors vi such that Avi = λivi . Then, we have

Xvi = e−(1−τ )e−λiτ vi

showing that the eigenvalues of X are e−(1−τ )e−λiτ . Let us
take λ = maxi

�
e−(1−τ )e−λiτ

	
, then

�δx1� ≤ λ�δx0�.

By choosing a sufficiently small τ , we have λ < 1. Hence,
by letting −η = log λ, η > 0, we have

�δx1� ≤ e−η�δx0�.

This repeats, proving Lemma 4, as well as Theorem 1.

Fig. 3. Set of selectable oscillator neurons {1, 2} driven by h(t) = (2 +
sin(t), 1 + cos(t), sin(t))T in the network (1). (a) Components of y∗(t) with
the property of y∗

i (t + ω) = y∗
i (t) > 0(i = 1, 2) and y∗

3 (t) ≡ 0 for all
t ≥ 0 and ω = 2kπ(k = 0, 1, 2, . . .). (b) Stable oscillator y∗(t) located in the
coordinate plane y3 = 0.

IV. SELECTABLE OSCILLATOR NEURONS

In this section, we study the problem of under what
condition can a given subset of neurons evolve to co-activate
Fully into a stable oscillator by applying some external
periodic inputs. Such neurons are called Selectable Oscillator
Neurons. We will identify the necessary and sufficient
conditions for this.

To further illustrate the concept of selectable oscillator
neurons, let us first consider an network for example
⎧⎪⎨
⎪⎩

ẋ1(t) + x1(t) = [0.3x1(t) + x1(t) − 2x3(t) + h1(t)]+
ẋ2(t) + x2(t) = [0.3x2(t) + h2(t)]+
ẋ3(t) + x3(t) = [−3x1(t) + x2(t) + 0.3x3(t) + h3(t)]+

for t ≥ 0.
The neurons with index set P1 = {1, 2} are selectable

oscillator neurons. In fact, by choosing

h(t) = (2 + sin(t), 1 + cos(t), sin(t))T

it shows in Fig. 3 that the output of the network evolves to a
stable oscillator y∗(t) located on the coordinate plane y3 = 0,
i.e., any trajectory starting from a point sufficiently close to
the oscillator will stay close to the oscillator forever.

Fig. 4 shows another selectable oscillator set of neurons
with index set P2 = {2, 3} driven by external input

h(t) = (0.5 sin(t), 2 + sin(t), 3 cos(t))T

which is located in the coordinate plane y1 = 0.
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Fig. 4. Set of selectable oscillator neurons {2, 3} driven by h(t) =
(0.5 sin(t), 2 + sin(t), 3 cos(t))T in the network (1). (a) Components of ŷ∗(t)
with the property of ŷ∗

1 (t) ≡ 0 and ŷ∗
i (t + ω) = ŷ∗

i (t) > 0(i = 2, 3) for all
t ≥ 0 and ω = 2kπ(k = 0, 1, 2, . . .). (b) Stable oscillator ŷ∗(t) located in the
coordinate plane y1 = 0.

However, it should be noted that there exists an un-
selectable set of oscillator neurons in this network, i.e., the
set of neurons {1, 3} since there does not exist any stable
oscillator y∗ with y∗

i (t + ω) = y∗
i (t) > 0(i = 1, 3) no mater

which external input h(t) is chosen.
Moreover, it is interesting that, in the above scheme,

an external stimulus is taken as an input of the network for
computing. This is different from traditional computing in
recurrent neural networks that an initial value is taken as an
input for computing, but not external stimulus.

Definition 5: A set of neurons with index set P is called a
set of selectable oscillator neurons if there exists an external
periodic input h(t + ω) = h(t) such that the network (1)
possesses a stable oscillator y∗(t) with properties

�
y∗

i (t + ω) = y∗
i (t) > 0(i ∈ P)

y∗
j (t) ≡ 0( j /∈ P)

for all t ≥ 0. In other words, neurons in P will co-activate
into a stable oscillator.

Theorem 2: A set of neurons with index set P is a set of
selectable oscillator neurons, if and only if the real part of
each eigenvalue of the submatrix WP is not larger than 1.

This condition is quite simple and tractable, hence, it gives
a simple way to design an oscillator network.

Proof: The proof requires necessary and sufficient parts.
For the necessary part, suppose that a set of neurons with index
set P are selectable oscillator neurons. We will prove that the

real part of each eigenvalue of WP is not larger than 1. By
Definition 5, there exists an external periodic input h(t +ω) =
h(t) such that the network (1) has a stable oscillator y∗(t) with
the property

�
y∗

P(t + ω) = y∗
P(t) > 0

y∗
Z (t) ≡ 0

for all t ≥ 0. From (1), it must hold that
�

ẋ∗
P(t) = (WP − I ) · x∗

P(t) + WP Z · x∗
Z (t) + h P(t)

ẋ∗
Z (t) + x∗

Z (t) = 0

for t ≥ 0, where I is the unit matrix. Suppose there exists a
eigenvalue λ such that Re(λ) > 0 for the matrix (WP − I ).
Let ξ be the associated eigenvector of λ. Then, it follows that:

dξT x∗
P(t)

dt
= λ · ξT x∗

P(t) + ξT WP Z x∗
Z (0)e−t + ξT h P (t)

for t ≥ 0. Thus

ξT x∗
P(t) = eλt ×

�
ξT WP Z x∗

Z (0)

λ + 1

�
1 − e−(λ+1)t

�

+ ξT x∗
P(0) +

� t

0
e−λs · ξT h P (s)ds

�

→ ∞
as t → +∞, since

� t

0
e−λs · ξT h P(s)ds

is bounded as h P is bounded. This contradicts the fact that x∗
P

is bounded, which proves that each eigenvalue of WP must be
not larger than 1. This completes the proof of the necessary
part.

To prove the sufficient part, suppose that the real part of
each eigenvalue of WP is not larger than 1. We will show that
the neurons in P must be selectable oscillator ones.

Choosing an external periodic stimulus as
�

h P (t) = (3 + sin t + cos t) · 1P − (3 + sin t)WP · 1P

h Z (t) = −1Z − (3 + sin t)WZ P · 1Z

for t ≥ 0, where 1P and 1Z are two vectors with components
being 1, it is easy to see that the network has an oscillator
defined by
�

y∗
P(t) = [WP · x∗

P(t) + h P (t)]+ = (3 + sin t + cos t) · 1P

y∗
Z (t) = [WZ P · x∗

P(t) + h Z (t)]+ ≡ 0

for all t ≥ 0.
To complete the proof, we only need to show that the

oscillator y∗(t) is stable. Since

y∗(t) = [W x∗(t) + h(t)]+

it is sufficient to prove that x∗(t) is stable.
Clearly, we have
�

WP · x∗
P(t) + h P (t) = 3 + sin t + cos t ≥ 1P > 0

WZ P · x∗
P(t) + h Z (t) = −1Z < 0
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for t ≥ 0. The dynamics starting at xP(0) and xZ (0) can be
rewritten as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ P(t) + xP(t) = �
WP · �x P(t) − x∗

P(t)
� + WP Z · xZ (t)

+ (3 + sin t + cos t) · 1P
�+

ẋ Z (t) + xZ (t) = � − 1Z + WZ P · �x P(t) − x∗
P(t)

�
+ WZ · xZ (t)

�+

for all t ≥ 0.
Given any � such that

0 < � ≤ min

�
1

�WP� + 1
,

1

�WP Z � + 1
,

1

�WZ P� + 1
,

1

�WZ � + 1

�

define a constant

δ = �

max{√21 + 4�WP Z �} .

To prove that x∗ is stable, it is sufficient to prove

�x P(0) − x∗
P(0)� + �xZ (0)� < δ

implies that

�x P(t) − x∗
P(t)� + �xZ (t)� < �

for all t ≥ 0. If this is not true, there must exist a time t1 > 0
such that�

�xP(t) − x∗
P(t)� + �xZ (t)� < �, 0 ≤ t < t1

�x P(t1) − x∗
P(t1)� + �xZ (t1)� = �.

Then, for i ∈ P , it holds for 0 ≤ t ≤ t1 that
�
j∈P

wi j · �x j (t) − x∗
j (t)

� +
�
j∈Z

wi j · x j (t)

+
�

2 + 2π

ω
+ sin

2π

ω
t + 2π

ω
cos

2π

ω
t

�

≥ 1 − �WP� · ��x P(t) − x∗
P(t)

�� − �WP Z � · �xZ (t)�
≥ 1 − max{�WP�, �WP Z �} · �

> 0

and for i ∈ Z , it holds for 0 ≤ t ≤ t1 that

−1 +
�
j∈P

wi j · (x j (t) − x∗
j (t)) +

�
j∈Z

wi j · x j (t)

≤ −1 + �WZ P� · ��x P(t) − x∗
P(t)

�� + �WZ � · �xZ (t)�
≤ −1 + max{�WZ P�, �WZ �} · �

< 0.

Thus, for 0 ≤ t ≤ t1, it follows from (1) that:
d
�
x P(t) − x∗

P(t)
�

dt
= (WP − I )

�
x P(t) − x∗

P(t)
� + WP Z xZ (t)

and

ẋ Z (t) = −xZ (t).

Clearly

xZ (t) = xZ (0)e−t (0 ≤ t ≤ t1).

Moreover

d
���xP(t) − x∗

P(t)
��2�

dt
= −2

�
x P(t) − x∗

P(t)
�T

(I − WP ) · �x P(t) − x∗
P(t)

�

+ 2
�
xP(t) − x∗

P(t)
�T

WP Z · xZ (t)

≤ 2
�
xP(t) − x∗

P(t)
�T

WP Z · xZ (t)
≤ 2

��xP(t) − x∗
P(t)

�� · �WP Z � · �xZ (t)�
for 0 ≤ t ≤ t1. Then
��x P(t) − x∗

P(t)
��2

≤ ��x P(0) − x∗
P(0)

��2

+ 2
� t

0

��x P(s) − x∗
P(s)

�� · �WP Z � · �xZ (0)� · e−sds

≤ ��xP(0) − x∗
P(0)

��2

+ 2 · �WP Z � · �xZ (0)� · sup
0≤s≤t1

��x P(s) − x∗
P(s)

��

≤ ��xP(0) − x∗
P(0)

��2 + 8 · �WP Z �2 · �xZ (0)�2

+ 1

2
sup

0≤s≤t1

��x P(s) − x∗
P(s)

��2

for 0 ≤ t ≤ t1. It follows that:
��xP(t) − x∗

P(t)
�� ≤ √

2
��x P(0) − x∗

P(0)
��+4�WP Z � · �xZ (0)�

for 0 ≤ t ≤ t1. Then
��x P(t1) − x∗

P(t1)
�� + �xZ (t1)�

≤ √
2
��x P(0) − x∗

P(0)
�� + (1 + 4�WP Z �) · �xZ (0)�

≤ max{√2, 1 + 4�WP Z �}
× ���xP(0) − x∗

P(0)
�� + �xZ (0)��

< �.

This leads to a contradiction, showing that x∗(t) is stable, and
thus y∗(t) is stable. This completes the proof of the sufficient
part, as well as the theorem.

V. CONCLUSION

The concepts of intermittently oscillator neurons and
selectable oscillator neurons are proposed for a class of recur-
rent neural networks. The former explores a universal property
of the network that the dynamics of any subset of neurons
can co-activate intermittently at a stable oscillator by applying
adequate external periodic inputs, while the latter suggests an
alternative viewpoint to memory storage in recurrent neural
networks that is different from the conventional equilibrium-
type attractors. The most interesting result is that some neurons
can be selectable oscillator neurons while others cannot.
Suppose some memories are stored as selectable neurons. Then
such memories can be reliably retrieved by applying a periodic
stimulus from outside. This raises a question of how we can
store the memories as selectable oscillator neurons. This paper
provides a clear and tractable answer: the selectable oscillator
neurons can be stored in the network simply by ensuring that
the real part of each eigenvalue of the associated synaptic
connection weight submatrix is not larger than 1. It can be
expected that interesting applications could be developed on
the basis of this theoretical study of oscillator neurons. This
will be studied in the future.
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