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The dynamics of supervised learning play a main role in deep learn-
ing, which takes place in the parameter space of a multilayer perceptron
(MLP). We review the history of supervised stochastic gradient learning,
focusing on its singular structure and natural gradient. The parameter
space includes singular regions in which parameters are not identifiable.
One of our results is a full exploration of the dynamical behaviors of
stochastic gradient learning in an elementary singular network. The bad
news is its pathological nature, in which part of the singular region be-
comes an attractor and another part a repulser at the same time, forming a
Milnor attractor. A learning trajectory is attracted by the attractor region,
staying in it for a long time, before it escapes the singular region through
the repulser region. This is typical of plateau phenomena in learning.
We demonstrate the strange topology of a singular region by introducing
blow-down coordinates, which are useful for analyzing the natural gra-
dient dynamics. We confirm that the natural gradient dynamics are free of
critical slowdown. The second main result is the good news: the interac-
tions of elementary singular networks eliminate the attractor part and the
Milnor-type attractors disappear. This explains why large-scale networks
do not suffer from serious critical slowdowns due to singularities. We
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finally show that the unit-wise natural gradient is effective for learning
in spite of its low computational cost.

1 Introduction

The multilayer perceptron (MLP) was first proposed by Rosenblatt (1962) as
a learning machine consisting of neuron-like binary units. Rosenblatt con-
sidered various types of general deep networks with feedback connections,
but most studies at that time focused on the simple perceptron, a three-layer
feedforward network with input, hidden, and output layers. Its capability
of learning was proved by the perceptron convergence theorem, although
only output binary neurons are modifiable. It is necessary to introduce ana-
log neurons to train hidden units (Amari, 1967; Werbos, 1974; Rumelhart,
Hinton, & Williams, 1986).

Deep learning has achieved astonishing results in various applications
in spite of the fact that the network architecture is almost the same as that
of the original perceptron of Rosenblatt. It has benefited from a number of
remarkable ideas. One is the introduction of analog neurons, which makes
the stochastic gradient descent learning method applicable. Another is the
convolutional structure, which realizes shift invariance (Fukushima, 1980;
LeCun, Bottou, Bengio, & Haffner, 1998). The third is the introduction of re-
stricted Boltzmann machines and autoencoders, which makes it possible to
implement self-organization as pre-training. We may add the dropout tech-
nique and long- and short-term memory, among many others. However,
theoretical foundations of deep learning have not yet been established.

This article includes a review of the dynamics of supervised learning
of MLP, paying attention to the singular structure of the parameter space
of MLP. Because of singularities, stochastic gradient dynamics are often
trapped on plateaus, resulting in very slow convergence. The natural gra-
dient method was proposed to overcome this difficulty (Amari, 1998). (See
the detailed studies by Ollivier, 2015a, 2015b.)

We begin by analyzing the behavior of an elementary MLP, consisting
of two hidden neurons and one output neuron, which is included in a gen-
eral MLP as a subnetwork. We recapitulate the analysis of learning dynam-
ics in a neighborhood of a singular region (Wei, Zhang, Cousseau, Ozeki,
& Amari, 2008; Cousseau, Ozeki, & Amari, 2008), fortified by new results.
When a singular region is not the optimal solution, it may form a strange
attractor of the Milnor type, causing retardation in learning. Next, we ana-
lyze the behaviors of natural gradient dynamics, showing that the natural
gradient eliminates Milnor attractors. We also elucidate the topology of the
singular region by introducing “blow-down” coordinates.

How do elementary singular networks behave in a larger network? It
is our finding that mutual coupling of singular subnetworks eliminates
singular attracting regions, so that singular regions are no longer serious
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problems. This implies that the Milnor-type attractor vanishes because of
interactions of backpropagated error signals.

Although singular attracting regions disappear, there are lots of saddle
points having eigenvalues close to zero, and the vanilla gradient dynam-
ics are slow. The natural gradient is effective, but its computational cost is
high. Lots of ideas have been proposed to overcome this deficit, including
efficient approximations of natural gradients (see, e.g., Pascanu & Bengio,
2013). We confirm here that the unit-wise natural gradient method (Kurita,
1994; Ollivier, 2015a, 2015b) is effective in spite of its low computational
cost.

This article is organized as follows. Section 2 recounts not-so-well-
known historical episodes concerning MLP stochastic gradient descent
learning and remarks on new trends related to the theoretical foundations
of deep learning. Section 3 is a preliminary study devoted to the Fisher in-
formation matrix of a single neural unit. Section 4, the main part, elucidates
the singular structure of the parameter space of MLP and summarizes the
dynamical behaviors near singular regions. The blow-down coordinates
are introduced to show the topology of the singular regions and analyze
the dynamics of natural gradient learning. Section 5 proves a striking fact
that attracting singular regions (Milnor attractors) disappear by connect-
ing elementary singular networks, when the optimal solution is outside the
singular regions. This fact confirms that a large network is free of patholog-
ical plateau phenomena due to singularities. In section 6, after a survey of
various invariant Riemannian metrics (versions of Fisher information), we
show that the unit-wise natural gradient works well in singular regions.
Section 7 summarizes our conclusions.

2 Brief Episodes on MLP Learning

We begin by giving a short recount of historical developments. The origi-
nal MLP (Rosenblatt, 1962) is a binary machine, where learning takes place
only in the output units. One needs to use hidden analog neural units to
modify them. A differentiable cost function can naturally be defined, and
the stochastic gradient descent method is applicable. These ideas were pro-
posed by Amari (1967) in order to facilitate learning of hidden units in MLP.
The dynamical behavior of learning was also analyzed in the vicinity of the
optimal solution in this early paper.

The stochastic gradient learning method has a root in the Robbins-Monro
stochastic approximation method (Robbins & Monro, 1951). Bryson (1962)
and Tsypkin (1966) proposed a similar idea for optimizing nonlinear sys-
tems, but it cannot be directly applied to binary MLP. Amari (1967) pro-
posed a stochastic gradient method applicable to MLP. Furthermore, the
dynamical behavior of this method was studied near the optimal solution,
and a trade-off was found between the speed of convergence and accu-
racy of learning. The first computer-simulated results of online stochastic
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Figure 1: Network of piecewise linear classifier.

Figure 2: Results of learning. Two categories C1 and C2 of patterns ξ = (ξ1, ξ2).
W1 is the decision region for C1, having piecewise linear boundary. As learning
proceeds, the region changes from initial (panel b) to panels c and d, and, finally,
panel e.

gradient descent learning applied to MLP were reported in a Japanese book
(Amari, 1968). It is a very simple model of a pattern classifier with two in-
puts, one output, and six hidden units, arranged in four layers. We show
the model in Figure 1 as a historical episode. Its input-output functions is

y = v1 max {w1 · x,w2 · x} + v2 min {w3 · x,w4 · x} , (2.1)

where x = (x1, x2) is the input, y is the output, and w1, . . . ,w4 are modifiable
synaptic weight vectors. v1 and v2 are also modifiable weights of the out-
put neuron, but they are set equal to 1 in this example. The task is to find
a classifier that separates two categories C1 and C2. They are not linearly
separable, so an MLP was used, which realizes a piecewise linear function,
equation 2.1. As is shown in Figure 2, the classifier successfully converges
after 25 steps.

The stochastic gradient descent of MLP was followed by similar ideas
(e.g., Werbos, 1974). It became very popular after the proposal of the
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backpropagation idea and algorithm for calculating the gradient of a func-
tion by the PDP group (Rumelhart et al., 1986).

A multilayer convolutional network, neocognitron, was proposed by
Fukushima (1980). LeCun et al. (1998) used the convolutional architecture
together with stochastic gradient learning, obtaining excellent results in
pattern recognition. Although the above two ideas were first proposed in
Japan, to our regret, researchers in other countries were the first to inte-
grate the convolutional structure with stochastic gradient learning, obtain-
ing fruitful results.

Hochreiter and Schumdhuber (1997) proposed LSTM (long- and short-
term memory) to overcome the difficulty of vanishing gradients. This idea is
particularly useful for recurrent neural networks, although Ollivier (2015b)
demonstrated that the unit-wise natural gradient method is more efficient
for some examples on learning of symbol sequences in recurrent networks.

A new era of deep learning was opened by the groups of G. E. Hinton
(see, e.g., Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006) and
Bengio (2009), where self-organization is introduced as pretraining before
stochastic gradient supervised learning. (See the detailed historical remarks
on deep learning by Schmidhuber, 2015.)

Although deep learning opened the door to a new world of neural-
network-based AI, many theoretical questions remain unanswered. One
important question is how input signals are represented in a deep architec-
ture by self-organization. It is hoped that higher-order features are formed
in higher layers, but we do not have convincing theories in this regard. (See
Saxe, McClelland, and Ganguli, 2013, for one such approach that uses linear
networks.) Poole, Lahiri, Raghu, Sohl-Dickstein, and Ganguli (2016) used a
statistical neurodynamics approach involving random networks to show
how signals are entangled in deep layers. To understand the problem, we
need to use adequate models of probability distributions of signals in the
real world in order to show what higher-order features are and how they
arise in higher layers.

Deep learning uses a huge number of units, so the underlying parame-
ter space has extremely many dimensions. It has gradually been revealed
that high-dimensional models have properties that are remarkably differ-
ent from those of low-dimensional ones. For instance, Dauphin et al. (2014)
used random matrix theory to show that most critical points are saddles in
high dimensions. Choromanska, Henaff, Mathieu, Aous, and LeCun (2015)
used a spherical spin-glass model to show that the values of most local min-
ima are concentrated around the level of the global minimum. This might
suggest that deep learning is free of the local minimum problem.

Singularities have been believed to be a serious problem for supervised
learning in the parameter space of a multilayer network. A series of research
articles attempted to tackle this problem (Fukumizu & Amari, 2000; Amari,
Park, & Fukumizu, 2000; Park, Amari, & Fukumizu, 2000; Amari, Park, &
Ozeki, 2006; Wei et al., 2008; Cousseau et al., 2008). A Bayesian theory of
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Figure 3: Simple perceptron.

singularities in a learning system has been developed by Watanabe (2009),
who used algebraic geometry for this purpose. In our article, we show a new
theoretical result as to why singularities are not so serious in a large-scale
network.

Recently, the focus of attention has been widened to include symbol
processing by using recurrent neural networks. Ollivier (2015b) demon-
strated that the unit-wise natural gradient method is very effective for some
examples—better than the LSTM method. Neural network parallel dynam-
ics and symbol manipulation had been two different directions of research
on AI. But now their unification has begun. Humans are capable of both
quick parallel dynamical processes and slow logical reasoning under con-
sciousness. It is intriguing that future neural-networks-based AI can behave
as if it has consciousness. (See Oizumi, Tsuchiya, & Amari, 2016, for a new
measure of information integration from information-geometric point of
view; see also Amari, 2016.)

3 Fisher Information Matrix of a Single Analog Neuron

Here, we examine the Fisher information matrix of a single analog neuron
as a preliminary. Let us consider a unit that processes an input vector x to
give an output y,

y = ϕ(w · x) + ε, (3.1)

where ε is gaussian noise subject to N(0, 1) and w is a weight vector (see
Figure 3). Here, we may assume that the variance of the noise is σ 2, without
changing the essence of the following analysis. The activation function ϕ is
assumed to be the error function,

ϕ(u) =
√

2
π

∫ u

0
exp

{
−z2

2

}
dz, (3.2)

because it is convenient for obtaining explicit analytical formulas. The re-
sults obtained in this article hold similarly for other differentiable sigmoidal
functions. However, they cannot be applied to the ReLU activation function.
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The input vector is

x = (x1, . . . , xn, x0) , (3.3)

where x0 = 1 and

w = (w1, . . . ,wn,w0) , (3.4)

where w0 is the bias term equal to the negative of the threshold.
The behavior of a neuron is characterized by the joint probability distri-

bution of x and y parameterized by w,

p(y, x;w) = 1√
2π

q(x) exp
[
−1

2

{
y − ϕ(w · x)

}2
]

, (3.5)

where q(x) is the probability distribution of the input signals. The log like-
lihood is given by

log p(y, x;w) = log q(x) − 1
2

{
y − ϕ(w · x)

}2 − log
√

2π. (3.6)

The score function of the probability model, equation 3.6, is written as

∇w log p(y, x;w) = ε∇wϕ(w · x) =
√

2
π

εx exp
{
− (w · x)2

2

}
, (3.7)

where ∇w is the gradient operator ∂/∂wi.
The Fisher information is a matrix,

G(w) = E
[(∇w log p

) (∇w log p
)T
]
, (3.8)

where T denotes transposition of column vectors ∇w log p and E is the ex-
pectation with respect to p(y, x;w). Fisher information plays the role of the
Riemannian metric in the parameter space M = {w} of a single neuron.

Below, we calculate G(w) for two simple input distributions q(x).

3.1 Gaussian Input Distribution. When a random variable x is subject
to N(0, V), which denotes a zero mean gaussian distribution with covari-
ance matrix V, we have

G(w) = 2
π

E
[
xxT exp

{−(w · x)2}]
= 2

π

1

(
√

2π )n
√|V|

∫
xxT exp

{
−1

2
xT (V−1 + 2wwT )x

}
dx. (3.9)
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Through simple calculations, we get

G(w) = 2
π

1√∣∣I + 2VwwT
∣∣
(
V−1 + 2wwT)−1

. (3.10)

The inverse of the Fisher information matrix is explicitly obtained as

G−1(w) = π

2

√∣∣I + 2VwwT
∣∣ (V−1 + 2wwT) . (3.11)

When V = I, with I being the identity matrix, by putting w2 = w · w, we
further have

G = 2
π

1√
1 + 2w2

(
I − 2

1 + 2w2 wwT
)

, (3.12)

G−1 = π

2

√
1 + 2w2(I + 2wwT ). (3.13)

In this derivation, we have omitted the component x0 = 1, which is not sub-
ject to N(0, 1). It is easy to calculate G in this case too.

3.2 Degenerate Input Distribution. Here, we consider the case in
which the input signals x are limited to be within a subspace. Let N be an
orthogonal subspace such that for u ∈ N, u · x is always equal to 0. Then,
from equation 3.9, we have

uTG(w)u = 0. (3.14)

This implies that G is singular.
More specifically, when x1 = x2 is always satisfied, we have

g11 = g12 = g21 = g22. (3.15)

Obviously, the null direction is

u = (1,−1, 0, . . . , 0). (3.16)

In this case, the two weight vectors w and w + cu are equivalent, giving the
same output because of u · x = 0. This occurs in an MLP, when two neurons
1 and 2 in the same layer have the same weight vectors, w1 = w2. Their
outputs are the same, so this causes the Fisher matrix to be singular. This is
the origin of the singularity in MLP.
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Figure 4: Elementary singular network (n − 2 − 1).

Now let us focus on online learning of a neuron. Let the true parameter
be w∗, from which the teacher output y∗ is generated. When the current
value of the parameter is w, the error is

e∗ = y∗ − ϕ(w · x), (3.17)

and its square gives the instantaneous loss function

l(x, y∗;w) = 1
2

{
y∗ − ϕ(w · x)

}2
. (3.18)

The vanilla online gradient learning algorithm modifies the current w into
w + �w by receiving x and y∗,

�w = −η∇wl (x, y∗,w) , (3.19)

and the natural gradient algorithm uses G−1∇wl,

�̃w = −η∇̃wl = −ηG−1∇wl (x, y∗,w) , (3.20)

where η is a learning constant. The natural gradient method is Fisher effi-
cient for estimating w∗ (Amari, 1998).

4 Elementary Singular Networks

Now let us consider a very simple three-layer n-2-1 MLP consisting of n
inputs, two hidden neurons, and one linear output, which is called an ele-
mentary singular network (see Figure 4). Its input-output behavior can be
expressed as

y = f (x, θ) + ε, (4.1)

f (x, θ) = v1ϕ (w1 · x) + v2ϕ (w2 · x) , (4.2)

where the parameters are

θ = (w1, v1,w2, v2) . (4.3)
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They form a parameter manifold M of elementary singular networks. We
assume that input x is subject to N(0, I). Such elementary networks are in-
cluded in a general MLP as subnetworks. The manifold M = {θ} includes
singular regions so that the learning dynamics show strange behaviors in
the neighborhood of such a region. It is useful to study the dynamical be-
haviors of both vanilla and natural gradient learning in detail by using such
a simple model. Note that n-k-1 networks (k ≥ 2) share the same pathologi-
cal behavior. The dynamics of vanilla gradient descent learning were stud-
ied in detail by Wei et al. (2008), so we recapitulate their results briefly here.

The behavior of natural gradient learning was studied by Cousseau et al.
(2008) for the case of when the true network is included in a singular region
and n = 1. We extend their results to the case of when the true network
is outside the singular regions, proving that the natural gradient method
is free of pathological behaviors caused by singularities. Then we finally
examine the strange topology of the singularities in the behavior space.

4.1 Singular Region and Related Coordinate Transformation. In an
elementary MLP, a network is nonidentifiable when w1 = w2 = w, because
equation 4.1 reduces to

y = (v1 + v2) ϕ(w · x) + ε, (4.4)

whose behavior is the same for any v1 and v2 so long as v1 + v2 is the same.
Thus, we cannot identify v1 and v2 themselves except for their sum. A sim-
ilar situation holds true when w1 = −w2 because ϕ is an odd function. Fur-
ther, when v1 = 0, w1 is not identifiable because v1ϕ (w1 · x) vanishes. When
v2 = 0, the situation is similar.

We call such a set of unidentifiable parameters a singular region of M.
For any pair (w, v ) of parameters, there exists a singular region specified by
them:

R(w, v ) = {w1 = ±w2 = w, v1 ± v2 = v} ,

∪ {v1 = 0, v2 = v,w2 = w} ,

∪ {v2 = 0, v1 = v,w1 = w} . (4.5)

Inside each region R(w, v ) ⊂ M, all the networks share the same input-
output behavior:

y = vϕ(w · x) + ε. (4.6)

One hidden neuron is enough to realize this behavior. Note that the singu-
lar region R(w, v ) is a union of four submanifolds shown in equation 4.5.
R(w, v ) moves continuously as w and v change, so the union of the singu-
lar regions is a continuum in the parameter space. For simplicity, we study
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Figure 5: Singular regions R(w, v ) ⊂ M(w, v ) in the ξ-coordinates.

only the case of w1 = w2; the case of w1 = −w2 case can be studied in a very
similar way.

In order to analyze the dynamics of learning near a singular region, we
introduce a new (local) coordinate system, ξ = (w, v, u, z) (see Wei et al.,
2008):

w = v1w1 + v2w2

v1 + v2
, (4.7)

v = v1 + v2, (4.8)

u = w2 − w1, (4.9)

z = v2 − v1

v1 + v2
. (4.10)

Its inverse transformation is given by

w1 = w − 1
2

(1 + z)u, (4.11)

w2 = w + 1
2

(1 − z)u, (4.12)

v1 = 1
2

(1 − z)v, (4.13)

v2 = 1
2

(1 + z)v . (4.14)

The singular region R(w, v ) is represented in this coordinate system as

R(w, v ) = {
u = 0 ; z arbitrary

} ∪ {z = ±1 ; u arbitrary
}
. (4.15)

R(w, v ) consists of three submanifolds: one is one-dimensional, specified
by u = 0, z arbitrary, called a singular line; the other two are n-dimensional
submanifolds corresponding to z = ±1, called escaping walls (see Figure 5).
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Let M(w, v ) be a submanifold of M in which v and w are fixed but z and u
take arbitrary values. Then R(w, v ) ⊂ M(w, v ).

Following Wei et al. (2008), we consider the dynamics of learning near
singularities. We expand f (x, θ) in equation 4.2 in a Taylor series of u by
using the coordinates ξ:

f (x, ξ) = vϕ(w · x) + v

8

(
1 − z2)ϕ′′(w · x)(u · x)2

− v

24
z(1 − z2)ϕ′′′(w · x)(u · x)3 + O

(|u|4) . (4.16)

The error function at ξ is

e∗ (x, y∗, ξ) = y∗ − f (x, ξ) = f (x, ξ∗) − f (x, ξ) + ε, (4.17)

where y∗ is the teacher signal generated from the true network specified by
parameter ξ∗. The instantaneous loss function is

l (x, y∗, ξ) = 1
2

∣∣e∗ (x, y∗, ξ)
∣∣2 . (4.18)

The averaged stochastic gradient descent vanilla online learning equation
is

θ̇ = −η〈∇θl〉, (4.19)

where we use continuous time t, θ̇ = dθ/dt and the average 〈 〉 is taken
over x and ε. Its solution θ(t) gives the average trajectory of learning around
which the actual trajectory fluctuates. Now we change the coordinate sys-
tem from θ to ξ. From

ξ̇ = ∂ξ

∂θ
θ̇ (4.20)

and by using the Jacobian of the coordinate transformation,

J = ∂ξ

∂θ
, ∇ξl = (JT )−1∇θl, (4.21)

we have

ξ̇ = −ηJJT〈∇ξl〉. (4.22)
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Through careful calculations, the averaged learning equation can be ex-
pressed in the new coordinate system as

ẇ = η

2
v
(
1 + z2) 〈ϕ′e∗x〉

+ η

(
1
4
vz(1 − z2)〈ϕ′′e∗x(u · x)〉 − z

v
u〈ϕe∗〉

)
+ O(u2), (4.23)

v̇ = 2η〈ϕe∗〉 − ηz〈ϕ′e∗(u · x)〉 + O(u2), (4.24)

u̇ = η
{
vz〈ϕ′e∗x〉 + v

2

(
1 − z2) 〈ϕ′′e∗x(u · x)〉

}
+ O(u2), (4.25)

ż = −η

{
2z
v

〈ϕe∗〉 − 1 + z2

v
〈ϕ′e∗(u · x)〉

+ z
(
z2 + 3

)
4v

〈ϕ′′e∗(u · x)2〉
}

+ O(u3), (4.26)

where ϕ = ϕ(w · x), e∗ = e∗ (x, y∗, ξ), and O(u) denotes the higher-order
terms of u.

The dynamics (see equations 4.23 to 4.26) are split into two parts. One is
the part of (u, z) in which the change is very slow near singularity u ≈ 0, as
will be shown later. The other part is the dynamics of (w, v ), which defines
fast dynamics. We can solve the fast dynamics, equations 4.23 and 4.24, by
putting u = 0. When the dynamics converge to an equilibrium, let the stable
equilibrium be (w̃∗, ṽ∗). This is the best approximation of the teacher func-
tion f (x, ξ∗) by using a single hidden unit because of u = 0. The equilibrium
solution satisfies

〈e∗ϕ′ (w̃∗ · x) x〉 = 0, (4.27)

〈e∗ϕ (w̃∗ · x)〉 = 0. (4.28)

By substituting them into (equations 4.25 and 4.26), the dynamics of u and
z are shown to be very slow when u ≈ 0.

Exactly speaking, the dynamical behaviors of equations 4.23 to 4.26
should be analyzed by using the center manifold theory. The center mani-
fold C is defined by

w = h(u, z), (4.29)

v = k(u, z), (4.30)

which are solutions given by putting the right-hand sides of equations
4.23 and 4.24 equal to 0. The slow variables (w, v ) are slaved by the fast
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variables (u, z), and we can analyze the dynamics in the center manifold
C. However, the exact analysis is complicated. Since our purpose is to
show qualitative aspects of the dynamics near singularities, in particular
to understand qualitative aspects of natural gradient dynamics, we use the
submanifold M(w̃∗, ṽ∗) specified by w = w̃∗ and v = ṽ∗ instead of C and
analyze the dynamics projected to M(w̃∗, ṽ∗). This is approximation used
in Wei et al. (2008), supported by computer simulations.

When the submanifold M (w̃∗, ṽ∗) is attracting, the fast dynamics cause
ξ to fall quickly into M (w̃∗, ṽ∗), but u and z change slowly in M (w̃∗, ṽ∗),
which includes the critical region R (w̃∗, ṽ∗). Let us analyze the dynamics
of learning in a neighborhood of R (w̃∗, ṽ∗) in M (w̃∗, ṽ∗), assuming that the
state has already fallen into M (w̃∗, ṽ∗).

By putting

H = 〈e∗ϕ′′ (w̃∗ · x) xxT〉, (4.31)

the slow dynamics inside M (w̃∗, ṽ∗) can be expressed using equations 4.25
and 4.26 as

u̇ = η

2
ṽ∗ (1 − z2)Hu, (4.32)

ż = − η

4ṽ∗ z
(
z2 + 3

)
uTHu, (4.33)

because equations 4.27 and 4.28 hold. Integrating these equations explicitly
gives the trajectories

|u(t)|2 = 4
3
ṽ∗2 log

{z(t)2 + 3}2

|z(t)| + c, (4.34)

where c represents constants corresponding to specific trajectories (see
Figure 6).

We consider the following two cases separately.

4.1.1 The True Solution ξ∗ Lies in R (w∗, v∗). The true solution is w = w∗,
v = v∗, u = 0, so the parameters are redundant. The dynamics converge to
the optimal solution, which is any point in R (w∗, v∗) (see Figure 7). In a
neighborhood of the true solution, e∗ is of order |u|2 except for the noise
term ε, as can be seen from equations 4.16 and 4.17. Hence, H = O

(|u|2)
and the learning equations, 4.32 and 4.33, are of order

u̇ = O
(|u|3) , (4.35)

ż = O
(|u|4) . (4.36)
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Figure 6: Trajectories of learning in R(w, v ).

Figure 7: When ξ ∗ ∈ R(w, v ): Any point in R(w, v ) is optimal.
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Figure 8: When ξ ∗ /∈ R(w, v ) (left) ṽ∗H > 0 (right) ṽ∗H < 0: Milnor attractor.

Let us define an error function by

E = 1
2

E
[
e∗2] = 1

2

〈∣∣ f (x, ξ∗) − f (x, ξ)
∣∣2〉 . (4.37)

Then we have

Ė = O
(|u|6) . (4.38)

Therefore, the convergence to u = 0 is extremely slow.

4.1.2 R (w̃∗, ṽ∗) Is Not an Optimal Solution: Milnor Attractor. A trajectory
may once enter M (w̃∗, ṽ∗) in this case; even M (w̃∗, ṽ ) is not optimal. When
R (w̃∗, ṽ∗) has an attracting region, a trajectory starting from its basin of
attraction enters it. But it is not optimal, so it eventually escapes from
R (w̃∗, ṽ∗) after reaching the repulsive part of R (w̃∗, ṽ∗) (see Figure 8). As
can be seen from equation 4.32, when H has both positive and negative
eigenvalues, the equilibrium u = 0 is a saddle and there is no attracting re-
gion in R (w̃∗, ṽ∗). In this case, ξ escapes from M (w̃∗, ṽ∗) without entering
R (w̃∗, ṽ∗).

However, H is positive-definite in many cases. In particular, when n = 1,
H is a scalar, and no saddle part appears. We will show that the singular line
definitely has an attracting region. To this end, we remark that (w̃∗, ṽ∗) is the
minimizer of 〈l(x,w, v )〉 in the singular region u = 0, so the Hessian,

H∗ =

⎡
⎢⎢⎢⎣
〈

∂2l
∂w∂w

〉 〈
∂2l

∂w∂v

〉
〈

∂2l
∂v∂w

〉 〈
∂2l

∂v∂v

〉
⎤
⎥⎥⎥⎦ , (4.39)

is positive-definite.
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Figure 9: Plateaus in learning curve where the natural gradient has no plateaus
(from Park et al., 2000). Solid line: vanilla gradient; broken line: adaptive natural
gradient.

It can be rewritten as

H∗ =
[

−ṽ∗H 0

0 0

]
+
〈[

ṽ∗ϕ′x

ϕ

] [
ṽ∗ϕ′x ϕ

]〉
. (4.40)

Therefore, −v∗H is positive-definite in many cases. In such a case, the part
|z| < 1 of the singular line is stable and attracting, as can be seen from equa-
tion 4.32, whereas the part |z| > 1 is unstable and repulsive. A state starting
from the basin of attraction in M (w̃∗, ṽ∗) once enters the stable part |z| < 1
of R (w̃∗, v∗). The convergence speed is slow: Ė = O

(|u|2). Once the state
enters the attracting region of the singular line, the average dynamics, equa-
tion 4.33, follow ż = 0 and z does not change. However, the actual stochastic
dynamics fluctuate, with z changing randomly, so it reaches the unstable re-
gion |z| > 1 and escapes. However, the fluctuation dynamics of z are very
slow when u is small.

As shown in Figure 8, R (w̃∗, v∗) consists of four parts. The region |z| < 1
of the singular line |u| = 0 is an attracting region having a basin of attraction
of finite measure. The other part |z| > 1 is repulsive. The two walls z = 1 and
z = −1 are escaping walls, through which a trajectory can escape from the
|z| < 1 part to the |z| > 1 part.

In general, R (w̃∗, ṽ∗) is not necessarily a saddle of the dynamics because
the basin of attraction has a finite measure. But part of R (w̃∗, ṽ∗) is repul-
sive, so R (w̃∗, ṽ∗) has attractive and repulsive flows at the same time. Such
a strange attractor is known as the Milnor attractor. Figure 9 is a typical
example of plateau phenomena in learning.
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4.2 Topology of Singular Region. The singular region R of MLP is the
union of all R(w, v ),

R = ∪
v,w

R(w, v ), (4.41)

in the ξ-coordinates. All the points in an R(w, v ) are equivalent, having the
same input-output function (see equation 4.6). We introduce an equivalence
relation ≈ such that ξ ≈ ξ′ when f (x, ξ) = f

(
x, ξ′). The quotient space

F = M/ ≈ (4.42)

consists of all different functions realized by MLP. A singular region R(w, v )
reduces to a single point in F . However, F is not a manifold in the strict
mathematical sense, as it includes singular points. It is interesting to see the
topology F .

The singular region R(w, v ) ⊂ M(w, v ) is a union of two n-dimensional
submanifolds specified by |z| = ±1 and a singular line u = 0 (see Figure 5).
We use the polar coordinates (u, e),

u = √
u · u, e = u

u
, (4.43)

by separating the magnitude of u and its direction e. Here, e belongs to an
(n − 1)-dimensional sphere Sn−1, satisfying

e · e = 1. (4.44)

Note that u = 0 is a singular point at which Sn−1 shrinks to a single point
(0, e), as is the case of the polar coordinates, representing the same point
u = 0 for any e.

We further introduce new parameters (τ, σ ) instead of (u, z):

τ = (
1 − z2)u2, (4.45)

σ = z
(
1 − z2)u3. (4.46)

Note that τ = O
(
u2
)

and σ = O
(
u3
)
. The new coordinates β = (τ, σ, e) in-

troduced in M(w, v ) occupy a subset of R × R × Sn−1, as will be shown in
the following. We study the topology of F by using β. The singular region
R(v,w) is mapped to β = (0, 0, e), which denotes a single point irrespective
of e. We call β the blow-down coordinates, since it maps a singular region
R(w, v ) to one point in F , called the origin of β.
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Figure 10: Image of singular region R(w, v ).

The inverse transformation is given by

z = |σ |√
τ 3 + σ 2

, (4.47)

u = sgn(σ )

√
τ 3 + σ 2

τ
, (4.48)

u = ue, (4.49)

for β = 0. When β = 0, the inverse is not unique, giving the entire R(w, v ).
Now let us study the range of F in the new coordinates β = {

(τ, σ, e)
}
.

Two points (z, u) and (−z,−u) are equivalent, giving the same function.
Hence, we may consider only the region, z ≥ 0, which implies τσ ≥ 0. Since
(τ, σ ) satisfies

τ 3 + σ 2 = (
1 − z2)2

u6 ≥ 0, (4.50)

F covers the outside of the cusp line

τ 3 + σ 2 = 0 (4.51)

(see Figure 10). When τ = 0, the σ -axis shrinks to a point σ = 0.
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Figure 11: Images of z = const.

The region we consider is composed of two leaves,

D+ = {
(τ, σ )|τ > 0

}
, (4.52)

D− = {
(τ, σ )|τ < 0

}
, (4.53)

which are connected at τ = σ = 0 (see Figure 10). The range of F is{
D+, D−, Sn−1(0, 0)

}
. We may draw curves z = const. on the leaf D+. It is

a cusp line,

τ 3 = 1 − z2

z2 σ 2, (4.54)

when z = 0, σ = 0, and the curve coincides with the τ -axis. As z increases
from 0 to 1, the curve changes (see Figure 11) in D+ and when z = 1, it
shrinks to the origin τ = σ = 0. As z increases from 1, the curve moves to
D−.

We draw the curves corresponding to u = const, which is

σ 2 = −τ 3 + u2τ 2, (4.55)

in Figure 12.
The β coordinates consist of the direct product of the (τ, σ )-plane and

Sn−1 = {e}. However, at the τ -axis on which z = 0, e and −e are equivalent.
Therefore, Sn−1 reduces to a projective manifold Pn−1 on the τ -axis.

When n = 1, S0 = {1,−1}, consisting of two points. Hence, F consists of
two planes corresponding to (τ, σ, e = 1) and (τ, σ, e = −1), but they are
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Figure 12: Images of u = const.

connected at σ = 0. When n = 2, S1 is a circle, and it deforms to P1 as σ

approaches 0. The circle deforms in a double circle, and the corresponding
points are pasted to form P1 at σ = 0.

4.3 Natural Gradient Learning. Now let us analyze the dynamics of
learning in the blow-down coordinates. The input-output function, equa-
tion 4.16, is written as

f (x,β) = vϕ(w · x) + v

8
τ (e · x)2ϕ′′ − v

24
σ (e · x)3ϕ′′′ (4.56)

by neglecting higher-order terms. We put

a(x, e) = v

8
(e · x)2ϕ′′, (4.57)

b(x, e) = − v

24
(e · x)3ϕ′′′. (4.58)

Then we have

f (x,β) = vϕ(w · x) + τa + σb, (4.59)

neglecting higher-order terms. The Fisher information G(β) is calculated
from

∇β f = [
a(x), b(x),∇e f

]
(4.60)
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and

G = 〈(∇β f )T∇β f 〉 = 〈[a, b,∇e f ]T [a, b,∇e f ]〉, (4.61)

which is regular except for one point β = 0. Note that a and b are of order
1, but ∇e f is of order u2.

The loss function is

l (x, y∗,β) = 1
2

{
f (x,β∗) − f (x,β) + ε

}2
, (4.62)

and hence its gradient is

∇β l = −e∗∇β f = − { f̄ ∗(x) − (τa + σb) + ε
}∇β f, (4.63)

where

f̄ ∗(x) = f (x,β∗) − vϕ(w · x). (4.64)

In order to invert G, we use the relation

G

⎡
⎣ τ

σ

0

⎤
⎦ = 〈

(τa + σb)(∇β f )T 〉 . (4.65)

Then,

G−1 〈(τa + σb)(∇β f )T 〉 = [τ, σ, 0]T . (4.66)

Using this, we have the natural gradient,

−G−1〈∇βl〉T = G−1 〈 f̄ ∗(x)∇β f
〉T − [τ, σ, 0]T . (4.67)

When the true model is included in R(w∗, v∗), f̄ ∗(x) = 0. Therefore, the
dynamics of learning are

β̇ = −ηG−1〈∇βl〉T = −η [τ, σ, 0]T + higher-order terms. (4.68)

Disregarding e-components, we have the following simple dynamics con-
cerning τ and σ ,

τ̇ = −ητ, (4.69)

σ̇ = −ησ, (4.70)
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except for higher-order terms,

τ = c1 exp {−ηt} , (4.71)

σ = c2 exp {−ηt} , (4.72)

without any slowdown. Cousseau et al. (2008) obtained this result for n = 1.
When using the blow-down coordinates, the result holds for any n.

It is more interesting to study the learning behavior when the singular
region τ = σ = 0 is not the optimal solution. Natural gradient dynamics
eliminate the Milnor attractor, from which vanilla gradient dynamics suf-
fer seriously. Next, we show that the trajectory passes through the singular
point τ = σ = 0 with a constant speed as if there were no singularity. In the
case of natural gradient learning, we have

e∗(x) = f̄ ∗(x) − (τa + σb) + ε. (4.73)

Hence, the main part of the averaged gradient is

〈∇βl
〉 = − 〈 f̄ ∗(x)∇β f

〉
. (4.74)

We need to evaluate the (τ, σ )-part of G−1∇β f . Since we have

∇e f = vτ

4
(e · x)xϕ′′ + O(u3), (4.75)

we rewrite G as

G =
⎡
⎣ 1

1
τ

⎤
⎦K

⎡
⎣ 1

1
τ

⎤
⎦ , (4.76)

where K is

K =
〈[

a, b,
v

4
(e · x)xϕ′′

]T [
a, b,

v

4
(e · x)xϕ′′

]〉
. (4.77)

We assume that K is nonsingular. Then we have

G−1 (∇β f
)T =

[
O(1)

O
(
u−2

)
]

. (4.78)

This proves that the velocities τ̇ and σ̇ are of order 1 in the natural gradient
dynamics. Therefore, the origin is no longer a critical point and the trajec-
tory passes through it with a finite speed.
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Figure 13: Milnor attractor (v∗H < 0).

Now let us examine how the error decreases near the origin. When 〈e∗〉 =
0, we have

Ė(t) = c exp{−ηt}, (4.79)

showing exponential convergence to the origin. When 〈e∗〉 = 0, Ė is of or-
der 1, so the trajectory passes through the origin with a constant speed (no
slowdown).

In the case of the vanilla gradient, the origin τ = σ = 0 is a Milnor at-
tractor having a finite measure of the basin of attraction in many cases. The
state stays at the origin for long time, as is seen in Figure 13.

5 Connecting Elementary Singular Networks: Eliminating Attracting
Singular Regions

We have studied the dynamical behavior of an isolated elementary singular
network. In a general MLP, elementary networks are connected hierarchi-
cally. However, an (n-m-1) network shows the same pathological behavior
as an (n-2-1) network (Wei et al., 2008). To our surprise, we were able to
prove that although singular regions exist, pathological singular behaviors
of MLP are suppressed by connecting output neurons. Let us consider an
(n-2-m) network having m outputs y1, . . . , ym,

yi = vi1ϕ (w1 · x) + vi2ϕ (w2 · x) + ε, i = 1, . . . , m (5.1)
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Figure 14: Connecting elementary networks.

(see Figure 14). Here, vi = (vi1, vi2) are the weights of the output neuron i.
When w1 = w2, the network is singular and vi2 − vi1 is not identifiable.

We introduce the ξ-coordinate system,

w = αw1 + ᾱw2, (α + ᾱ = 1) , (5.2)

u = w2 − w1, (5.3)

vi = vi1 + vi2, (5.4)

zi = vi2 − vi1

vi
, (5.5)

where the coefficients α and ᾱ are functions of vi and zi to be determined
later.

The inverse transformation is

w1 = w − ᾱu, (5.6)

w2 = w + αu, (5.7)

vi1 = 1
2
vi (1 − zi) , (5.8)

vi2 = 1
2
vi (1 + zi) . (5.9)

We expand the output function of the ith output in terms of ξ-
coordinates,

fi(x, ξ) = vi1ϕ
{
(w − ᾱu) · x

}+ vi2ϕ
{
(w + αu) · x

}
= viϕ(w · x) + Aiϕ

′(w · x)u · x

+ 1
2

Biϕ
′′(w · x)(u · x)2, (5.10)

where A = (Ai) and B = (Bi) are

Ai = αvi2 − ᾱvi1, (5.11)

Bi = ᾱ2vi1 + α2vi2. (5.12)
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Let (w∗, v∗) be the best approximation of the vector output f (x, ξ) by
using a single hidden unit, corresponding to the case of w∗ = w1 = w2. In
the case of a single hidden unit, the output function is

f = vϕ(w · x), (5.13)

so the best approximation (w∗, v∗) is obtained by setting the derivatives of
the average of l(x, y∗, ξ) equal to 0,

v∗ · 〈e∗ϕ′(w∗ · x)x〉 = 0, (5.14)

〈e∗ϕ(w∗ · x)〉 = 0, (5.15)

where e∗ is the error vector corresponding to m outputs (see equation 4.17).
The dynamics of w and v are not necessarily faster than those of u, but we

will assume that they have converged to (w∗, v∗) and analyze the dynamics
taking place in the submanifold M (w∗, v∗).

The dynamics in M (w∗, v∗) can be written by using

〈∇ul〉 = − {A · 〈e∗ϕ′x〉 + B · 〈e∗(u · x)ϕ′′x〉} , (5.16)

〈∇zl〉 = − {∇zA · 〈e∗(u · x)ϕ′〉} . (5.17)

Comparing them with equations 4.32 and 4.33 in the case of m = 1, we see
that u = 0 is a critical point of the dynamics when A · 〈e∗ϕ′x

〉
vanishes. When

u = 0 is not critical, even though z changes very slowly in a neighborhood
of R (w∗, v∗), a trajectory passes through R (w∗, v∗), and does not stay in it.
The Milnor-type pathological behavior occurs when u = 0 is a critical point
and R (w∗, v∗) has an attracting region. Below, we search for a condition for
u = 0 to be critical.

When m = 1, by choosing α and ᾱ as is shown in equation 4.7, they
satisfy

αv12 = ᾱv11, (5.18)

and A = 0 is derived. In the case of m ≥ 2, when α and ᾱ satisfy

αvi2 − ᾱvi1 = kvi (5.19)

for constant k,

A ∝ v∗ (5.20)

holds. Then the first term of equation 5.16 vanishes because of equation 5.14.
However, equation 5.19 is not solvable when m ≥ 2, because there are m
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Figure 15: Plateaus still exist. Typical time course of loss (black line)
during learning, with overlap of connections of first layer |w1 · w2|/‖w1‖
‖w2‖ (blue line), and minimum norm of connections of second layer

min{
√∑m

i=1 v2
i1,

√∑m
i=1 v2

i2} (yellow line). The (n − 2 − m) network (n = 1000,

m = 1 (left) and m = 2 (right)) is trained to predict output of another (n − 2 − m)
network, with fixed weights. The first layers of two networks are initialized so
that each element of their weight matrix follows N(0, 1/

√
n), and the weights of

second layers of two networks are initialized as (left) (vi j ) = [[1, 1]] and (right)
(vi j ) = [[1, 1/

√
2], [0, 1/

√
2]]. In the left panel, the overlap takes high value dur-

ing first ∼ 2000 steps, which means the approach to the singular region u = 0,
accompanied by the emergence of plateau. In the right panel, the plateau is alle-
viated a little, and the increase of the overlap (i.e., the approach to the singular
region) is not observed. In both cases, the minimum norm of the second layer’s
connections does not shrink to 0, and therefore the network does not get close
to the other singular region {zi} = ±1.

equations for one variable α, since ᾱ = 1 − α. Therefore, no attracting region
appears in R (w∗, v∗), and the trajectory passes through it when m ≥ 2.

Here, we assumed that 〈e∗ϕ′x〉 is of full rank in general and its kernel is
one-dimensional at the equilibrium (w∗, v∗). Our discussions do not hold
when m vectors w1, . . . ,wm have the same direction. However, m output
neurons are essentially identical in this case, meaning that there is only one
output neuron.

We have shown that the stable region disappears when m ≥ 2 and the
trajectory of u passes through it with a finite velocity. In the case that the
true solution lies in R (w∗, v∗), the error 〈e∗〉 is a linear order of |u|. There-
fore, the trajectory converges to u = 0 in the linear order. Hence, any retar-
dation of learning due to a singularity disappears for m ≥ 2. However, as
is shown in Figure 15, plateaus nevertheless exist. They are saddle points
including very small absolute eigenvalues, which are ubiquitous in a high-
dimensional case (Dauphin et al., 2014). The natural gradient method elim-
inates the plateaus.
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6 Natural Gradient Learning of MLP

Here, we briefly recapitulate various invariant Riemannian metrics defined
by error backpropagation as described by Ollivier (2015a). Let yr be the out-
put vector of the rth layer, where y0 = x is the input vector and y = yL is the
final output. Let Wr be the connection matrix from the (r − 1)st-layer to the
rth layer. Then we have a recursive expression of the feedforward behavior,

yr = ϕ
(
Wryr−1

)
, r = 1, . . . , L − 1, (6.1)

where ϕ operates componentwise; that is, ϕ(u) is a vector whose compo-
nents are ϕ (ui), and the last layer L is linear,

yL = WLyL−1 + ε, (6.2)

with gaussian noise ε. We can summarize the input-output behavior as

y = f (x, W) + ε, (6.3)

where the parameters are

W = (W1, . . . , WL) . (6.4)

Assume that the true network has parameters

W∗ = (W∗
1, . . . , W∗

L) . (6.5)

Given an input x, the accompanying teacher signal y∗ is given by

y∗ = f (x, W∗) + ε. (6.6)

For the current network with parameters W, the error vector is

e∗ = y∗ − f (x, W). (6.7)

Define the instantaneous loss function by

l (x, y∗, W) = 1
2
|e∗|2 = 1

2

∣∣ f (x, W) − f (x, W∗) − ε
∣∣2 . (6.8)

The stochastic gradient learning method uses the gradient of l with respect
to each Wr. It is recursively calculated as



Dynamics of Learning in MLP 29

∂l
∂Wr

= e∗
r yr−1, (6.9)

where ∂l/∂Wr is the gradient of l with respect to Wr, with the backpropa-
gated error

e∗
r = e∗

r+1Wr+1ϕ
′ (Wryr−1

)
, r = 1, . . . , L − 1, (6.10)

eL = −e∗ (6.11)

Here, ey and eϕ′(Wy) are each a tensor product whose component expres-
sions are, for example, eiy j and eiϕ

′ (∑
k Wjkyk

)
. The vanilla stochastic de-

scent method updates the current W by

�Wr = −η
∂l

∂Wr
= −ηe∗

r yr−1, r = 1, . . . , L (6.12)

whenever the input x and teacher signal y∗ are given. Equation 6.12 is a
stochastic difference equation since x is a random vector. In order to ana-
lyze its behavior, we use the continuous time t and average with respect to
(y∗, x). Accordingly, we get an averaged differential equation:

Ẇr = −η〈e∗
r yr−1〉. (6.13)

Equation 6.3 defines the joint probability of (x, y) parameterized by W,

p(x, y; W) = q(x)

(
√

2π )m
exp

{
−1

2
|y − f (x, W)|2

}
, (6.14)

where q(x) is the probability density function of x. The probability structure
defines a Riemannian metric G in the parameter space M of W, given by the
Fisher information,

G = E
[

∂l
∂W

∂l
∂W

]
= E

{
eeyy

}
, (6.15)

where we use tensor notation neglecting suffixes r, r − 1 denoting the lay-
ers in equation 6.9 and e denotes the backpropagated error when the true
W∗ is assumed to be equal to the current W. Here, the error vector e is cal-
culated from e∗

L = −e∗ backward, by the same way shown in equation 6.10.
The Fisher metric is represented in component form as

Gr,r′
ik; jl = E

[
er

i e
r′
j yr−1

k yr′−1
l

]
, (6.16)
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which is the element of G corresponding (i, k) element of the connection
matrix of the rth layer and ( j, l) element of the connection matrix of the r′th
layer.

By using the Riemannian metric G, the natural gradient learning method
can use the following update rule,

�W = −η∇̃Wl, (6.17)

∇̃Wl = G−1∇Wl, (6.18)

taking the Riemannian structure into account.
There exist various invariant Riemannian metrics other than the Fisher

information. Ollivier (2015a) studied various of them in detail. If we use
e∗ instead of e, we have G∗ = E

[
e∗e∗yy

]
, called the outer product metric

(Ollivier, 2015b). It is different from the Fisher metric G. It is suggestive to
see the relations among these metrics. We have

G∗ =
〈∣∣ f (x, ξ∗) − f (x, ξ)

∣∣2 ∇ξ f · ∇ξ f
〉
+ G. (6.19)

Hence, G∗ is equal to G at ξ = ξ∗. Obviously G∗ is positive-definite except
in singular regions. Dauphin et al. (2014) used the absolute Hessian metric
|H|. Let us diagonalize H as

H = OT�O, (6.20)

where � is a diagonal matrix and O is an orthogonal matrix. Then we have

|H| = OT |�|O. (6.21)

The Hessian of l(x, ξ) is

H = 〈∇ξ∇ξl(x, ξ)
〉 = 〈{

f (x, ξ∗) − f (x, ξ)
} · ∇ξ∇ξ f

〉+ G (6.22)

and is not always positive-definite.
There have been proposed many types of approximations of the true G,

since inverting it is costly. The simplest one is to use only the diagonal ele-
ments, setting all the off-diagonal elements equal to 0; however, it does not
work well. An interesting idea is the unit-wise diagonalization proposed
by Kurita (1994) and further studied by Ollivier (2015a, 2015b) in detail, in
which G is block-diagonalized such that off-diagonal blocks are put equal
to 0 and diagonal blocks consist of the weight vectors of each neuron. Let
us take the ith neuron of layer r; the corresponding diagonal block is

Gr
i = E

[(
er

i

)2 yr−1yr−1
]
, (6.23)
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Gr,i
jk = E

[(
er

i

)2 yr−1
j yr−1

k

]
. (6.24)

Since the inverse of the block-diagonalized Fisher information matrix G
consists of the inverses of the blocks, we consider one diagonal block corre-
sponding to one neuron. The singular region of this neuron appears when
two neurons in the previous layer become identical: w1 = w2 = w̃∗. Let the
weights v = (v1, v2) on these two neurons be transformed to (v, z) as before.
The latter z = z2 − z1 is not identifiable and ∂zl = 0. Hence, the z-direction
does not change. In a neighborhood of R (w∗, v∗), the gradient is of order
u = |w2 − w1|. However, the (z, z) element of the Fisher information in this
block is of order u2. Hence, the change δl due to the natural gradient is of
order 1 even when u ≈ 0. This implies that the change in the z-direction
is accelerated by the natural gradient and the unit-wise natural gradient
method in a similar way. This is true for other unit-wise natural gradient
methods, and they have the same effect of avoiding singular regions. Ol-
livier (2015b) shows that the unit-wise natural gradient method is much
more effective than the LSTM method for recurrent networks.

7 Conclusion

We reviewed the long history of the dynamics of supervised learning in
MLP and gave new results. An MLP is a peculiar model that includes singu-
lar regions in the parameter space. We analyzed the dynamics of learning in
the neighborhood of a singular region by using an elementary MLP model.
We found that such a model has an attracting singular region, a Milnor at-
tractor, which causes plateau phenomena in learning. We showed that the
natural gradient can overcome this retardation of learning.

It is surprising that large-scale networks are free of this problem. We
proved that backpropagated signals from multiple output nodes prevent
the existence of attracting singular regions, so no Milnor-type singular re-
gions appear. This explains one of the merits of large-scale networks.

Studies of dynamics also have a long history; a trade-off between the
speed of learning and accuracy of convergence was studied (Amari, 1967),
only to be rediscovered by Heskes and Kappen (1991). The problem of sin-
gularities arose much later, and the natural gradient method was proposed
to overcome it. The natural gradient is still effective, although we have
proved that the Milnor-type attractor is not serious in larger-scale networks.
We conclude the article with a remark that many theoretical problems as-
pects of deep neural networks remain to be elucidated.
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