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Foreword

This book consist of papers presented at the MDA 2012 International Conference on

"Mathematics of Distances and Applications"

held at Varna, Bulgaria, July 2-5, 2012.

http://www.foibg.com/conf/ITA2012/2012mda.htm

Several sessions were organized:

• Geometric complexity in aperiodic order, chaired by Michael Baake and Uwe Grimm

• Distances in probability, statistics and data analysis, chaired by Ernst Gabidulin

• Distances in behavioral, life, and physical sciences, chaired by Ehtibar Dzhafarov and Michel Petitjean

• Discrete geometry, combinatorics, and distances, chaired by Norman Johnson and Asia Weiss

• Distances in graphs, chaired by Egon Schulte

• Coding theory, chaired by Nina Pilipchuk

Although a wide diversity of distances related topics were considered, the set of papers consists of approxima-
tively equal two parts with mostly theoretical and mostly applied papers, even if the division is approximative also.
The papers were submitted to an anonymous peer review process. The managing of this process was done with
the session organizers and with the kind help of the members of the Programme Committee: Tetsuo Asano, Michael
Baake, Stefan Dodunekov, Ehtibar Dzhafarov, Ernst Gabidulin, Uwe Grimm, Vladimir Gurvich, Sandi Klavzar,
Jacobus Koolen, Svetlozar Rachev, Egon Schulte, Sergey Shpectorov, Kokichi Sugihara, Koen Vanhoof, Cedric
Villani.

We are very grateful to the following organizers: ITHEA International Scientific Society, Institute of Information
Theories and Applications FOI ITHEA (Bulgaria), Institute of Mathematics and Informatics, BAS (Bulgaria).

We are highly thankful to our general sponsor FOI Bulgaria for supporting the MDA 2012 Conference.

Michel Deza (France)
Michel Petitjean (France)
Krassimir Markov (Bulgaria)
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DIFFERENTIAL GEOMETRY DERIVED FROM DIVERGENCE FUNCTIONS:

INFORMATION GEOMETRY APPROACH

Shun-ichi Amari

Abstract: We study differential-geometrical structure of an information manifold equipped with a divergence function.

A divergence function generates a Riemannian metric and furthermore it provides a symmetric third-order tensor,

when the divergence is asymmetric. This induces a pair of affine connections dually coupled to each other with

respect to the Riemannian metric. This is the arising emerged from information geometry. When a manifold is dually

flat (it may be curved in the sense of the Levi-Civita connection), we have a canonical divergence and a pair of

convex functions from which the original dual geometry is reconstructed. The generalized Pythagorean theorem

and projection theorem hold in such a manifold. This structure has lots of applications in information sciences

including statistics, machine learning, optimization, computer vision and Tsallis statistical mechanics. The present

article reviews the structure of information geometry and its relation to the divergence function. We further consider

the conformal structure given rise to by the generalized statistical model in relation to the power law.

Keywords: divergence, information geometry, dual affine connection, Bregman divergence, generalized Pythagorean

theorem

ACM Classification Keywords: G.3 PROBABILITY AND STATISTICS

MSC: 52, 53, 60

Introduction

A divergence function D[P : Q] between two points P and Q in a manifold M plays a fundamental role in

many engineering problems, including information theory, statistics, machine learning, computer vision, optimization

and brain science. It has dimension of the square of distance but is not in general symmetric with respect to

P and Q. The present article surveys the differential-geometric structure generated by a divergence function

[Vos, 1991], [Amari and Nagaoka, 2000], [Eguchi, 1983], [Amari and Cichocki, 2010]. When it is symmetric, it gives

a Riemannian metric and the Levi-Civita affine connection follows as was studied by [Rao, 1945]. However, when

it is asymmetric, we have a third-order symmetric tensor, which gives a pair of affine connections dually coupled

to each other with respect to the Riemannian metric. These are the central structure of information geometry

[Amari and Nagaoka, 2000] which studies an invariant structure of a manifold of probability distributions [Amari, 1985].

Many asymmetric divergence functions are used in application of information theory. For example, the Kullback-

Leibler divergence, which is frequently used in statistics, information theory and others, is a typical example of

asymmetric divergence. We study the geometrical structure arising from by an asymmetric divergence. It consists

of a Riemannian metric which is symmetric positive-definite second-order tensor and a symmetric third-order tensor

which vanishes in the symmetric case. A pair of affine connections is defined by using the two tensors. The Levi-

Civita connection is the average of the two connections. They are not metric connections but are dually coupled with

respect to the Riemannian metric in the sense that the parallel transports of a vector by the two affine connections

keep their inner product invariant with respect to the Riemannian metric. The duality can be expressed in terms of

the related covariant derivatives. See [Amari and Nagaoka, 2000] for details.

When a Riemann-Christoffel curvature vanishes with respect to one affine connection, it vanishes automatically with

respect to the dual affine connection. We have a dually flat manifold in this case, even though the Riemannian
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curvature with respect to the Levi-Civita connection does not vanish in general. A dually flat Riemannian manifold

has nice properties such as the generalized Pythagorean theorem and projection theorem. Moreover, when a

manifold is dually flat, we have two convex functions from which a canonical divergence is uniquely determined. The

canonical divergence generates the original dually flat Riemannian structure. Euclidean space is a special example

of the dually flat manifold which has a symmetric divergence given by the square of the Euclidean distance.

A dually flat manifold has two affine coordinate systems related to the two flat affine connections. They are

connected by the Legendre transformation of the two convex functions. The canonical divergence is given as

the Bregman divergence [Bregman, 1967]. The Legendre structure has a geometrical foundation in the framework

of the dually flat geometry.

What is the natural divergence function to be introduced in a manifold? We study this question in the case

of a manifold of probability distributions. We impose an invariant criterion such that the geometry is invariant

under bijective transformations of random variables [Chentsov, 1982], [Picard, 1992] (more generally invariant by

using sufficient statistics). Then, the Kullback-Leibler divergence is given as the unique canonical divergence.

We further extend our notions to the manifold of positive measures [Amari, 2009]. We have invariant structure

[Chentsov, 1982; Amari, 1985] and non-invariant flat structure [Amari and Ohara, 2011] which is related to the

Tsallis entropy

[Tsallis, 2009].

We finally study the structure of deformed exponential family [Naudts, 2011] which includes the Tsallis q-structure

[Tsallis, 2009]. We can introduce a dually flat geometry in this manifold, which is not invariant in general. We prove

that the invariant structure is limited to the α- or q-geometry, which gives non-flat dual geometry. However, we can

define a dually flat structure in the q-family which is not invariant, extending the geometry. We prove that the q-

or α-structure is unique in the sense that the flat geometry is given by a conformal transformation of the invariant

geometry [Amari and Ohara, 2011], [Amari, Ohara and Matsuzoe, 2012].

We do not mention applications of dual geometry, which are now hot topics of research in many fields.

See, e.g., [Banerjee et al., 2005], [Ikeda, Tanaka and Amari, 2004], [Takenouchi et al., 2008],

[Boissonnat, Nielsen and Nock, 2010], [Vemuri et al., 2011], [Liu et al, 2010], [Amari, 2009] and [Cichocki et al., 2009].

Divergence Function and Differential Geometry

Let us consider a manifoldM homeomorphic toRn. We use a coordinate system inM and denote the coordinates

of a point P by x = (x1, · · · , xn). We consider a function D[P : Q] of two points P and Q inM , which is
written asD[x : y] by using the coordinates x and y of P andQ.

Definition: A functionD[P : Q] is called a divergence, when the following conditions are satisfied
[Amari and Cichocki, 2010]:

1) D[x : y] ≥ 0 with equality when and only when x = y.

2) D[x : y] is differentiable and the Hessian with respect to x at y = x is positive definite.

It should be noted thatD[x : y] is not necessarily symmetric with respect to x and y. Hence, it is not a distance.

The triangular inequality does not hold either. It has dimension of the square of distance as will be seen below (cf.

[Chen, Chen and Rao, 2008]).
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Given a divergence functionD, for infinitesimally close two points x and y = x+dx, we have by Taylor expansion

D [x : x + dx] =
∑

gij(x)dxidxj +O
(

|dx|3
)

, (1)

where

gij(x) =
∂2

∂xi∂xj
D [x : y]

∣

∣y=x . (2)

Since gij is a positive-definite matrix, it gives a Riemannian metric derived from the divergence. For the sake of

notational convenience, we introduce the following abbreviation by using the partial differential operator (natural

basis of the tangent space),

∂i =
∂

∂xi

(3)

and define, for a number of operators ∂i, ∂j , ∂k , etc.,

D [∂i∂j : ∂k;x] =
∂3

∂xi∂xj∂yk

D[x : y]
∣

∣y=x . (4)

Here, the operators in the left part ofD operate on x, while those on the right operate on y, and finally the result is

evaluated at y = x. Then, we have, for example,

D [∂i : ·;x] =
∂

∂xi
D[x : y]|y=x = 0 (5)

D [· : ∂j ;x] =
∂

∂yj

D[x : y]y=x = 0 (6)

gij = D [∂i∂j : ·;x] = D [· : ∂i∂j;x] = −D [∂i : ∂j ;x] . (7)

The above properties are proved as follow. When y − x is small, we have from (1)

D[x : y] =
∑

gij(x) (x1 − yi) (xj − yj) +O
(

|x − y|3
)

. (8)

By differentiating this with respect to xi and/or yj , and then putting y = x, we have (5), (6), (7).

We can easily prove that gij is a tensor.

Define

Tijk(x) = D [∂k : ∂i∂j ;x] −D [∂i∂j : ∂k;x] . (9)

We can prove that Tijk is a tensor symmetric with respect to the three indices[Eguchi, 1983]. When D[x : y] is
symmetric, i.e.,D[x : y] = D[y : x],

Tijk = 0. (10)

A manifoldM having a divergence function is equipped with two quantities gij and Tijk derived from it. We write it

as {M,gij , Tijk}. Obviously the inner product of ∂i and ∂j is 〈∂i, ∂j〉 = gij .

We introduce affine connections in manifoldM equipped with metric gij and cubic formTijk , that is, {M,gij , Tijk}.

When gij is given, the Levi-Civita or Riemannian connection is given by the Christoffel symbol

Γ0
ijk(x) = [i, j; k] =

1

2
(∂igjk + ∂jgik − ∂kgij) . (11)

This is a symmetric connection (torsion-free) and the related covariant derivative∇0 in the direction ∂i satisfies

∇
0
∂i
〈∂j , ∂k〉 = ∇

0
∂i
gjk = 0. (12)
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When a cubic tensor Tijk is given in addition to gjk, we define the α-connection [Amari and Nagaoka, 2000] by

Γα
ijk(x) = Γ0

ijk −
α

2
Tijk, (13)

where α is a real scalar parameter. The α-covariant derivative∇α is characterized by

∇
α
∂igjk =

α

2
Tijk. (14)

The Levi-Civita connection is a special case of α-connection because it is given by α = 0. When α = 1, we call
the 1-connection simply the (primal) connection and when α = −1, the dual connection, respectively, derived from
the divergence. The duality will be explained in the next section.

Dual connections with respect to Riemannian metric

We search for geometrical structure of manifold {M,gij , Tijk}. Two affine connections Γijk and Γ∗
ijk (or their

covariant derivatives∇ and∇∗) inM are said to be dual with respect to Riemannian metric gij , when the following

relation holds for three vector fields A, B and C

A〈B,C〉 = 〈∇AB,C〉 + 〈B,∇∗
AC〉, (15)

where

〈B,C〉 =
∑

gijB
iCj (16)

is the inner product of B and C , and A is the directional derivative operator,
∑

Ai∂i, where A =
∑

Ai∂i,

B =
∑

Bi∂i and C =
∑

Ci∂i. The following theorem is known [Amari, 1985], [Amari and Nagaoka, 2000].

Theorem 1. The α-connection and −α-connection are dual with respect to the Riemannian metric gij .

Dually flat manifold

Manifold {M,gij , Tijk} derived from a divergence function is equipped with a Riemannian metric and two dual

affine connections. Hence, we may represent it by {M,g,∇,∇∗
} in terms of metric g = (gij) and two dual

affine connections (covariant derivatives) ∇ and ∇∗. ManifoldM is in general curved, having non-zero Riemann-

Christoffel curvature.

We prove that, when the Riemann-Christoffel curvature vanishes for the primal connection∇, the Riemann-Christoffel

curvature of the dual connection∇∗ vanishes automatically. But the Riemann-Christoffel curvature of the Levi-Civita

connection does not vanish in general. A manifold {M,g,∇,∇∗
} is said to be dually flat, when the curvatures for

∇ and∇∗ vanish.

Theorem 2. When the primal curvature vanishes, the dual curvature vanishes at the same time.

Proof. Let
∏

and
∏∗ be parallel transport operators of a vector due to∇ and∇∗, respectively. The duality implies,

in terms of the parallel transports, that

〈A,B〉P = 〈

∏

A,

∗
∏

B〉Q, (17)

when two vectorsA andB are transported from point P toQ along a curve connecting P andQ by the two parallel

transports
∏

and
∏∗. Let us consider a loop c starting from P and ending atQ. Then, when the primal curvature

vanishes, we have
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∏

c

A = A (18)

for any A. This implies
∗

∏

c

B = B (19)

for any B. This proves that the curvature vanishes for the dual connection.

WhenM is dually flat, the following properties hold. See [Amari and Nagaoka, 2000] for mathematical details.

Theorem 3. Let {M,g,∇,∇∗
} be a dually flat manifold. Then, the following holds.

1) There are two affine coordinate systems θ =
(

θ1, · · · , θn
)

and η = (η1, · · · , ηn) in which the coefficients
of the primal and dual connections vanish, respectively,

Γijk(θ) = 0, Γ∗ijk(η) = 0. (20)

We denote the components of θ by θi using the upper index (contravariant) and those of η by ηi using

the lower index (covariant) because of the duality. The two affine coordinates are unique up to affine

transformations.

2) There exist two potential functions ψ(θ) and ϕ(η) which are convex.

3) The Riemannian metric is given by the Hessian of the potential functions in the respective coordinate systems,

gij(θ) = ∂i∂jψ(θ), ∂i =
∂

∂θi
, (21)

gij(η) = ∂i∂jϕ(η), ∂i =
∂

∂ηi

. (22)

Here, gij and g
ij are inverse matrices,

∑

gijg
jk = δk

i , (23)

where
(

δk
i

)

is the identity matrix and the cubic tensor T is given by

Tijk(θ) = ∂i∂j∂kψ(θ), T ijk(η) = ∂i∂j∂kϕ(η). (24)

4) There exists a canonical divergence D
[

θ : θ′
]

, which is unique up to a scalar constant and is defined by

D
[

θ : θ′
]

= ψ(θ) + ϕ
(

η′
)

−

∑

θiη′i. (25)

The geometrical structure, the Riemannian metric and the dual affine connections ∇ and ∇∗, derived from

this divergence is the same as that of the original {M,g, T}.

5) A primal geodesic is linear in the θ coordinate system and the dual geodesic is linear in the η coordinate

system, so that they are given, respectively, by

θ(t) = ta + c, η(t) = tb + c′, (26)

where a, b, c, c′ are constant vectors.
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Convex function and Legendre duality

A dually flat manifoldM has two convex functions ψ(θ) and ϕ(η). Given a convex function ψ(θ) of θ inM , the
Legendre transformation from θ to η is

ηi = ∂iψ(θ). (27)

There exists a dual potential ϕ(η) which is convex with respect to η and the inverse transformation is given by

θi = ∂iϕ(η). (28)

The two potential functions can be chosen to satisfy

ψ(θ) + ϕ(η) −
∑

θiηi = 0. (29)

This gives the coordinate transformation between the primal affine coordinates θ and the dual affine coordinates η

on a dually flat manifoldM .

We can define the canonical divergence between two points θ and θ′ (or η and η′) by using the potential function.

D
[

θ : θ′
]

= ψ(θ) − ψ
(

θ′
)

−

∑

∂iψ
(

θ′
) (

θi
− θ′i

)

. (30)

This is known as the Bregman divergence [Bregman, 1967] and is written in the dual form as

D
[

θ : θ′
]

= ψ(θ) + ϕ
(

η′
)

−

∑

θiη′i. (31)

When a convex functionψ(θ) is given onM , a dually flat structure is constructed onM and conversely a dually flat
M possesses an affine coordinate system θ, a convex potential ψ(θ) and the canonical divergence D

[

θ : θ′
]

.

Generalized Pythagorean theorem and projection theorem in flatM

The generalized Pythagorean theorem holds in a dually flat manifoldM . Let P ,Q, and R be three points inM .

Theorem 4. When the primal geodesic connecting Q and R is orthogonal in the sense of Riemannian metric g to

the dual geodesic connecting P andQ, then

D [P : Q] +D[Q : R] = D[P : R] (32)

and when the dual geodesic connecting Q and R is orthogonal to the geodesic connecting P andQ, then

D[Q : P ] +D[R : Q] = D[R : P ]. (33)

The generalized Pythagorean theorem is a natural extension of that in a Euclidean space. Indeed, a Euclidean

space is a special case of the dually flat manifold, where Tijk = 0. In such a case, a primal geodesic and a dual
geodesic are the same because the two coordinate systems θ and η are the same, and gij reduces to δij (identity

matrix) in this coordinate system. The potential functions are written as

ψ(θ) = ϕ(η) =
1

2

∑

(

θi
)2

=
1

2

∑

(ηi)
2 (34)

and the divergence is

D
[

θ : θ′
]

=
1

2

∑

(

θi
− θ′i

)2
. (35)

Therefore, theorem 4 is a natural extension of the Pythagorean theorem.
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The projection theorem is a direct consequence of the Pythagorean theorem, which has many applications in real

problems. See, e.g., [Boissonnat, Nielsen and Nock, 2010], [Takenouchi et al., 2008], [Ikeda, Tanaka and Amari, 2004],

[Amari et al., 2003], etc.

Theorem 5. Let S be a submanifold in a dually flat manifoldM . Given a point P , the point P̂ ∈ S that is closest to

P in the sense of minimizing divergences D[P : Q],Q ∈ S is called the geodesic projection of P to S. The dual

geodesic projection P̂ ∗ of P to S is the point that minimizeD[Q : P ], Q ∈ S. The geodesic projection P̂ (dual

geodesic projection P̂ ∗) is given by the point that satisfies the following: The geodesic (dual geodesic) connecting

P and P̂ (P and P̂ ∗) is orthogonal to S.

Invariant divergence in the manifold of probability distributions

Let us consider a manifold of probability distributions. We consider the discrete case where random variable x takes

values on finite setX = {1, 2, · · · , n}. Then the set of all the probability distributions

Sn = {p(x)} (36)

forms an (n− 1)-dimensional manifold, called the probability (n− 1)-simplex. We may write

pi = Prob {x = i} . (37)

Then the probability simplex is specified by p = (pi), where
∑

pi = 1, pi > 0. (38)

We introduce a divergenceD[p : q] between two distributions p and q ∈ Sn that satisfies the following invariance

criterion [Chentsov, 1982], [Csiszar, 1991]. For this purpose, we partitionX into disjoint subsetsX1, · · · ,Xm,

X = {X1, · · · ,Xm} , ∪Xi = X, Xi ∩Xj = φ. (39)

Then, the partition naturally induces a reduced probability distribution p̄ on X̄ = {X1, · · · ,Xm} such that

p̄i =
∑

j∈Xi

pj. (40)

This is a coarse graining of observation of x such that we do not know x but know the subclass Xi to which x

belongs, so that there is loss of information. A loss is expressed in terms of the divergence as follows.

Invariance Criterion: A divergence is said to be monotone when

D[p : q] ≥ D [p̄ : q̄] (41)

holds for any partition ofX . Moreover, it is said to be invariant, when

D[p : q] = D [p̄ : q̄] (42)

holds, if and only if the conditional probabilities of x conditioned on anyXi are equal for both p and q,

p (x|Xi) = q (x|Xi) , i = 1, · · · ,m (43)

or

pi = cjqi, i ∈ Xj (44)

for constant cj .

A divergence is said to be decomposable, when it is written as

D[p : q] =
∑

d (pi, qi) (45)

for some function d. The following theorem is known [Amari, 2009], [Amari and Nagaoka, 2000].
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Theorem 6. The invariant divergence that gives dually flat structure is unique in Sn and is given by the Kullback-

Leibler (KL) divergence.

KL [p : q] =
∑

pi log
pi

qi
. (46)

Theorem 7. The invariant Riemannian metric of Sn is given by the Fisher information matrix,

gij(p) =
∑

x

p(x)
∂ log p(x)

∂pi

∂ log p(x)

∂pj
, i, j = 1, · · · , n− 1. (47)

The invariant third-order tensor is given by

Tijk(p) =
∑

x

p(x)
∂ log p(x)

∂pi

∂ log p(x)

∂pj

∂ log p(x)

∂pk

. (48)

Theorem 8. Sn is a dually flat manifold and the θ coordinates are

θi = log
pi

pn

, i = 1, · · · , n − 1 (49)

the dual η coordinates are

ηi = pi, i = 1, · · · , n− 1, (50)

the potential function is

ψ(θ) = log
{

1 +
∑

exp
(

θi
)

}

, (51)

which is the cumulant generating function, the dual potential function is

ϕ(η) =
∑

ηi log ηi +
(

1 −

∑

ηi

)

log
(

1 −

∑

ηi

)

, (52)

which is the negative of Shannon entropy, and the canonical divergence is the KL divergence.

Information geometry is applied to statistical inference, in particular to higher-order asymptotic theory of statistical

inference [Amari, 1985]. For example, consider a statistical modelM = {p(x,u)} ⊂ Sn specified by parameter

u = (u1, · · · , um), where m is smaller than n. When x is observed N times, the observation defines the
empirical distribution p̂,

p̂i =
1

N
♯ {x = i} . (53)

The maximum likelihood estimator û is given by the geodesic projection of p̂ to the statistical model M =
{p(x,u)} in Sn. The error of estimation is evaluated by the Fisher information (Cramér-Rao theorem and by the

embedding curvature ofM in Sn). Information geometry can also be applied to semiparametric statistical inference,

where a theory of estimating functions is established [Amari and Kawanabe, 1997]. We use a fiber-bundle-like

structure in this case, when x is a continuous variable and the manifold is infinite-dimensional. However, we should

be careful for mathematical difficulties in generalizing the above theory of the discrete case to an infinite-dimensional

case. There are lots of applications of information geometry to optimization, machine learning, computer vision and

neural networks.

Divergence introduced in the space of positive measures

Let us consider the setRn
+ of positive measures on X , wherem(x) gives a measure of x ∈ X . By introducing

the delta function δi(x),

δi(x) =

{

1, x = i

0, otherwise,
(54)
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we can write

m(x,z) =
∑

ziδi(x), (55)

where zi > 0. R+
n is a manifold where z is a coordinate system. The probability simplex Sn is its submanifold

satisfying
∑

zi = 1. (56)

Let u(z) and v(z) be two differentiable and monotonically increasing functions satisfying

u(0) = v(0) = 0. (57)

Define two coordinate systems θ and η by

θi = u (zi) , (58)

ηi = v (zi) , (59)

which are non-linear rescalings of zi. We introduce the dually flat structure toRn
+ such that θ and η are dually flat

affine coordinate systems. The structure is called the (u, v)-structure, since it is defined by using two functions u
and v. Note that the dual invariant affine coordinates θ and η of (49) and (50) in Sn are given by

u(z) = log z, (60)

v(z) = z, (61)

within the constraint of (56). The following theorem is given by [Amari, Ohara and Matsuzoe, 2012].

Theorem 9. The potential functions of the (u, v)-structure are given by

ψ(θ) =
∑

∫

dθi

∫

v′
{

u−1 (θi)
}

u′ {u−1 (θi)}
dθi, (62)

ϕ(η) =
∑

∫

dηi

∫

u′
{

v−1 (ηi)
}

v′ {v−1 (ηi)}
dηi. (63)

Proof. Since the two coordinates are connected by Legendre transformations

ηi =
∂ψ(θ)

∂θi
, θi =

∂ϕ(η)

∂ηi
, (64)

by integrating them, we have (62) and (63).

Theorem 10. The (u, v)-structure ofR+
n gives a Riemannian metric

gij(θ) = ∂i∂jψ(θ)δij , (65)

and a cubic tensor

Tijk(θ) = ∂i∂j∂kψ(θ)δijk (66)

which includes only diagonal components since δij and δijk are 1 when i = j and i = j = k, respectively, and 0
otherwise. The metric is Euclidean so that the curvature due to the Levi-Civita connection vanishes.

There are lots of applications of the (u, v)-divergences, in particular in the following form. The (u, v)-structure
gives a dually flat affine structure to the Euclidean manifoldR+

n by rescaling the axes. We give examples of (u, v)-
structures. See [Cichocki, Cruces and Amari, 2011].
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1. Logarithmic structure

When

u(z) = log z, v(z) = z, (67)

we have

θi = log zi, ηi = zi (68)

so that

m(x,z) = exp
{

∑

θiδi(x)
}

. (69)

The potential functions are

ψ(θ) =
∑

eθi , ϕ(η) =
∑

ηi log ηi −

∑

ηi (70)

and the canonical divergence is

D
[

z : z′
]

=
∑

(

zi − z′i + zi log
zi

z′i

)

, (71)

which is the generalized KL divergence. The probability simplex Sn is the linear subspace given by

∑

ηi = 1 (72)

and therefore is also dually flat. This gives the invariant structure satisfying the invariance criterion.

2. (α, β)-structure [Cichocki, Cruces and Amari, 2011]

Define

u(z) = zα, v(z) = zβ (73)

for two real parameters α and β. Then

θi = (zi)
α
, ηi = (zi)

β (74)

and the potential functions are

ψ(θ) =
α

α+ β

∑

(

θi
)

α+β

α , ϕ(η) =
β

α+ β

∑

(ηi)
α+β

β . (75)

The divergence, named the (α, β)-divergence, is given by

Dα,β

[

z : z′
]

=
∑

{

α

α+ β
(zi)

α+β +
β

α+ β

(

z′i
)α+β

− (zi)
α

(

z′i
)β

}

. (76)

The probability simplex Sn is a subspace, but the derived structure is neither invariant nor dually flat in general.

It should be remarked that, taking limit α→ 0 carefully and putting β = 1, we have

θi = log zi, ηi = zi. (77)

Hence, (0, 1)-structure is the logarithmic structure.

3. α-structure (q-structure) [Amari and Nagaoka, 2000; Amari, 2007]

When α+ β = 1, we replace α by 1 − q = (1 − α̃)/2 and β by q = (1 + α̃)/2, having

u(z) = z
1−α̃

2 = z1−q, v(z) = z
1+α̃

2 = zq. (78)

The structure is called the α̃-structure or q-structure, where α̃ = 1 − 2q. We simply replace α̃ by α, omitting
˜ . The α-structure is used in information geometry, but the same structure is used in non-extensive statistical
mechanics by [Tsallis, 2009] and others under the name of q-entropy, etc.
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Theorem 11. The α(q)-affine coordinates are given by

θi = (zi)
1−α

2 = (zi)
1−q

, ; ηi = (zi)
1+α

2 = (zi)
q (79)

with potential functions

ψ(θ) =
1 − α

2

∑

(θi)
2

1−α =
1 − α

2

∑

zi ; (80)

ϕ(η) =
1 + α

2

∑

(ηi)
2

1+α =
1 + α

2

∑

zi. (81)

The α-divergence is defined by

Dα

[

z : z′
]

=
∑

{

1 − α

2
zi +

1 + α

2
zi − (zi)

1−α
2 (zi)

1+α
2

}

. (82)

The α-structure introduced in the probability simplex Sn is not dually flat. However, the α-divergence is given in Sn

by

Dα

[

p : p′
]

=
∑

{

1 − (pi)
1−α

2

(

p′i
)

1+α
2

}

. (83)

This is an invariant divergence. We extend the invariance principle to be applicable to Rn
+. Then we have the

following theorem [Amari, 2009].

Theorem 12. The α-divergence is the unique class of invariant divergence that gives dually flat structure toRn
+.

q exponential family and deformed exponential family

An exponential family S of probability distributions is a statistical model defined by

S =
{

p(x,θ) = exp
[

∑

θixi − ψ(θ)
]}

, (84)

where x is a vector random variable and θ =
(

θi
)

is called the natural parameters to specify a distribution. The

invariant geometry introduced in S is dually flat, where θ is the affine coordinate system, ψ(θ) is the potential
function and the dual affine coordinates are given by

ηi = ∂iψ(θ) =

∫

xip(x,θ)dx. (85)

This is called the expectation parameter. The dual potential is the negative entropy,

ϕ(η) =

∫

p(x,θ) log p(x,θ)dx. (86)

Instead of the logarithm, we introduce the q-logarithm (see [Tsallis, 2009], [Naudts, 2011]) defined by

logq z =
1

1 − q

(

z1−q
− 1

)

. (87)

Then, a family of probability distributions of the form

logq p(x,θ) =
∑

θixi − ψ(θ) (88)

is called a q-exponential family.
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More generally, we define χ-logarithm [Naudts, 2011] by

logχ(z) =

∫ z

1

1

χ(t)
dt, (89)

where χ(t) is a monotonically increasing positive function. When

χ(t) = t, (90)

this gives the logarithm and when

χ(t) = tq, (91)

this gives the q-logarithm.

The inverse function of the χ-logarithm is the χ-exponential given by

expχ(z) = 1 +

∫ z

0

λ(t)dt (92)

where λ(t) is related to χ by
λ

(

logχ z
)

= χ(z). (93)

A family of probability distributions is called a χ-exponential family or χ-family in short when they are written as

p(x,θ) = χ

{

∑

θixi − ψχ(θ)
}

. (94)

with respect to dominating measure µ(x). The potential function ψχ(θ) is determined from the normalization
condition

∫

p(x,θ)dµ(x) = 1. (95)

We may callψχ(θ) theχ-free energy. We can prove that it is a convex function [Amari, Ohara and Matsuzoe, 2012].

The probability simplex Sn is a χ-exponential family for any χ, since any distribution p(x) onX is written as

logχ p(x) =

n−1
∑

i=1

θiδi(x) + logχ

(

1 −

∑

pi

)

, (96)

where

θi = logχ pi − logχ pn (97)

xi = δi(x), i = 1, · · · , n− 1. (98)

We can introduce the geometrical structure (the metric and dual affine connections) from the invariance principle for

any χ-family. However, except for exponential families and mixture families, the induced structure is not dually flat

(except for the 1-dimensional case where the curvature always vanishes).

Instead, we can introduce a dually flat χ-structure to a χ-family, which in general is different from the invariant

structure. In particular, the probability simplex Sn has χ-dually flat structure for any χ, which is different from the

invariant structure in general.

By using the χ-free energy or χ-potential function ψχ(θ), we define the χ-metric and χ-cubic tensor by

g
χ
ij = ∂i∂jψχ(θ), (99)

T
χ
ijk = ∂i∂j∂kψχ(θ). (100)
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They give a dually flat geometrical structure. The dual affine coordinates are given by

ηi = ∂iψχ(θ). (101)

The dual potential function in Sn is given by

ϕ(η) =
1

hχ

∑

u′ {v (pi)} v (pi) . (102)

In the case of the q-family in Sn, we have

ϕq(η) =
1

1 − q

(

1

hq
− 1

)

. (103)

Therefore, it is natural to define the q-entropy by

Hq(p) =
1

hq(p)
(104)

up to a scale and constant. This is different from the Tsallis q-entropy defined by

HTsallis = −hq(p). (105)

From the geometrical point of view, our definition of the q-entropy is natural.

We finally study how the χ-metric is related to the invariant Fisher metric in Sn [Amari and Ohara, 2011]. The

following is an interesting observation, connecting q-geometry and conformal geometry [Kurose, 1994]. When a

metric gij is changed to

g̃ij(p) = σ(p)gij(p), (106)

where σ(p) is a positive scalar function in a Riemannian manifold, the transformation is said to be conformal. In
the case of {M,g, T}, a conformal transformation changes Tijk as

T̃ijk(p) = σ(p)Tijk + (∂iσ) gjk + (∂jσ) gik + (∂kσ) gij . (107)

Theorem 13. The q-geometry is the unique class of probability distributions that is conformally connected to the

invariant geometry with Fisher information metric. The conformal factor is given by

σ(p) =
1

hq(p)
. (108)

Conclusion

We have reviewed the current status of information geometry which emerged from the study of invariant geometrical

structure of the manifold of probability distributions. The structure is related to the divergence function and hence

is regarded as the geometry of divergence. It consists of a Riemannian metric together with a pair of dual affine

connections. A dually flat Riemannian manifold is of particular interest in applications. We have given its mathematical

structure and showed that it gives the canonical divergence in the form of the Bregman divergence and vice versa.

We also show the invariance principle to be applied to the manifold of probability distributions. The Kullback-Leibler

divergence is its canonical divergence. We also show various types of divergence functions which give the dually
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flat structure. The Tsallis entropy and the deformed exponential family arising from it are studied in detail. We

have proved that the q-structure is the unique class that is derived from conformal transformation of the invariant

geometry having the Fisher information metric.

It is natural to use the geometry derived from the invariance principle, when we study statistical inference. However,

the invariance geometry is given by α-geometry including a free parameter α. We usually treat the case of

α = ±1. The α = 0 case reduces to the Riemannian geometry. There are interesting applications using other α
[Matsuyama, 2002]. The invariance principle is applicable only to a manifold of probability distributions. Hence, we

can construct a dually flat geometry in many problems such as vision and machine learning, when a convex function

is used. This widens the applicability of information geometry.

Finally, we point out its extension. The extension to the infinite-dimensional function space is studied by

[Cena and Pistone, 2007]. Its extension to Finsler geometry and Wasserstein geometry is also expected in future.
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CLASSIFICATION RESULTS FOR (v, k, 1) CYCLIC DIFFERENCE FAMILIES WITH
SMALL PARAMETERS

Tsonka Baicheva and Svetlana Topalova

Abstract: Classifications of (v, k, 1) cyclic difference families (CDFs) by other authors are known for k = 3 and
v ≤ 57, k = 4 and v ≤ 64, k = 5 and v ≤ 65, k = 6 and v = 91 and k = 7 and v = 91. In this work
we construct all inequivalent (v, k, 1) CDFs (respectively all multiplier inequivalent cyclic 2-(v, k, 1) designs) with
k ≤ 11 and some small v by a computer search and an algorithm similar to the one applied for the classification
of optimal orthogonal codes in our previous works. We obtain the same number of inequivalent CDFs for all the

parameters, for which previous classification results are known. The new parameters covered by our software for

k ≤ 7 are (61, 3, 1), (73, 4, 1), (76, 4, 1), (81, 5, 1), and (85, 5, 1) CDFs.

Keywords: cyclic difference set, Steiner triple system, optical orthogonal code

ACM Classification Keywords: Algorithms

MSC: 05B05, 05B07, 05B10

Introduction

Definition 1. Let B be a subset of an additive group G. We denote by ∆B the list of all possible differences

b − b′ with (b, b′) an ordered pair of distinct elements of B. More generally, if F = {B1, B2, . . . , Bn} is a

collection of subsets of G, then the list of differences from F, denoted by ∆F, is the multiset obtained by joining

∆B1, . . . ,∆Bn. F is said to be a (v,k,1) difference family (DF) ifG has order v, every Bi is of size k ≥ 3,
and∆F covers every non-zero element ofG exactly once. If further,G = Zv , then this difference family is said to

be cyclic (CDF).

For general background on difference families we refer to [Abel, 1996] and [Beth, Jungnickel, Lenz, 1999]. Complete

sets of CDFs are of interest in their own right, as well as for applications in the construction of other types of

combinatorial structures. There are known applications to one-factorizations of complete graphs and to cyclically

resolvable cyclic Steiner triple systems [Fuji-Hara, Miao, Shinohara, 2002], as well as to constructions of regular

LDPC codes [Fujisawa, Sakata, 2005]. Very efficient constructions of new optimal perfect secrecy systems that are

onefold secure against spoofing are obtained via CDF [Huber, 2012]. Optimal frequency-hopping sequences can

also be constructed from (v, k, 1) CDFs.

01 Related combinatorial structures

Differences can be considered as a measure of distance. That is why CDF s correspond to several different

combinatorial structures, for which a distance condition is defined by means of scalar product, or Hamming distance.

A very suitable example are the two different definitions that authors very often give for (v, k, λ) optical orthogonal
codes (OOCs).
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Definition 2. A (v, k, λ) optical orthogonal code C is a collection of {0, 1} sequences of length v and Hamming

weight k such that:

v−1
∑

i=0

x(i)x(i + j) ≤ λ, 1 ≤ j ≤ v − 1 (1)

v−1
∑

i=0

x(i)y(i + j) ≤ λ, 0 ≤ j ≤ v − 1 (2)

for all pairs of distinct sequences x, y ∈ C. The same definition holds for a (v, k, λ) binary cyclically permutable
constant weight (CPCW) code.

Definition 3. A (v, k, λ) optical orthogonal code (OOC) can be defined as a collection C = {C1, . . . , Cs} of

k-subsets (codeword-sets) of Zv such that any two distinct translates of a codeword-set and any two translates of

two distinct codeword-sets share at most λ elements:

|Ci ∩ (Ci + t)| ≤ λ, 1 ≤ i ≤ s, 1 ≤ t ≤ v − 1 (3)

|Ci ∩ (Cj + t)| ≤ λ, 1 ≤ i < j ≤ s, 0 ≤ t ≤ v − 1. (4)

And if (v, k, 1) OOCs are considered, the latter definition is usually replaced by the following one.

Definition 4. A (v, k, 1) optical orthogonal code (OOC) may be viewed as a set of k-subsets of Zv whose list of

differences has no repeated elements.

A (v, k, 1) OOC is optimal when its size reaches the upper bound

⌊

(v − 1)

k(k − 1)

⌋

. If its size is exactly equal to

(v − 1)

k(k − 1)
, the code is perfect because its list of differences covers all nonzero elements of Zv. A perfect (v, k, 1)

OOC forms a (v, k, 1) CDF.

Next we supply definitions of other combinatorial structures related to difference families.

Definition 5. Let V = {Pi}
v
i=1
be a finite set of points, andB = {Bj}

b
j=1
a finite collection of k-element subsets

of V , called blocks. D = (V,B) is a design with parameters t-(v,k,λ) if any t-subset of V is contained in exactly

λ blocks of B.

A t-(v,k,λ) design is cyclic if it has an automorphism permuting its points in one cycle.

Definition 6. An (n,w, d) binary constant weight code (CWC) of length n, weight w and minimal distance d is

a collection of binary vectors of length n (codewords), which have exactly w nonzero positions and the Hamming

distance between any two codewords is at least d. A CWC is cyclic if the cyclic shift of each codeword is a codeword

too. A cyclic CWC corresponds to an (n,w,w − d/2) CPCW code.

A (v, k, 1) CDF can be obtained from any optimal perfect (v, k, 1) CPCW code (optimal perfect (v, k, 1) OOC),
and from any optimal cyclic binary CWCwith weight k and minimal distance 2(k−1). CDFs with v ≡ k (mod k(k−
1)) do not correspond to CPCW codes (OOCs) and cyclic binary CWCs.

There is a one-to-one correspondence between (v, k, 1) CDFs and cyclic 2-(v, k, 1) designs. An example illustrating
the relations between difference families and other combinatorial structures is presented in Figure 1.

02 Equivalence

The aim of our work is classification of CDFs. That is why we have to know when two CDFs are equivalent.
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Figure 1: Relations of cyclic difference families

a) - Perfect (13, 3, 1) OOC and (13, 3, 1) CDF
codeword-sets(sets) differences

{0,1,4} 1 3 4 9 10 12

{0,2,8} 2 5 6 7 8 11

b) - Related cyclic 2-(13,3,1) design and cyclic (13,3,4) CWC
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0

3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0

4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

5 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

6 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

7 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

8 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

9 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

10 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

11 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0

12 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1

Definition 7. Two difference families F = {B1, B2, . . . , Bn} and F
′ = {B′

1, B
′
2, . . . , B′

n} over a group G

are equivalent if there is an automorphism α of G such that for each i = 1, 2, . . . , n there exists B′
j which is a

translate of α(Bi).

We are also interested in the equivalence definitions for the related to the CDFs combinatorial objects, because

classifying CDFs we classify them too.

Definition 8. Two 2-(v, k, λ) designs D and D′ are isomorphic if there exists a permutation of the points which

maps each block ofD to a block ofD′.

Definition 9. Two (v, k, λ) CPCW codes C andC ′ are isomorphic if there exists a permutation of Zv , which maps

the collection of translates of each block of C to the collection of translates of a block of C ′.

Multiplier equivalence is defined for cyclic combinatorial objects.

Definition 10. Two (v, k, λ) CPCW codes (OOCs) are multiplier equivalent if they can be obtained from one
another by an automorphism of Zv and replacement of blocks by some of their translates.

Definition 11. Two cyclic 2-(v, k, λ) designs D and D′ are multiplier equivalent if there exists an automorphism

of Zv which maps each block ofD to a block ofD
′.

Two cyclic designs can be isomorphic, but multiplier inequivalent. The same holds for two CPCW codes.

The number of multiplier inequivalent perfect optimal 2-(v, k, 1) CPCW codes (OOCs) is the same as the number
of the inequivalent 2-(v, k, 1) CDFs.

The number of inequivalent (v, k, 1) CDFs is the same as the number of multiplier inequivalent cyclic 2-(v, k, 1)
designs, and vice versa.

03 Existence Results

The known existence results for CDFs with k = 3, 4, 5, 6, 7 can be summarized as follows:



Mathematics of Distances and Applications 27

Theorem 1. A (v, k, 1) CDF can exist for v ≡ 1, k (mod k(k − 1)).

Theorem 2. [Dinitz, Shalaby, 2002] There exists a (v, 3, 1) difference family for every v ≡ 1, 3 (mod 6) except
v = 9.

Theorem 3. ([Bose 1939],[Buratti, 1995],[Buratti, 1997],[Colbourn, Dinitz (eds.), 1996],[Lidl, Niederreiter, 1983])

1. For any prime power q ≡ 1 (mod 12) there exists a (q, 4, 1) difference family in GF(q).

2. For any prime power q ≡ 1 (mod 20) there exists a (q, 5, 1) difference family in GF(q).

Theorem 4. ([Abel, Burati, 2004],[Abel, Costa, Finizio, 2004])

1. A (12t + 1, 4, 1) differnce family exists for 1 ≤ t ≤ 50 except for t = 2.

2. A (20t + 1, 5, 1) differnce family exists for 1 ≤ t ≤ 50 except possibly for t = 16, 25, 31, 34, 40, 45.

Theorem 5. ([Chen, Zhu, 1998]) There exists a (q, 6, 1) DF for any prime power q ≡ 1 (mod 30) with one
exception of q = 61.

Theorem 6. ([Chen, Wei, Zhu, 2002]) There exists a (q, 7, 1) DF for any prime power q ≡ 1 (mod 42) except for

q = 43, posibly for q = 127, 211, 316 , and primes q ∈ [261239791, 1.236597.1013 ] such that (−3)
(q−1)

14 = 1
in GF(q).

04 On the classification problem

The classification and the public accessibility of the classified CDFs with small parameters is of particular interest,

because it can help to choose, among CDFs with the same parameters, the one which is most suitable for some

application (for optical code-division multiple-access channels for instance), or the one which is most suitable to

serve as ingredient in some recursive construction of CDFs with higher parameters.

Classifications of cyclic difference families by other authors are known for k = 3 and v ≤ 57 [Colbourn, Rosa, 1999],
k = 4 and v ≤ 64 [Colbourn, Mathon, 1980], k = 5 and v ≤ 65 [Colbourn, Mathon, 1980], k = 6 and v = 91
[Colbourn, 1981], [Janko, Tonchev, 1991] and k = 7 and v = 91 [Bhat-Nayak, Kane, Kocay, Stanton, 1983]. In
this work we construct all inequivalent cyclic difference families with k ≤ 11 and some small v.

Construction method

We use a modification of our algorithm for classification of optimal (v, k, 1) OOCs [Baicheva, Topalova, 2011].

We classify the (v, k, 1) CDFs up to equivalence by back-track search with minimality test on the partial solutions
[Kaski, Östergård, 2006, section 7.1.2]. Without loss of generality we can assume that b1 < b2 < · · · < bs for

each set B = {b1, b2, . . . , bs}. We first arrange all possibilities for the sets Bi with respect to a lexicographic

order defined on them. If a set Bi ∈ F is replaced by one of its translates, we obtain an equivalent CDF. That is

why we can assume that each set of F is lexicographically smaller than its translates. This means that b1 = 0 and
when we say that B1 is mapped toB2 by the permutation ϕ, we mean that B2 is the smallest translate of ϕ(B1).

Let ϕ0, ϕ1, . . . , ϕm−1 be the automorphisms of Zv , where ϕ0 is the identity. We construct an array of all sets

B of k elements of Zv which might become sets of F, i.e. they are smaller than all their translates and ∆B

does not contain repeated differences. We find them in lexicographic order. To each constructed set we apply the

permutations ϕi, i = 1, 2, . . . ,m − 1. If some of them maps it to a smaller set, we do not add the current set
since it is already somewhere in the array. If we add the current set to the array, we also add after it them− 1 sets
to which it is mapped by ϕ1, ϕ2, . . . , ϕm−1.

Most of the sets of a CDF have v− 1 translates. If v ≡ k (mod k(k− 1)) one of the sets has v/k translates and

is equal to {0, v/k, 2v/k, . . . , (k − 1)v/k}, so we first add this set to the CDF. We then apply back-track search

to choose the sets with v−1 translates from the upper list of all possibilities for them. The above described ordering
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of all the possible sets allows repeated sets in the array, but makes the minimality test of the partial solutions very

fast. By the minimality test we check if the current solution can be mapped to a lexicographically smaller one by the

automorphisms of Zv and reject it if so.

In this way we classify the CDFs up to multiplier equivalence. We use our own software written in C++.

Classification results

CDFs correspond to the perfect optimal OOCs which we have classified in our papers on optimal OOCs with

parameters (v, 4, 1) [Baicheva, Topalova, 2011], (v, 5, 1) [Baicheva, Topalova, 2012a] and (v, 3, 1)
[Baicheva, Topalova, 2012b]. Therefore, in these papers new results about CDFs are obtained too. In the present

paper we repeat all previous results on CDFs (ours and of other authors) and add some new ones, which we obtain

by the above described construction method. We find the same number of inequivalent CDFs for all the parameters,

for which previous classification results are known. To the results of other authors for k ≤ 7 we add classifications
of (61, 3, 1), (73, 4, 1), (76, 4, 1), (81, 5, 1) and (85, 5, 1) CDFs. A summary is presented in Table 1.

Since previous classification results have been obtained by different authors for the different parameters, we think

that collecting them together is of particular interest. We believe that both Table 1 and the files with all the

inequivalent difference sets (available from the authors) will be very useful for applications and to people who will go

on with research in this field.

Table 1: Inequivalent cyclic (v,k,1) difference families (Multiplier inequivalent cyclic 2-(v,k,1) designs)

v k CDFs

7 3 1

9 3 0

13 3 1

15 3 2

19 3 4

21 3 7

25 3 12

27 3 8

31 3 80

33 3 84

37 3 820

39 3 798

43 3 9508

45 3 11616

49 3 157340

51 3 139828

55 3 3027456

57 3 2353310

61 3 42373196

v k CDFs

13 4 1

16 4 0

25 4 0

28 4 0

37 4 2

40 4 10

49 4 224

52 4 206

61 4 18132

64 4 12048

73 4 1426986

76 4 1113024

21 5 1

25 5 0

41 5 1

45 5 0

61 5 10

65 5 2

81 5 528

v k CDFs

85 5 170

31 6 1

36 6 0

61 6 0

66 6 0

91 6 4

96 6 0

43 7 0

49 7 0

85 7 0

91 7 2

57 8 1

64 8 0

73 9 1

81 9 0

91 10 1

100 10 0

111 11 0

121 11 0
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LOGARITHMIC DISTANCES IN GRAPHS

Pavel Chebotarev

Abstract: The walk distances in graphs are defined as the result of appropriate transformations of the
∑∞

k=0(tA)
k

proximity measures, where A is the weighted adjacency matrix of a graph and t is a sufficiently small positive
parameter. The walk distances are graph-geodetic; moreover, they converge to the shortest path distance and to
the so-called long walk distance as the parameter t approaches its limiting values. Furthermore, the logarithmic
forest distances which are known to generalize the resistance distance and the shortest path distance are a specific
subclass of walk distances. On the other hand, the long walk distance is equal to the resistance distance in a
transformed graph.

Keywords: graph distances, walk distances, logarithmic forest distances, transitional measure, Laplacian matrix,
resistance distance, network

ACM Classification Keywords: G.2.2 Graph Theory – Network problems; E.1 Data Structures – Graphs and
networks; C.2.1 Network Architecture and Design – Network topology

MSC: 05C12, 05C50, 15B48

The classical distances for graph vertices are the well-known shortest path distance, the resistance distance, which
is proportional to the commute time distance, and the square root version of the resistance distance. The latter
two distances were first studied by Gerald Subak-Sharpe in the 60s. Recently, a need for a wider variety of
graph distances has been strongly felt (see [Deza and Deza, 2009; von Luxburg, Radl, and Hein, 2011; Tang, 2010;
Estrada, 2011] among many others).
Recall the well-known fact that the shortest path distance and the resistance distance coincide on each tree. In
particular, for every path, the resistance distance between every two adjacent vertices is one, as well as the
shortest path distance. However, in some applications two central adjacent vertices in a path may be considered
as being closer to each other than two peripheral adjacent vertices are as there are more walks (of length 3, 5,
etc.) connecting two central vertices. Such a “gravitational” property holds for the forest distances we studied
since 1995. In some other applications, a terminal vertex in a path can be considered as being closer to its neighbor
than two central adjacent vertices are. For example, if someone has a single friend, then this friendship is often
stronger than that between persons having more friends. This heuristic is supported by the logarithmic forest
distances [Chebotarev, 2011].
In [Chebotarev, 2011a], a general framework was proposed for constructing graph-geodetic metrics (a distance
d(i, j) for graph vertices is graph-geodetic whenever d(i, j) + d(j, k) = d(i, k) if and only if every path
connecting i and k visits j). Namely, it has been shown that if a matrix S = (sij) produces a strictly positive
transitional measure on a graph G (i.e., sij sjk ≤ sik sjj for all vertices i, j, and k, while sij sjk = sik sjj
if and only if every path from i to k visits j), then the logarithmic transformation hij = ln sij and the inverse
covariance mapping dij = hii + hjj − hij − hji convert S into the matrix of a graph-geodetic distance. In the
case of digraphs, five transitional measures were found in [Chebotarev, 2011a], namely, the “connection reliability”,
the “path accessibility” with a sufficiently small parameter, the “walk accessibility”, and two versions of the “forest
accessibility”.
Earlier, the inverse covariance mapping has been applied to the matrices of walk weights

∑∞
k=0(tA)

k, where A
is the adjacency matrix of a graph. This leads to distances whenever the positive parameter t is sufficiently small.
However, these distances are not graph-geodetic and some of their properties are quite exotic.
In the present paper, we study the graph-geodetic walk distances, which involves the logarithmic transformation.
The walk distances are expressed in terms of commute cycles and via block matrix operations. Two limiting cases
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of walk distances are investigated: the short walk distance coincides with the classical shortest path distance, while
the long walk distance is original. Furthermore, modified walk distances (the “e-walk distances”) are considered
which generalize the classical weighted shortest path distance. It is shown that adding “balancing loops” converts
the logarithmic forest distances into a subclass of walk distances. This implies, in particular, that the resistance
distance is also a limiting walk distance. Finally, several graph metrics are compared on simple examples.
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CONES OF WEIGHTED QUASIMETRICS, WEIGHTED QUASIHYPERMETRICS AND

OF ORIENTED CUTS

Michel Deza,Vyacheslav P. Grishukhin,Elena Deza

Abstract: We show that the cone of weightedn-point quasi-metricsWQMetn, the cone of weighted quasi-hyper-

metrics WHypn and the cone of oriented cuts OCutn are projections along an extreme ray of the metric cone

Metn+1, of the hypermetric cone Hypn+1 and of the cut cone Cutn+1, respectively. This projection is such that

if one knows all faces of an original cone then one knows all faces of the projected cone.

Keywords: distance, metrics, hypermetrics, cut metrics, quasi-metrics.

MSC: 52B12, 51F99, 90C57

1 Introduction

Oriented (or directed) distances are encountered very often, for example, these are one-way transport routes, a

river with quick flow and so on.

The notions of directed distances, quasi-metrics and oriented cuts are generalizations of the notions of distances,

metrics and cuts, which are central objects in graph theory and combinatorial optimization.

Quasi-metrics are used in semantics of computations (see, for example, [Se97]) and in computational geometry

(see, for example, [AACMP97]). Oriented distances have been used already by Hausdorff in 1914, see [Ha14].

In [CMM06], an example of directed metric derived from a metric is given. Let d be a metric on a set V ∪ {0},

where 0 is a distinguished point. Then a quasi-metric q on the set V is given as

qij = dij + di0 − dj0.

This quasi-metric belongs to a special important subclass of quasi-metrics, namely, to a class of weighted quasi-

metrics. We show in this paper that any weighted quasi-metric is obtained from a metric by this method.

All semi-metrics on a set of cardinality n form a metric cone Metn. There are two important sub-cones ofMetn,

namely, the cone Hypn of hypermetrics, and the cone Cutn of ℓ1-metrics. These three cones form the following

nested familyCutn ⊆ Hypn ⊆Metn, see [DL97].

In this paper we introduce a special space Qn, called a space of weighted quasi-metrics. We define in this space a

cone WQMetn. Elements of this cone satisfy triangle and non-negativity inequalities. Among extreme rays of the

cone WQMetn there are rays spanned by ocut vectors, i.e. incidence vectors of oriented cuts.

We define in the space Qn a cone OCutn of oriented cuts as the cone hull of ocut vectors. Elements of the cone

OCutn are weighted quasi-ℓ-metrics.

Let metrics of the cone Metn+1 are defined on the set V ∪ {0}. The cut-cone Cutn+1 of ℓ1-metrics on this set

is a cone hull of cut-metrics δ(S) for all S ⊂ V ∪ {0}. The cut-metrics δ(S) are extreme rays of all the three

conesMetn+1,Hypn+1 andCutn+1. In particular, δ({0}) = δ(V ) is an extreme ray of these three cones.

In this paper, it is shown that the cones WQMetn and OCutn are projections of the corresponding cones

Metn+1 and Cutn+1 along the extreme ray δ(V ). We define a cone WQHypn of weighted quasi-hyper-

metrics as projection along δ(V ) of the cone Hypn+1. So, we obtain a nested familyOCutn ⊆ WQHypn ⊆

WQMetn.

Weighted quasi-metrics and other generalizations of metrics are studied, for example, in [DD10] and [DDV11]. The

cone and the polytope of oriented cuts are considered in [AM11].
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2 Spaces R
E and R

EO

LetV be a set of cardinality |V | = n. LetE andEO be sets of all unordered (ij) and ordered ij pairs of elements

i, j ∈ V . Consider two Euclidean spaces R
E and R

EO

of vectors d ∈ R
E and g ∈ R

EO

with coordinates d(ij)

and gij , where (ij) ∈ E and ij ∈ EO, respectively. Obviously, dimensions of the spaces R
E and R

EO

s are

|E| = n(n−1)
2 and |EO

| = n(n− 1), respectively.

Denote by (d, t) =
∑

(ij)∈E d(ij)t(ij) scalar product of vectors d, t ∈ R
E . Similarly (f, g) =

∑

ij∈EO
fijgij

denote scalar product of vectors f, g ∈ R
EO

.

Let {e(ij) : (ij) ∈ E} and {eij : ij ∈ EO
} be orthonormal bases of R

E and R
EO

, respectively. Then, for

f ∈ R
E and q ∈ R

EO

, we have

(e(ij), f) = f(ij) and (eij , q) = qij.

For f ∈ R
EO

, define f∗ ∈ R
EO

as follows

f∗ij = fji for all ij ∈ EO.

Call a vector g symmetric if g∗ = g, and antisymmetric if g∗ = −g. Each vector g ∈ R
EO

can be decompose

into symmetric gs and antisymmetric ga parts as follows:

gs =
1

2
(g + g∗), ga =

1

2
(g − g∗), g = gs + ga.

Let R
EO

s and R
EO

a be subspaces of symmetric and antisymmetric vectors, respectively. Note that the spaces R
EO

s

and R
EO

a are mutually orthogonal. In fact, for p ∈ R
EO

s and f ∈ R
EO

a , we have

(p, f) =
∑

ij∈EO

pijfij =
∑

(ij)∈E

(pijfij + pjifji) =
∑

(ij)∈E

(pijfij − pijfij) = 0.

Hence

R
EO

= R
EO

s ⊕ R
EO

a ,

where ⊕ is direct sum.

Obviously, there is an isomorphism ϕ between the spaces R
E and R

EO

s . Let d ∈ R
E have coordinates d(ij).

Then we set

dO = ϕ(d) ∈ R
EO

s such that dOij = dOji = d(ij).

In particular,

ϕ(e(ij)) = eij + eji.

The map ϕ is invertible. In fact, for q ∈ R
EO

s , we have ϕ−1(q) = d ∈ R
E such that d(ij) = qij = qji. The

isomorphismϕ will be useful in what follows.

3 Space of weights Qw
n

One can consider the sets E and EO as sets of edges (ij) and arcs ij of an unordered and ordered complete

graphs Kn and KO
n on the vertex set V , respectively. The graph KO

n has two arcs ij and ji between each pair

of vertices i, j ∈ V .

It is convenient to consider vectors g ∈ R
EO

as functions on the set of arcs EO of the graph KO
n . So, the

decomposition R
EO

= R
EO

s ⊕ R
EO

a is a decomposition of the space of all functions on arcs in EO onto the

spaces of symmetric and antisymmetric functions.
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Besides, there is an important direct decomposition of the space R
EO

a of antisymmetric functions onto two subspaces.

In theory of electric networks these spaces are called spaces of tensions and flows (see also [Aig79]).

The tension space relates to potentials (orweights)wi given on vertices i ∈ V of the graphKO
n . The corresponding

antisymmetric function gw is determined as

gw
ij = wi − wj.

It is called tension on the arc ij. Obviously, gw
ji = wj − wi = −gw

ij . Denote by Qw
n the subspace of R

EO

generated by all tensions on arcs ij ∈ EO . We callQw
n by a space of weights.

Each tension function gw is represented as weighted sum of elementary potential functions p(k) for k ∈ V as

follows

gw =
∑

k∈V

wkp(k),

where

p(k) =
∑

j∈V −{k}

(ekj − ejk), for all k ∈ V, (1)

are basic functions that generate the space of weights Qw
n . Hence values of the basic functions p(k) on arcs are

as follows

pij(k) =







1 if i = k

−1 if j = k

0 otherwise.

(2)

We obtain

gw
ij =

∑

k∈V

wkpij(k) = wi −wj .

It is easy to verify that

p2(k) = (p(k), p(k)) = 2(n− 1), (p(k), p(l)) = −2 for all k, l ∈ V, k 6= l,
∑

k∈V

p(k) = 0.

Hence there are only n− 1 independent functions q(k) that generate the space Qw
n .

Weighted quasimetrics lie in the space R
EO

s ⊕Qw
n that we denote asQn. Direct complements ofQw

n in R
EO

a and

Qn in R
EO

is a space Qc
n of circuits (or flows).

4 Space of circuits Qc
n

The space of circuits (or space of flows) is generated by characteristic vectors of oriented circuits in the graphKO
n .

Arcs of KO
n are ordered pairs ij of vertices i, j ∈ V . The arc ij is oriented from the vertex i to the vertex j.

Recall thatKO
n has both the arcs ij and ji for each pair of vertices i, j ∈ V .

LetGs ⊆ Kn be an undirected subgraph with a set of edgesE(Gs) ⊆ E. We relate to the undirected graphGs

a directed graphG ⊆ KO
n with the arc setEO(G) ⊆ EO as follows. An arc ij belongs toG, i.e. ij ∈ EO(G),

if and only if (ij) = (ji) ∈ E(G). This definition implies that the arc ji belongs toG also, i.e. ji ∈ EO(G).

LetCs be a circuit in the graphKn. The circuitCs is determined by a sequence of distinct vertices ik ∈ V , where

1 ≤ k ≤ p and p is the length ofCs. Edges ofCs are unordered pairs (ik, ik+1), where indices are taken modulo

p. By above definition, an oriented bicircuitC of the graphKO
n relates to to the circuitCs. Arcs ofC are ordered

pairs ikik+1 and ik+1ik, where indices are taken modulo p. Take an orientation ofC . Denote by−C the opposite

circuit with opposite orientation. Denote an arc ofC direct or opposite if its direction coincides with or is opposite to

the given orientation ofC , respectively. LetC+ andC− be subcircuits ofC consisting of direct and opposite arcs,

respectively.
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The following vector fC is the characteristic vector of the bicircuitC :

fC
ij =







1 if ij ∈ C+,

−1 if ij ∈ C−,

0 otherwise.

Note that f−C = (fC)∗ = −fC , and fC
∈ R

EO

a .

Denote by Qc
n the space linearly generated by circuit vectors fC for all bicircuits C of the graph KO

n . It is well

known that characteristic vectors of fundamental circuits form a basis ofQc
n. Fundamental circuits are defined as

follows.

LetT be a spanning tree of the graphKn. Since T is spanning, its vertex setV (T ) is the set of all vertices ofKn,

i.e. V (T ) = V . LetE(T ) ⊂ E be the set of edges ofT . Then any edge e = (ij) 6∈ E(T ) closes a unique path

in T between vertices i and j into a circuitCe
s . This circuitCe

s is called fundamental. Call corresponding oriented

bicircuitCe also fundamental.

There are |E − E(T )| = n(n−1)
2 − (n− 1) fundamental circuits. Hence

dimQc
n =

n(n− 1)

2
− (n− 1), and dimQn + dimQc

n = n(n− 1) = dimR
EO

.

This implies thatQc
n is an orthogonal complement ofQw

n in R
O
a andQn in R

EO

, i.e.

R
EO

a = Qw
n ⊕Qc

n and R
EO

= Qn ⊕Qc
n = R

EO

s
⊕Qw

n ⊕Qc
n.

5 Cut and ocut vector set-functions

The space Qn is generated also by vectors of oriented cuts, which we define in this section.

Each subset S ⊆ V determines cuts of the graphs Kn and KO
n that are subsets of edges and arcs of these

graphs.

A cut(S) ⊂ E is a subset of edges (ij) ofKn such that (ij) ∈ cut(S) if and only if |{i, j} ∩ S| = 1.

A cutO(S) ⊂ EO is a subset of arcs ij ofKO
n such that ij ∈ cutO(S) if and only if |{i, j} ∩ S| = 1. So, if

ij ∈ cutO(S), then ji ∈ cutO(S) also.

An oriented cut is a subset ocut(S) ⊂ EO of arcs ij of KO
n such that ij ∈ ocut(S) if and only if i ∈ S and

j 6∈ S.

We relate to these three types of cuts characteristic vectors δ(S) ∈ R
E , δO(S) ∈ R

EO

s , p(S) ∈ R
EO

a and

c(S) ∈ R
EO

as follows.

For cut(S), we set

δ(S) =
∑

i∈S,j∈S

e(ij), such that δ(ij)(S) =

{

1 if |{i, j} ∩ S| = 1
0 otherwise,

where S = V − S. For cutO(S), we set

δO(S) = ϕ(δ(S)) =
∑

i∈S,j∈S

(eij + eji) and p(S) =
∑

i∈S,j∈S

(eij − eji).

Hence

δOij (S) =

{

1 if |{i, j} ∩ S| = 1
0 otherwise.

and pij(S) =







1 if i ∈ S, j 6∈ S

−1 if j ∈ S, i 6∈ S

0 otherwise.
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Note that, for one-element sets S = {k}, the function p({k}) is p(k) of section 2. It is easy to see that

(δO(S), p(T )) = 0 for any S, T ⊆ V.

For the oriented cut ocut(S), we set

c(S) =
∑

i∈S,j∈S

eij .

Hence

cij(S) =

{

1 if i ∈ S, j 6∈ S

0 otherwise.

Obviously, it holds c(∅) = c(V ) = 0, where 0 ∈ R
EO

is a vector whose all coordinates are equal zero. We have

the following equalities

c∗(S) = c(S), c(S) + c(S) = δO(S), c(S) − c(S) = p(S) and c(S) =
1

2
(δO(S) + p(S)). (3)

Besides, we have

cs(S) =
1

2
δO(S), ca(S) =

1

2
p(S).

Recall that a set-function f(S) on all S ⊆ V , is called submodular if, for any S, T ⊆ V , the following submodular

inequality holds

f(S) + f(T ) − (f(S ∩ T ) + f(S ∪ T )) ≥ 0.

It is well known that the vector set-function δ ∈ R
E is submodular (see, for example, [Aig79]). The above

isomorphismϕ of the spaces R
E and R

EO

s implies that the vector set-function δO = ϕ(δ) ∈ R
EO

s is submodular

also.

A set-function f(S) is called modular if, for any S, T ⊆ V , the above submodular inequality holds as equality.

This equality is called modular equality. It is well known (and can be easily verified) that antisymmetric vector set-

function fa(S) is modular for any oriented graph G. Hence our antisymmetric vector set-function q(S) ∈ R
EO

a

for the oriented complete graphKO
n is modular also.

Note that the set of all submodular set functons on a set V forms a cone in the space R
2V

. Therefore the last

equality in (3) implies that the vector set-function c(S) ∈ R
EO

is submodular.

The modularity of the antisymmetric vector set-function q(S) is important for what follows. It is well-known (see,

for example, [Bir67]) (and it can be easily verified using modular equality) that any modular set-function m(S) is

completely determined by its values on the empty set and on all one-element sets. Hence a modular set-function

m(S) has the following form

m(S) = m0 +
∑

i∈S

mi,

where m0 = m(∅) and mi = m({i}) −m(∅). For brevity, we set f({i}) = f(i) for any set function f(S).
Since p(∅) = p(V ) = 0, we have

p(S) =
∑

k∈S

p(k), S ⊆ V, and p(V ) =
∑

k∈V

p(k) = 0. (4)

Using equations (3) and (4), we obtain

c(S) =
1

2
(δO(S) +

∑

k∈S

p(k)). (5)

Now we show that ocut vectors c(S) for allS ⊆ V linearly generate the space Qn ⊆ R
EO

. The space generated

by c(S) consists of the following vectors

c =
∑

S⊆V

αSc(S), where αS ∈ R.
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Recall that c(S) = 1
2(δO(S) + p(S)). Hence we have

c =
1

2

∑

S⊂V

αS(δO(S) + p(S)) =
1

2

∑

S⊂V

αSδ
O(S) +

1

2

∑

S⊂V

αSp(S) =
1

2
(dO + p),

where dO = ϕ(d) for d =
∑

S⊆V αSδ(S). For a vector p we have

p =
∑

S⊂V

αSp(S) =
∑

S⊂V

αS

∑

k∈S

p(k) =
∑

k∈V

wkp(k), where wk =
∑

V ⊃S∋k

αS .

Since pij =
∑

k∈V wkpij(k) = wi − wj , we have

cij =
1

2
(dOij + wi − wj). (6)

It is well-known (see, for example, [DL97]) that the vectors δ(S) ∈ R
E for all S ⊆ V linearly generate the full

space R
E . Hence the vectors δO(S) ∈ R

EO

s for all S ⊆ V linearly generate the full space R
EO

s .

According to (5), antisymmetric parts of vectors c(S) generate the space Qw
n . This implies that the space Qn =

R
EO

s ⊕Qw
n is generated by c(S) for all S ⊂ V .

6 Properties of the spaceQn

Let x ∈ Qn and let fC be the characteristic vector of a bicircuit C . Since fC is orthogonal to Qn, we have

(x, fC) =
∑

ij∈C f
C
ijxij = 0. This equality implies that each point x ∈ Qn satisfies the following equalities

∑

ij∈C+

xij =
∑

ij∈C−

xij

for any bicircuitsC .

LetK1,n−1 ⊂ Kn be a spanning star ofKn consisting of alln−1 edges incident to a vertex ofKn. Let this vertex

be 1. Each edge of Kn − K1,n−1 has the form (ij), where i 6= 1 6= j. The edge (ij) closes a fundamental

triangle with edges (1i), (1j), (ij). The corresponding bitriangle T (1ij) generates the equality

x1i + xij + xj1 = xi1 + x1j + xji.

These inequalities were derived by another way in [AM11]. They correspond to fundamental bi-triangles T (1ij),

for all i, j ∈ V −{1}, and are all
n(n−1)

2 − (n− 1) independent equalities determining the space, where the Qn

lies.

Above coordinates xij of a vector x ∈ Qn are given in the orthonormal basis {eij : ij ∈ EO
}. But, for what

follows, it is more convenient to consider vectors q ∈ Qn in another basis. Recall that R
EO

s = ϕ(RE). Let, for

(ij) ∈ E, ϕ(e(ij)) = eij + eji ∈ R
EO

s be basic vectors of the subspace R
EO

s ⊂ Qn. Let p(i) ∈ Qw
n , i ∈ V ,

be basic vectors (defined in (1)) of the space Qw
n ⊂ Qn. Then, for q ∈ Qn, we set

q = qs + qa, where qs =
∑

(ij)∈E

q(ij)ϕ(e(ij)), q
a =

∑

i∈V

wip(i).

Now, we obtain an important expression for the scalarproduct (g, q) of vectors g, q ∈ Qn. Recall that (ϕ(e(ij)), p(k)) =
((eij + eji), p(k)) = 0 for all (ij) ∈ E and all k ∈ V . Hence (gs, qa) = (ga, qs) = 0, and we have

(g, q) = (gs, qs) + (ga, qa).

Besides, we have

((eij + eji), (ekl + elk)) = 0 if (ij) 6= (kl), (eij + eji)
2 = 2,
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and (see Section 3)

(p(i), p(j)) = −2 if i 6= j, (p(i))2 = 2(n − 1).

Let vi, wi, i ∈ V , be weights of the vector g, q, respectively. Then we have

(g, q) = 2
∑

(ij)∈E

g(ij)q(ij) + 2(n− 1)
∑

i∈V

viwi − 2
∑

i6=j∈V

viwj .

For the last sum, we have
∑

i6=j∈V

viwj = (
∑

i∈V

vi)(
∑

i∈V

wi) −
∑

i∈V

viwi.

Since weights are defined up to an additive scalar, we can choose weights vi such that
∑

i∈V vi = 0. Then the

last sum in the product (g, q) is equal to −

∑

i∈V viwi. Finally we obtain that the sum of antisymmetric parts is

equal to 2n
∑

i∈V viwi. So, for the product of two vectors g, q ∈ Qn we have the following expression

(g, q) = (gs, qs) + (ga, qa) = 2(
∑

(ij)∈E

g(ij)q(ij) + n
∑

i∈V

viwi) if
∑

i∈V

vi = 0 or
∑

i∈V

wi = 0.

In what follows, we consider inequalities (g, q) ≥ 0. We can delete the multiple 2, and rewrite such inequality as

follows
∑

(ij)∈E

g(ij)q(ij) + n
∑

i∈V

viwi ≥ 0, (7)

where
∑

i∈V vi = 0.

Below we consider some cones in the space Qn. Since the space Qn is orthogonal to the space of circuits Qc
n,

each facet vector of a cone inQn is defined up to a vector of the space Qc
n. Of course each vector g′ ∈ R

EO

can

be decomposed as g′ = g + gc, where g ∈ Qn and gc
∈ Qc

n. Call the vector g ∈ Qn canonical representative

of the vector g′. Usually we will use canonical facet vectors. But sometimes not canonical representatives of a facet

vector are useful.

Cones C that will be considered are invariant under the operation q → q∗, defined in Section 2. In other words,

C∗ = C . This operation changes signs of weights:

qij = q(ij) + wi − wj → q(ij) + wj − wi = q(ij) − wi + wj .

Let (g, q) ≥ 0 be an inequality determining a facet F of a cone C ⊂ Qn. Since C = C∗, the cone C has with

the facetF also a facetF ∗. The facetF ∗ is determined by the inequality (g∗, q) ≥ 0.

7 Projections of cones Conn+1

Recall thatQn = R
EO

s ⊕Qw
n , R

EO

s = ϕ(RE) and dimQn = n(n+1)
2 − 1.

Let 0 6∈ V be an additional point. Then the set of unordered pairs (ij) for i, j ∈ V ∪ {0} is E ∪ E0, where

E0 = {(0i) : i ∈ V }. Obviously, R
E∪E0 = R

E
⊕ R

E0 and dimR
E∪E0 = n(n+1)

2 .

The space R
E∪E0 contains the following three important cones: the cone Metn+1 of semi-metrics, the cone

Hypn+1 of hyper-semi-metrics and the cone Cutn+1 of ℓ1-semi-metrics, all on the set V ∪ {0}. Denote by

Conn+1 any of these cones.

Recall that a semi-metric d = {d(ij)} is called metric if d(ij) 6= 0 for all (ij) ∈ E. For brevity sake, in what

follows, we call elements of the cones Conn+1 by metrics (or hypermetrics, ℓ1-metrics), assuming that they can

be semi-metrics.

Note that if d ∈ Conn+1 is a metric on the set V ∪ {0}, then a restriction dV of d on the set V is a point of the

cone Conn = Conn+1 ∩ R
E of metrics on the set V . In other words, we can suppose thatConn ⊂ Conn+1.
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The cones Metn+1, Hypn+1 and Cutn+1 contain the cut vectors δ(S) that span extreme rays for all S ⊂

V ∪ {0}. Denote by l0 the extreme ray spanned by the cut vector δ(V ) = δ({0}). Consider a projection

π(RE∪E0) of the space R
E∪E0 along the ray l0 onto a subspace of R

E∪E0 that is orthogonal to δ(V ). This

projection is such that π(RE) = R
E and π(RE∪E0) = R

E
⊕ π(RE0).

Note that δ(V ) ∈ R
E0 , since, by Section 5, δ(V ) =

∑

i∈V e(0i). For simplicity sake, define the following vector

e0 = δ({0}) = δ(V ) =
∑

i∈V

e(0i).

Recall that the vector e0 spans the extreme ray l0. Obviously, the space R
E is orthogonal to l0, and therefore

π(RE) = R
E .

Let x ∈ R
E∪E0 . We decompose this point as follows

x = xV + x0,

where xV =
∑

(ij)∈E x(ij)e(ij) ∈ R
E and x0 =

∑

i∈V x(0i)e(0i) ∈ R
E0 . The projection π works on basic

vectors as follows:

π(e(ij)) = e(ij) for (ij) ∈ E, and π(e(0i)) = e(0i) −
1

n
e0 for i ∈ V.

So, we have

π(x) = π(xV ) + π(x0) =
∑

(ij)∈E

x(ij)e(ij) +
∑

i∈V

x(0i)(e(0i) −
1

n
e0). (8)

It is useful to note that the projection π transforms the positive orthant of the space R
E0 onto the whole space

π(RE0).

Now we describe how faces of a cone in the space R
E∪E0 are projected along one of its extreme rays.

Let l be an extreme ray and F be a face of a cone in R
E∪E0 . Let π be the projection along l. Let dimF be

dimension of the face F . Then the following equality holds

dimπ(F ) = dimF − dim(F ∩ l). (9)

Let g ∈ R
E∪E0 be a facet vector of a facet G, and e be a vector spanning the line l. Then dim(G ∩ l) = 1 if

(g, e) = 0, and dim(G ∩ l) = 0 if (g, e) 6= 0.

Theorem 1. LetG be a face of the cone π(Conn+1). ThenG = π(F ), where F is a face ofConn+1 such that

there is a facet ofConn+1, containing both F and the extreme ray l0 spanned by e0 = δ(V ).

In particular, G is a facet of π(Conn+1) if and only ifG = π(F ), where F is a facet ofConn+1 containing the

extreme ray l0. Similarly, l′ is an extreme ray of π(Conn+1) if and only if l′ = π(l), where l is an extreme ray of

Conn+1 lying in a facet ofConn+1 that contains l0.

Proof. Let F be a set of all facets of the cone Conn+1. Then ∪F∈Fπ(F ) is a covering of the projection

π(Conn+1). By (9), in this covering, if l0 ⊆ F ∈ F , then π(F ) is a facet of π(Conn+1). If l0 6⊂ F , then there

is a one-to-one correspondence between points of F and π(F ). Hence dimπ(F ) = n, and π(F ) cannot be a

facet of π(Conn+1), since π(F ) fills an n-dimensional part of the cone π(Conn+1).

If F ′ is a face ofConn+1, then π(F ′) is a face of the above covering. If F ′ belongs only to facets F ∈ F such

that l0 6⊂ F , then π(F ′) lies inside of π(Conn+1). In this case, it is not a face of π(Conn+1). This implies that

π(F ′) is a face of π(Conn+1) if and only ifF ′
⊆ F , where F is a facet ofConn+1 such that l0 ⊂ F . Suppose

that dimension ofF ′ is n− 1, and l0 6⊂ F ′. Then dimπ(F ′) = n− 1. IfF ′ is contained in a facetF ofConn+1

such that l0 ⊂ F , then π(F ′) = π(F ). Hence π(F ′) is a facet of the cone π(Conn+1) that coincides with the

facet π(F ).



Mathematics of Distances and Applications 41

Now, the assertions of Theorem about facets and extreme rays of π(Conn+1) follow. �

Theorem 1 describes all faces of the cone π(Conn+1) if one knows all faces of the cone Conn+1.

Recall that we consider Conn = Conn+1 ∩ R
E as a sub-cone of Conn+1, and therefore π(Conn) ⊂

π(Conn+1). Since π(RE) = R
E , we have π(Conn) = Conn. Let (f, x) ≥ be a facet-defining inequality

of a facet F of the cone Conn+1. Since Conn+1 ⊂ R
E
⊕ R

E0 , we represent vectors f, x ∈ R
E∪E0 as

f = fV + f0, x = xV + x0, where fV , xV
∈ R

E and f0, x0
∈ R

E0 . Hence the above facet-defining

inequality can be rewritten as

(f, x) = (fV , xV ) + (f0, x0) ≥ 0.

It turns out that the cone Conn+1 has always a facet F whose facet vector f = fV + f0 is such that f0 = 0.

Since fV is orthogonal to R
E0 , the hyperplane (fV , x) = (fV , xV ) = 0 supporting the facet F contains the

whole space R
E0 . The equality (fV , xV ) = 0 defines a facetF V = F ∩ R

E of the cone Conn.

Definition. A facet F of the cone Conn+1 with a facet vector f = fV + f0 is called zero-lifting of a facetF V of

Conn if f0 = 0 and F ∩ R
E = F V .

Similarly, a facet π(F ) of the cone π(Conn+1) with a facet vector f is called zero-lifting of F V if f = fV and

π(F ) ∩ R
E = F V .

It is well-known, see, for example, [DL97], that each facet F V with facet vector fV of the cone Conn can be

zero-lifted up to a facetF ofConn+1 with the same facet vector fV .

Proposition 1. Let a facet F of Conn+1 be zero-lifting of a facet F V of Conn. Then π(F ) is a facet of

π(Conn+1) that is also zero-lifting ofF V .

Proof. Recall that the hyperplane {x ∈ R
E∪E0 : (fV , x) = 0} supporting the facet F contains the whole

space R
E0 . Hence the facet F contains the extreme ray l0 spanned by the vector e0 ∈ R

E0 . By Theorem 1,

π(F ) is a facet of π(Conn+1). The facet vector of π(F ) can be written as f = fV + f ′, where fV
∈ R

E

and f ′ ∈ π(RE0). Since the hyperplane supporting the facet π(F ) is given by the equality (fV , x) = 0 for

x ∈ π(RE∪E0), we have f ′ = 0. Besides, obviously, π(F ) ∩ R
E = F V . Hence π(F ) is zero-lifting ofF V . �

8 Cones ψ(Conn+1)

Note that basic vectors of the space R
E∪E0 are e(ij) for (ij) ∈ E and e(0i) for (0i) ∈ E0. Since π(e0) =

∑

i∈V π(e(0i)) = 0, we have dimπ(RE0) = n − 1 =dimQw
n . Recall that π(RE) = R

E . Hence there is a

one-to-one bijectionχ between the spaces π(RE∪E0) andQn.

We define this bijection χ : π(RE∪E0) → Qn as follows

χ(RE) = ϕ(RE) = R
EO

s , and χ(π(RE0)) = Qw
n ,

where

χ(e(ij)) = ϕ(e(ij)) = eij + eji, and χ(π(e(0i))) = χ(e(0i) −
1

n
e0) = p(i),

where p(i) is defined in (1).

Note that (eij + eji)
2 = 2 = 2e2(ij) and

(p(i), p(j)) = −2 = 2n((e(0i) −
1

n
e0), (e(0j) −

1

n
e0)), p

2(i) = 2(n− 1) = 2n(e(0i) −
1

n
e0)

2.

Roughly speaking, the map χ is a composition of homotheties that extends vectors e(ij) and e(0i) −
1
n
e0 up to

vectors eij + eji and p(i) by the multiples
√

2 and
√

2n, respectively.

Settingψ = χ ◦ π, we obtain a mapψ : R
E∪E0

→ Qn such that

ψ(e(ij)) = eij + eji for (ij) ∈ E, ψ(e(0i)) = p(i) for i ∈ V. (10)
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Now we show how a point x = xV + x0
∈ R

E∪E0 is transformed into a point q = ψ(x) = χ(π(x)) ∈ Qn.

We have π(x) = xV + π(x0), where, according to (8), xV =
∑

(ij)∈E x(ij)e(ij) ∈ π(RE) = R
E and

π(x0) =
∑

i∈V x(0i)(e(0i) −
1
n
e0) ∈ π(RE0). Obviously, χ(xV + π(x0)) = χ(xV ) + χ(π(x0)), and

ψ(xV ) = χ(xV ) =
∑

(ij)∈E

x(ij)(eij + eji) = ϕ(xV ) = qs and χ(π(x0)) =
∑

i∈V

x(0i)p(i) = qa.

Recall that qs =
∑

(ij)∈E q(ij)(eij + eji) and qa =
∑

i∈V wip(i). Hence

q(ij) = x(ij), (ij) ∈ E, andwi = x(0i), i ∈ V. (11)

Let f ∈ R
E∪E0 be a facet vector of a facet F of the cone Conn+1, f = fV + f0 =

∑

(ij)∈E f(ij)e(ij) +
∑

i∈V f(0i)e(0i).

Let (f, x) ≥ 0 be the inequality determining the facetF . The inequality (f, x) ≥ 0 takes on the set V ∪ {0} the

following form

(f, x) =
∑

(ij)∈E

f(ij)x(ij) +
∑

i∈V

f(0i)x(0i) ≥ 0.

Since x(ij) = q(ij), x(0i) = wi, we can rewrite this inequality as follows

(f, q) = (fV , qs) + (f0, qa) ≡
∑

(ij)∈E

f(ij)q(ij) +
∑

i∈V

f(0i)wi ≥ 0. (12)

Comparing the inequality (12) with (7), we see that a canonical form of the facet vector f is f = f s + fa, where

f s
ij = f(ij), for (ij) ∈ E, fa

ij = vi − vj where vi =
1

n
f(0i), i ∈ V. (13)

Theorem 2. Let F be a facet of the cone Conn+1. Then ψ(F ) is a facet of the cone ψ(Conn+1) if and only if

the facet F contains the extreme ray l0 spanned by the vector e0.

Let l 6= l0 be an extreme ray of Conn+1. Then ψ(l) is an extreme ray of ψ(Conn+1) if and only if the ray l

belongs to a facet containing the extreme ray l0.

Proof. By Theorem 1, the projection π transforms the facetF ofConn+1 into a facet of π(Conn+1) if and only if

l0 ⊂ F . By the same Theorem, the projection π(l) is an extreme ray of π(Conn+1) if and only if l belongs to a

facet containing the extreme ray l0.

Recall that the mapχ is a bijection between the spaces R
E∪E0 andQn. This implies the assertion of this Theorem

for the mapψ = χ ◦ π. �

By Theorem 2, the map ψ transforms the facet F in a facet of the cone ψ(Conn+1) only if F contains the

extreme ray l0, i.e. only if the equality (f, e0) = 0 holds. Hence the facet vector f should satisfy the equality
∑

i∈V f(0i) = 0.

The inequalities (12)give all facet-defining inequalities of the cone ψ(Conn+1) fromknown facet-defining inequalities

of the cone Conn+1.

So, we have the following algorithm for to find a list of facets of the cone ψ(Conn+1) from a known listL of facet

vectors of the cone Conn+1.

Step 1. Take a facet vector f = {f(ij) : (ij) ∈ E ∪E0} ∈ L of the cone Conn+1, and delete it fromL. Find a

point i ∈ V ∪ {0} such that
∑

k∈V ∪{0} f(ik) = 0. Go to Step 2.

Step 2. If such a point i does not exist, go to Step 1. Otherwise, make a permutation i→ 0, 0 → i, and go to step

3.

Step 3. By formula (13) form a facet vector of the cone ψ(Conn+1) from the facet vector f of the cone Conn+1.

IfL is not empty, go to Step 1. Otherwise, end.

A proof of Proposition 2 below will be given later for each of the conesMetn+1,Hypn+1 andCutn+1 separately.
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Proposition 2. Let F be a facet of Conn+1 with facet vector f = fV + f0 such that (f0, e0) = 0. Then

Conn+1 has also a facet F ∗ with facet vector f∗ = fV
− f0.

Proposition 2 implies the following important fact.

Proposition 3. For q = qs + qa
∈ ψ(Conn+1), the map q = qs + qa

→ q∗ = qs
− qa preserves the cone

ψ(Conn+1), i.e.

(ψ(Conn+1))
∗ = ψ(Conn+1).

Proof. Let F be a facet of Conn+1 with facet vector f . By Proposition 2, if ψ(F ) is a facet of ψ(Conn+1),
then F ∗ is a facet of Conn+1 with facet vector f∗. Let q ∈ ψ(Conn+1). Then q satisfies as the inequality

(f, q) = (fV , qs) + (f0, qa) ≥ 0 (see (12)) so the inequality (f∗, q) = (fV , qs) − (f0, qa) ≥ 0. But it is

easy to see that (f, q) = (f∗, q∗) and (f∗, q) = (f, q∗). This implies that q∗ ∈ ψ(Conn+1). �

Call a facet G of the cone ψ(Conn+1) symmetric if q ∈ F implies q∗ ∈ F . Call a facet of ψ(Conn+1)
asymmetric if it is not symmetric.

The assertion of the following Proposition 4 is implied by the equality (ψ(Conn+1))
∗ = ψ(Conn+1).

Proposition 4. Let g ∈ Qn be a facet vector of an asymmetric facetG of the cone ψ(Conn+1), and letG∗ =
{q∗ : q ∈ G}. ThenG∗ is a facet ofψ(Conn+1), and g∗ is its facet vector.

Recall that Conn+1 has facets, that are zero-lifting of facets of Conn. Call a facet G of the cone ψ(Conn+1)
zero-lifting of a facetF V ofConn ifG = ψ(F ), where F is a facet ofConn+1 which is zero-lifting ofF V .

Proposition 5. Let g ∈ Qn be a facet vector of a facetG of the cone ψ(Conn+1). Then the following assertions

are equivalent:

(i) g = g∗;

(ii) the facetG is symmetric;

(iii)G = ψ(F ), where F is a facet ofConn+1 which is zero-lifting of a facetF V ofConn.

(iv)G is a zero-lifting of a facet F V ofConn.

Proof. (i)⇒(ii). If g = g∗, then g = gs. Hence q ∈ G implies (g, q) = (gs, q) = (gs, qs) = (g, q∗) = 0. This

means that q∗ ∈ G, i.e. G is symmetric.

(ii)⇒(i). By Proposition 3, the map q → q∗ is an automorphism of ψ(Conn+1). This map transforms a facetG

with facet vector g into a facetG∗ with facet vector g∗. IfG is symmetric, thenG∗ = G, and therefore g∗ = g.

(iii)⇒(i). Let f = fV + f0 be a facet vector of a facet F of Conn+1 such that f0 = 0. Then the facet F is

zero-lifting of the facet F V = F ∩ R
E of the cone Conn. In this case, fV is also a facet vector of the facet

G = ψ(F ) ofψ(Conn+1). Obviously, (fV )∗ = fV .

(iii)⇒(iv). This implication is implied by definition of zero-lifting of a facet of the cone ψ(Conn+1).

(iv)⇒(i). The map χ induces a bijection between π(F ) and ψ(F ). Since π(F ) is zero-lifting of F V , the facet

vector of π(F ) belongs to R
E . This implies that the facet vector g ofψ(F ) belongs to R

EO

s , i.e. g∗ = g. �

The symmetry group ofConn+1 is the symmetric group Σn+1 of permutations of indices (see [DL97]). The group

Σn is a subgroup of the symmetry group of the cone ψ(Conn+1). The full symmetry group of ψ(Conn+1) is

Σn × Σ2, where Σ2 corresponds to the map q → q∗ for q ∈ ψ(Conn+1). By Proposition 4, the set of facets

of ψ(Conn+1) is partitioned into pairsG,G∗. But it turns out that there are pairs such thatG∗ = σ(G), where

σ ∈ Σn.

9 Projections of hypermetric facets
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The metric cone Metn+1, the hypermetric cone Hypn+1 and the cut cone Cutn+1 lying in the space R
E∪E0

have an important class of hypermetric facets, that contains the class of triangular facets.

Let bi, i ∈ V , be integers such that
∑

i∈V bi = µ, where µ = 0 or µ = 1. Usually these integers are denoted

as a sequence (b1, b2, ..., bn), where bi ≥ bi+1. If, for some i, we have bi = bi+1 = ... = bi+m−1, then the

sequence is shortened as (b1, ..., b
m
i , bi+m, ..., bn).

One relates to this sequence the following inequality of type b = (b1, ..., bn)

(f(b), x) = −

∑

i,j∈V

bibjx(ij) ≥ 0,

where x = {x(ij)} ∈ R
E and the vector f(b) ∈ R

E has coordinates f(b)(ij) = −bibj . This inequality is called

of negative or hypermetric type if in the sum
∑

i∈V bi = µ we have µ = 0 orµ = 1, respectively.

The set of hypermetric inequalities on the set V ∪ {0} determines a hypermetric cone Hypn+1. There are

infinitely many hypermetric inequalities for metrics on V ∪ {0}. But it is proved in [DL97], that only finite number of

these inequalities determines facets ofHypn+1. Since triangle inequalities are inequalities (f(b), x) ≥ 0 of type

b = (12, 0n−3,−1), the hypermetric cone Hypn+1 is contained in Metn+1, i.e. Hypn+1 ⊆ Metn+1 with

equality forn = 2.

The hypermetric inequality (f(b), x) ≥ 0 takes the following form on the set V ∪ {0}.

−

∑

i,j∈V ∪{0}

bibjx(ij) = −

∑

(ij)∈E

bibjx(ij) −

∑

i∈V

b0bix(0i) ≥ 0. (14)

If we decompose the vector f(b) as f(b) = fV (b) + f0(b), then fV (b)(ij) = −bibj , (ij) ∈ E, and

f0(b)(0i) = −b0bi, i ∈ V .

Let, for S ⊆ V , the equality
∑

i∈S bi = 0 hold. Denote by bS a sequence such that bSi = −bi if i ∈ S and

bSi = bi if i 6∈ S. The sequence bS is called switching of b by the set S.

The hypermetric cone Hypn+1 has the following property (see [DL97]). If an inequality (f(b), x) ≥ 0 defines a

facet and
∑

i∈S bi = 0 for some S ⊆ V ∪ {0}, then the inequality (f(bS), x) ≥ 0 defines a facet, too.

Proof of Proposition 2 forHypn+1.

Consider the inequality (14), where (f0(b), e0) = −

∑

i∈V b0bi = 0. Then
∑

i∈V bi = 0. Hence the cone

Hypn+1 has similar inequality for bV , where bVi = −bi for all i ∈ V . Hence if one of these inequalities defines a

facet so does another. Obviously, f0(bV ) = −f0(b). Hence these facets satisfy the assertion of Proposition 2. �

Theorem 3. Let (f(b), x) ≥ 0 define a hypermetric facet of a cone in the space R
E∪E0. Then the map ψ

transforms it either in a hypemetric facet if b0 = 0 or in a distortion of a facet of negative type if b0 = 1. Otherwise,

the projection is not a facet.

Proof. By Section 8, the map ψ transforms the hypermetric inequality (14) for x ∈ R
E∪E0 into the following

inequality

−

∑

(ij)∈E

bibjq(ij) − b0
∑

i∈V

biwi ≥ 0

for q =
∑

(ij)∈E q(ij)ϕ(e(ij)) +
∑

i∈V wiq(i) ∈ Qn.

Since f(b) determines a hypermetric inequality, we have b0 = 1 −

∑

i∈V bi = 1 − µ. So, the above inequality

takes the form
∑

(ij)∈E

bibjq(ij) ≤ (µ− 1)
∑

i∈V

biwi.

By Theorem 1, this facet is projected by the map ψ into a facet if and only if (f(b), e0) = 0, where e0 =
∑

i∈V e(0i). We have

(f(b), e0) =
∑

i∈V

f(b)(0i) = −

∑

i∈V

b0bi = −b0µ = (µ− 1)µ.
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This implies that the hypermetric facet-defining inequality (f(b), x) ≥ 0 is transformed into a facet-defining

inequality if and only if eitherµ = 0 and then b0 = 1 orµ = 1 and then b0 = 0. So, we have

ifµ = 1 and b0 = 0, then the above inequality is a usual hypermetric inequality in the space ψ(RE) = ϕ(RE) =

R
EO

s ;

ifµ = 0 and b0 = 1, then the above inequality is the following distortion of an inequality of negative type

−

∑

(ij)∈E

bibjq(ij) −
∑

i∈V

biwi ≥ 0, where
∑

i∈V

bi = 0. (15)

�

Comparing (7) with the inequality (15), we see that a canonical facet vector g(b) of a facet ofψ(Hypn+1) has the

formg(b) = gs(b) + ga(b), where gij(b) = g(ij)(b) + vi − vj , and

g(ij)(b) = −bibj , vi = −

1

n
bi for all i ∈ V.

Define a cone of weighted quasi-hyper-metrics WQHypn = ψ(Hypn+1) We can apply Proposition 3, in order

to obtain the following assertion.

Proposition 6. The map q → q∗ preserves the cone WQHypn, i.e.

(WQHypn)∗ = WQHypn.

In other words, if q ∈ WQHypn has weights wi, i ∈ V , then the cone WQHypn has a point q∗ with weights

−wi, i ∈ V . �

10 Generalizations of metrics

The metric cone Metn+1 is defined in the space R
E∪E0 . It has an extreme ray which is spanned by the vector

e0 =
∑

i∈V e(0i) ∈ R
E0 . Facets of Metn+1 are defined by the following set of triangle inequalities, where

d ∈Metn+1.

Triangle inequalities of the sub-cone Metn that define facets ofMetn+1 that are zero-lifting and contain e0:

d(ik) + d(kj) − d(ij) ≥ 0, for i, j, k ∈ V. (16)

Triangle inequalities defining facets that are not zero-lifting and contain the extreme ray l0 spanned by the vector e0:

d(ij) + d(j0) − d(i0) ≥ 0 and d(ij) + d(i0) − d(j0) ≥ 0, for i, j ∈ V. (17)

Triangle inequalities defining facets that do not contain the extreme ray l0 and do not define facets ofMetn.

d(i0) + d(j0) − d(ij) ≥ 0, for i, j ∈ V. (18)

One can say that the cone Metn ∈ R
E0 is lifted into the space R

E∪E0 using restrictions (17) and (18). Note that

the inequalities (17) and (18) imply the following inequalities of non-negativity

d(i0) ≥ 0, for i ∈ V. (19)

A cone defined by inequalities (16) and (19) is called by cone WMetn of weighted metrics (d,w), where d ∈

Metn andwi = d(0i) for i ∈ V are weights.
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If weightswi = d(0i) satisfy also the inequalities (17) additionally to the inequalities (19), then the weighted metrics

(d,w) form a cone dWMetn of down-weighted metrics. If metrics have weights that satisfy the inequalities (19)

and (18), then these metrics are called up-weighted metrics. Detail see in [DD10], [DDV11].

Above defined generalizations of metrics are functions on unordered pairs (ij) ∈ E ∪ E0. Generalizations of

metrics as functions on ordered pairs ij ∈ EO are called quasi-metrics.

The cone QMetn of quasi-metrics is defined in the space R
EO

by non-negativity inequalities qij ≥ 0 for all

ij ∈ EO, and by triangle inequalities qij + qjk − qik ≥ 0 for all ordered triples ijk for each q ∈ QMetn. Below

we consider inQMetn a sub-cone WQMetn of weighted quasi-metrics.

11 Cone of weighted quasi-metrics

We call a quasi-metric q weighted if it belongs to the subspace Qn ⊂ R
EO

. So, we define

WQMetn = QMetn ∩Qn.

A quasi-metric q is called weightable if there are weights wi ≥ 0 for all i ∈ V such that the following equalities

hold

qij + wi = qji + wj

for all i, j ∈ V , i 6= j. Since qij = qs
ij + qa

ij , we have qij + wi = qs
ij + qa

ij + wi = qs
ji + qa

ji + wj , i.e.

qa
ij −q

a
ji = 2qa

ij = wj −wi, what means that, up to multiple 1
2 and sign, the antisymmetric part of qij iswi−wj .

So, weightable quasi-metrics are weighted.

Note that weights of a weighted quasi-metric are defined up to an additive constant. So, if we take weights non-

positive, we obtain a weightable quasi-metric. Hence, sets of weightable and weighted quasi-metrics coincide.

By definition of the cone WQMetn and by symmetry of this cone, the triangle inequality qij + qjk − qik ≥ 0 and

non-negativity inequality qij ≥ 0 determine facets of the cone WQMetn. Facet vectors of these facets are

tijk = eij + ejk − eik and eij ,

respectively. It is not difficult to verify that tijk, eij 6∈ Qn. Hence these facet vectors are not canonical. Below, we

give canonical representatives of these facet vectors.

Let T (ijk) ⊆ KO
n be a triangle ofKO

n with direct arcs ij, jk, ki and opposite arcs ji, kj, ik. Hence

fT (ijk) = (eij + ejk + eki) − (eji + ekj + eik).

Proposition 7. Canonical representatives of facet vectors tijk and eij are

tijk + t∗ijk = tijk + tkji, and g(ij) = (eij + eji) +
1

n
(p(i) − p(j)),

respectively.

Proof. We have tijk − f
T (ijk) = eji + ekj − eki = tkji = t∗ijk. This implies that the facet vectors tijk and tkji

determine the same facet, and the vector tijk + tkji ∈ R
EO

s is a canonical representative of facet vectors of this

facet. We obtain the first assertion of Proposition.

Consider now the facet vector eij . It is more convenient to take the doubled vector 2eij . We show that the vector

g(ij) = 2eij −
1

n

∑

k∈V −{i,j}

fT (ijk).
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is a canonical representative of the facet vector 2eij . It is sufficient to show that g(ij) ∈ Qn, i.e. gkl(ij) =
gs
kl(ij) + wk − wl. In fact, we have gij(ij) = 2 −

n−2
n

= 1 + 2
n

, gji(ij) = n−2
n

= 1 −
2
n

, gik(ij) =
−gki(ij) = 1

n
, gjk(ij) = −gkj(ij) = −

1
n

, gkk′(ij) = 0. Hence we have

gs(ij) = eij + eji, wi = −wj =
1

n
, andwk = 0 for all k ∈ V − {i, j}.

These equalities imply the second assertion of Proposition. �

Let τijk be a facet vector of a facet of Metn determined by the inequality d(ij) + d(jk) − d(ik) ≥ 0. Then

tijk + tkji = ϕ(τijk), where the map ϕ : R
E

→ R
EO

s is defined in Section 2. Obviously, a triangular facet is

symmetric.

Recall that qij = q(ij) + wi − wj if q ∈ WQMetn. Let i, j, k ∈ V . It is not difficult to verify that the following

equalities hold:

qs
ij + qs

jk − qs
ik = qij + qjk − qij ≥ 0. (20)

Since qs
ij = qs

ji = q(ij), these inequalities show that the symmetric part qs of the vector q ∈ WQMetn is a

semi-metric. Hence ifwi = w for all i ∈ V , then the quasi-semi-metric q = qs itself is a semi-metric. This implies

that the cone WQMetn contains the semi-metric cone Metn. Moreover, Metn = WQMetn ∩ R
EO

s .

Now we show explicitly how the mapψ transforms the conesMetn+1 and dWMetn into the cone WQMetn.

Theorem 4. The following equalities hold

ψ(Metn+1) = ψ(dWMetn) = WQMetn andWQMet∗n = WQMetn.

Proof. All facets of the metric cone Metn+1 of metrics on the set V ∪ {0} are given by triangular inequalities

d(ij) + d(ik) − d(kj) ≥ 0. They are hypermetric inequalities (g(b), d) ≥ 0, where b has only three non-zero

values bj = bk = 1 and bi = −1 for some triple {ijk} ⊆ V ∪ {0}. By Theorem 3, the map ψ transforms

this facet into a hypermetric facet, i.e. into a triangular facets of the cone ψ(Metn+1) if and only if b0 = 0, i.e.

if 0 6∈ {ijk}. If 0 ∈ {ijk}, then, by the same theorem, the equality b0 = 1 should be satisfied. This implies

0 ∈ {jk}. In this case the facet defining inequality has the form (15), that in the case k = 0, is

q(ij) + wi − wj ≥ 0.

This inequality is the non-negativity inequality qij ≥ 0.

If bi = 1, bj = −1 and k = 0, the inequality d(ij) + dj0) − d(0i) ≥ 0 is transformed into inequality

q(ij) +wj − wi ≥ 0, i.e. q∗ij ≥ 0.

This inequality and inequalities (20) imply the last equality of this Theorem.

The inequalities (18) define facets F ofMetn+1 and dWMetn that do not contain the extreme ray l0. Hence, by

Theorem 3, ψ(F ) are not facets ofWQMetn. But, recall that the cone dWMetn contains all facet ofMetn+1

excluding facets defined by the inequalities (18). Instead of these facets, the cone dWMetn has facetsGi defined

by the non-negativity equalities (19) with facet vectors e(0i) for all i ∈ V . Obviously all these facets do not contain

the extreme ray l0. Hence, by Theorem 2, ψ(Gi) is not a facet ofψ(dWMetn). Hence we have also the equality

WQMetn = ψ(dWMetn). �

Remark. Facet vectors of facets ofMetn+1 that contain the extreme ray l0 spanned by the vector e0 are τijk =
τV
ijk, τij0 = τV + τ0 and τji0 = τV

− τ0, where τV = e(ij) and τ0 = e(j0) − e(i0). Hence Proposition 2

is true forMetn+1, and we can apply Proposition 3 in order to obtain the equality WQMet∗n = WQMetn of

Theorem 4.

12 The coneCutn+1

The cut vectors δ(S) ∈ R
E∪E0 for allS ⊆ V ∪{0} span all extreme rays of the cut cone Cutn+1 ⊂ R

E∪E0. In
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other words, Cutn+1 is the conic hull of all cut vectors. Since the cone Cutn+1 is full dimensional, its dimension

is dimension of the space R
E∪E0 that is

n(n+1)
2 .

Recall that δ(S) = δ(V ∪ {0} − S). Hence we can consider only S such that S ⊆ V , i.e. 0 6∈ S. Moreover, by

Section 5,

δ(S) =
∑

i∈S,j 6∈S

e(ij) =
∑

i∈S,j∈V −S

e(ij) +
∑

i∈S

e(0i) = δV (S) +
∑

i∈S

e(0i), (21)

where δV (S) is restriction of δ(S) on the space R
E = ψ(RE). Note that

δ(V ) = δ({0}) =
∑

i∈V

e(0i) = e0.

Consider a facetF ofCutn+1. Let f be facet vector ofF . Set

R(F ) = {S ⊆ V : (f, δ(S)) = 0}.

ForS ∈ R(F ), the vector δ(S) is called root of the facetF . By (21), forS ∈ R(F ), we have

(f, δ(S)) = (f, δV (S)) +
∑

i∈S

f(0i) = 0. (22)

We represent each facet vector ofCutn+1 as f = fV + f0, where fV
∈ R

E and f0
∈ R

E0 .

The set of facets of the cone Cutn+1 is partitioned onto equivalence classes by switchings (see [DL97]). For each

S, T ⊂ V ∪ {0}, the switching by the set T transforms the cut vector δ(S) into the vector δ(S∆T ), where ∆ is

symmetric difference, i.e. S∆T = S∪T −S∩T . It is proved in [DL97]that ifT ∈ R(F ), then {δ(S∆T ) : S ∈

R(F )} is the set of roots of the switched facetF δ(T ) ofCutn+1. Hence R(F δ(T )) = {S∆T : S ∈ R(F )}.

Let F be a facet ofCutn+1. Then F contains the vector e0 = δ(V ) if and only if V ∈ R(F ). Hence Lemma 1

below is an extended reformulation of Proposition 2.

Lemma 1. Let F be a facet ofCutn+1 such that V ∈ R(F ). Let f = fV + f0 be facet vector of F . Then the

vector f∗ = fV
− f0 is facet vector of switching F δ(V ) of the facet F , and V ∈ R(F δ(V )).

Proof. Since V ∈ R(F ), F δ(V ) is a facet ofCutn+1. Since S∆V = V − S = S, forS ⊆ V , we have

R(F δ(V )) = {S : S ∈ R(F )}.

Since ∅ ∈ R(F ), the set ∅∆V = V ∈ R(F δ(V )). Now, using (22), forS ∈ R(F δ(V )), we have

(f∗, δ(S)) = ((fV
− f0), δ(S)) = (fV , δV (S)) −

∑

i∈S

f(0i).

Note that δV (S) = δV (S), and, since V ∈ R(F ), δ(V ) = δ({0}), we have (f, δ(V )) =
∑

i∈V f(0i) = 0.

Hence
∑

i∈S f(0i) = −

∑

i∈S f(0i). It is easy to see, that (f∗, δ(S)) = (f, δ(S)). Since S ∈ R(F δ(V )) if

and only ifS ∈ R(F ), we see that f∗ is a facet vector ofF δ(V ). �

The set of facets of Cutn+1 is partitioned into orbits under action of the permutation group Σn+1. But some

permutation non-equivalent facets are equivalent under switchings. We say that two facets F,F ′ of Cutn+1

belong to the same type if there are σ ∈ Σn+1 and T ⊆ V such that σ(F ′) = F δ(T ).

13 ConeOCutn

Denote by OCutn ⊂ R
EO

the cone whose extreme rays are spanned by ocut vectors c(S) for all S ⊂ V ,

S 6= ∅, V . In other words, let

OCutn = {c ∈ Qn : c =
∑

S⊂V

αSc(S), αS ≥ 0}.
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Coordinates cij of a vector c ∈ OCutn are given in (6), where wi ≥ 0 for all i ∈ V . Hence OCutn ⊂ Qn.

Recall that

c(S) =
1

2
(δO(S) +

∑

i∈S

p(i)), (23)

where δO(S) = ϕ(δV (S)). Note that δO(S) = δO(S) and p(S) = −p(S), where S = V − S.

Denote by CutOn = ϕ(Cutn) the cone generated by δO(S) for all S ⊂ V . The vectors δO(S) for all S ⊂ V ,

S 6= ∅, V , are all extreme rays of the cone CutOn that we identify withCutn embedded into the space R
EO

.

Lemma 2. ForS ⊆ V , the following equality holds

ψ(δ(S)) = 2c(S).

Proof. According to Section 8, ψ(δV (S)) = ϕ(δV (S)) = δO(S). Besides, ψ(e(0i)) = p(i) for all i ∈ V .

Hence, using (21), we obtain

ψ(δ(S)) = ψ(δV (S)) +
∑

i∈S

ψ(e(0i)) = ϕ(δV (S)) +
∑

i∈S

p(i) = δO(S) + p(S).

Recall thatψ(δ(V )) = ψ(e0) = 0 and c(V ) = 0. Hence, according to (23), we obtain

ψ(δ(S)) = 2c(S), for all S ⊆ V.

Lemma is proved. �

Theorem 5. The following equalities hold

ψ(Cutn+1) = OCutn andOCut∗n = OCutn.

Proof. Recall that the conic hull of vectors δ(S) for all S ⊆ V is Cutn+1. The conic hull of vectors c(S) for all

S ⊂ V is the cone OCutn. Since ψ(δ(V )) = c(V ) = 0, the first result follows.

The equalityOCut∗n = OCutn is implied by the equalities c∗(S) = c(S) for all S ⊆ V .

By Lemma 1, the equalityOCut∗n = OCutn is a special case Conn+1 = Cutn+1 of Proposition 3. �

14 Facets ofOCutn

Lemma 3. LetF be a facet ofCutn+1. Thenψ(F ) is a facet ofOCutn if and only ifV ∈ R(F ).

Proof. By Theorem 2, ψ(F ) is a facet ofOCutn if and only if e0 = δ(V ) ⊂ F , i.e. if and only ifV ∈ R(F ). �

For a facetG ofOCutn with facet vector g, we set

R(G) = {S ⊆ V : (g, c(S)) = 0}

and call the vector c(S) forS ∈ R(G) by root of the facetG.

Note that δ(∅) = 0 and c(∅) = c(V ) = 0. Hence ∅ ∈ R(F ) and ∅ ∈ R(G) for all facet F ofCutn+1 and all

facetsG ofOCutn. The roots δ(∅) = 0 and c(∅) = c(V ) = 0 are called trivial roots.

Proposition 8. For a facetF ofCutn+1, letG = ψ(F ) be a facet ofOCutn. Then the following equality holds

R(G) = R(F ).



50 Mathematics of Distances and Applications

Remark. We give two proofs of this equality. Both are useful.

First proof. According to Section 8, the map ψ transforms an inequality (f, x) ≥ 0 defining a facet of Cutn+1

into the inequality (12) defining the facet G = ψ(F ) of OCutn. Recall the the inequality (12) relates to the

representation of vectors q ∈ Qn in the basis {ϕ(eij), p(i)}, i.e. q =
∑

(ij)∈E q(ij)ϕ(e(ij)) +
∑

i∈V wip(i).

Let q = c(S) forS ∈ R(G). Then, according to (23), we have q(ij) = 1
2δ

V
(ij)(S),wi = 1

2 for i ∈ S andwi = 0

for i ∈ S. Hence, omitting the multiple 1
2 , the inequality in (12) gives the following equality

∑

(ij)∈E

f(ij)δ
V
(ij)(S) +

∑

i∈S

f(0i) = 0

which coincides with (22). This implies the assertion of this Proposition.

Second proof. By Theorem 2, ψ(l) is an extreme ray of ψ(F ) if and only if l is an extreme ray of F and

l 6= l0. Since l is spanned by δ(S) for some S ∈ R(F ) and ψ(l) is spanned by ψ(δ(S)) = c(S), we have

R(G) = {S ⊂ V : S ∈ R(F )}. Since c(V ) = 0, we can suppose thatV ∈ R(G), and thenR(G) = R(F ).
�

Remark. Note that δ(V ) = δ({0}) = e0 6= 0 is a non-trivial root of F , i.e. V ∈ R(F ). But c(V ) =
ψ(δ(V )) = 0 is a trivial root ofR(G).

Recall that, for a subset T ⊆ V , we set T = V − T . Note that T = V∆T and T 6= V ∪ {0} − T .

Lemma 4. Let F be a facet ofCutn+1, and T ∈ R(F ). Then the image ψ(F δ(T )) of the switched facet F δ(T )

is a facet ofOCutn if and only ifT ∈ R(F ).

Proof. By Lemma 3, ψ(F δ(T )) is a facet ofOCutn if and only ifV ∈ R(F δ(T )), i.e. if and only ifV∆T = T ∈

R(F ). �

For a facet G of OCutn, define Gδ(T ) as the conic hull of c(S∆T ) for all S ∈ R(G). Since each facet G of

OCutn isψ(F ) for some facetF ofCutn+1, Lemma 4 and Proposition 8 imply the following assertion.

Theorem 6. LetG be a facet ofOCutn. ThenGδ(T ) is a facet ofOCutn if and only if T, T ∈ R(G), and then

R(Gδ(T )) = {S∆T : S ∈ R(G)}. �

Theorem 6 asserts that the set of facets of the cone OCutn is partitioned onto equivalence classes by switchings

G→ Gδ(T ), where T, T ∈ R(G).

The case T = V in Theorem 6 plays a special role. Recall that V ∈ R(F ) if F is a facet ofCutn+1 such that

ψ(F ) is a facet ofOCutn. Hence Lemma 1 and Proposition 3 imply the following fact.

Proposition 9. Let F be a facet of Cutn+1 such that ψ(F ) is a facet ofOCutn. Let g = gs + ga be a facet

vector of the facet ψ(F ). Then the vector g∗ = gs
− ga is a facet vector of the facet ψ(F δ(V )) = (ψ(F ))∗ =

(ψ(F ))δ(V ) such thatR((ψ(F ))∗) = {S : S ∈ R(F )}. �

Recall that roughly speakingOCutn is projection ofCutn+1 along the vector δ(V ) = δ({0}).

Let σ ∈ Σn be a permutation of the set V . For a vector q ∈ R
EO

, we have σ(q)ij = qσ(i)σ(j). Obviously if g is

a facet vector of a facetG ofOCutn, then σ(g) is the facet vector of the facet σ(G) = {σ(q) : q ∈ G}.

Note that, by Proposition 9, the switching by V is equivalent to the operation q → q∗. Hence the symmetry group

ofOCutn contains the group Σn × Σ2, where Σ2 relates to the map q → q∗ for q ∈ OCutn.

Theorem 7. The group Σn × Σ2 is the symmetry group of the cone OCutn.

Proof. Let γ be a symmetry ofOCutn. Then γ is a symmetry of the set F(e0) of facets F of the cone Cutn+1

containing the vector e0. The symmetry group Γ(e0) of the set F(e0) is a subgroup of the symmetry group of the

cut-polytope Cut�n+1. In fact, Γ(e0) is stabilizer of the edge e0 of the polytope Cut�n+1. But it is well-known that
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Γ(e0) consists of the switching by V and permutations σ ∈ Σn+1 leaving the edge e0 non-changed. The map ψ

transforms these symmetries ofF(e0) into symmetries σ ∈ Σn and q → q∗ of the cone OCutn. �

The set of all facets of OCutn is partitioned onto orbits of facets that are equivalent by the symmetry group

Σn × Σ2. It turns out that, for some facetsG, subsets S ∈ R(G) and permutations σ ∈ Σn, we have Gδ(S) =
σ(G).

By Proposition 5, if a facet ofCutn+1 is zero-lifting of a facet F V ofCutn, then the facetG = ψ(F ) ofOCutn
is symmetric andG = G∗ = Gδ(V ) is zero-lifting ofF V .

So, there are two important classes of orbits of facets ofOCutn. Namely, the orbits of symmetric facets, that are

zero-lifting of facets ofCutn, and orbits of asymmetric facets that are ψ-images of facets ofCutn+1 and are not

zero-lifting.

15 Cases 3 ≤ n ≤ 6

It is worth to compare results of this Section with Table 2 of [DDV11].

Most of described below facets are hypermetric or negative type. We give here the corresponding vectors b in

accordance with Section 9.

n=3. Note thatCut4 = Hyp4 = Met4. Hence

OCut3 = WQHyp3 = WQMet3.

All these cones have two orbits of facets: one orbit of non-negativity facets with b = (1, 0,−1) and another orbit

of triangular facets with b = (12,−1).

n=4. We have Cut5 = Hyp5 ⊂Met5. Hence

OCut4 = WQHyp4 ⊂WQMet4.

The conesHyp5 = Cut5 have two orbits of facets: triangular and pentagonal facets. Recall that a triangular facet

with facet vector τijk is zero-lifting if 0 6∈ {ijk}. Hence the cones WQHyp4 = OCut4 have three orbits of

facets: of non-negativity with b = (1, 02,−1), triangular with b = (12, 0,−1) and weighted version of negative

type with b = (12,−12).

n=5. We have againCut6 = Hyp6 ⊂Met6. Hence

OCut5 = WQHyp5 ⊂WQMet5.

The cones Hyp6 = Cut6 have four orbits of facets, all are hypermetric: triangular with b = (12, 03,−1),
pentagonal with b = (13, 0,−12) and two more types, one with b = (2, 12,−13) and its switching with b =
(14,−1,−2). These four types provide 6 orbits of facets of the cones WQHyp5 = OCut5: non-negativity

with b = (1, 03,−1), triangular with b = (12, 02,−1), of negative type with b = (12, 0,−12), pentagonal with

b = (13,−12), and two of negative type with b = (2, 1,−13) and b = (13,−1,−2).

The last two types belong to the same orbit of the full symmetry group Σ5 × Σ2. Hence the cone OCut5 has 5

orbits of facets under action of its symmetry group.

n=6. Now, we have Cut7 ⊂ Hyp7 ⊂Met7. Hence

OCut6 ⊂WQHyp6 ⊂WQMet6.

The cone Cut7 has 36 orbits of facets under action of the permutation group Σ7. Switchings contract these orbits

into 11 types Fk , 1 ≤ k ≤ 11, (see [DL97], Sect. 30.6). J.Vidali compute orbits of facets ofOCut6 under action

of the group Σ6. Using these computations, we give in Table below numbers of orbits of facets of cones Cut7 and

OCut6 (cf. Figure 30.6.1 of [DL97]).
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The first row of Table gives types of facets ofCut7. In the second row of Table, for each type Fk, numbers of orbits

of facets ofCut7 of type Fk under action of the group Σ7. The third row of Table, for each type Fk, gives numbers

of orbits of facets ofOCut6 that are obtained from facets of type Fk under action of the group Σ6. The fourth row

gives, for each type Fk, numbers of orbits of facets ofOCut6 that are obtained fromfacets of type Fk under action

of the group Σ6 × Σ2.

The last column of Table gives total numbers of orbits of facets of the conesCut7 andOCut6.

Table.
types F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 |Ω|

Σ7 1 1 2 1 3 2 4 7 5 3 7 36

Σ6 2 2 4 1 3 2 7 13 6 6 15 61

Σ6 × Σ2 2 2 3 1 2 1 4 7 3 4 8 37

The first three types F1, F2, F3 relate to 4 orbits of hypermetric facets F (b) of Cut7 that are zero-lifting, where

b = (12, 04,−1), b = (13, 02,−12) and b = (2, 12, 0,−13), b = (14, 0,−1,−2). Each of these four orbits

of facets ofCut7 under action of Σ7 gives two orbits of facets ofOCut6 under action of the group Σ6.

The second three types F4, F5, F6 relate to 6 orbits of hypermetric facets F (b) of Cut7 that are not zero-lifting.

Each of these 6 orbits gives one orbit of facets ofOCut6 under action of the group Σ6.

The third three types F7, F8, F9 relate to 16 orbits of facets of clique-web typesCW 7
1 (b). These 16 orbits give 26

orbits of facets ofOCut6 under action of Σ6.

The last two types F10 = Par7 andGr7 are special (see [DL97]). They relate to 10 orbits ofCut7, that give 21

orbits of facets ofOCut6 under action of Σ6.

The subgroup Σ2 of the full symmetry group Σ6 ×Σ2 contracts some pairs of orbits of the group Σ6 into one orbit

of the full group. The result is given in the forth row of Table.

Note that the symmetry groups ofCut7 andOCut6 have 36 and 37 orbits of facets, respectively.
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Abstract: The main purpose of this paper is to popularize Danzer’s power complex construction and establish some

new results about covering maps between two power complexes. Power complexes are cube-like combinatorial

structures that share many structural properties with higher-dimensional cubes and cubical tessellations on manifolds.

Power complexes that are also abstract polytopes have repeatedly appeared somewhat unexpectedly in various

contexts, although often under a different name. However, the non-polytope case is largely unexplored.
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1 Introduction

Combinatorial structures built from cubes or cube-like elements have attracted a lot of attention in geometry,

topology, and combinatorics. In this paper we study a particularly interesting class of cube-like structures known as

power complexes. These power complexes were first discovered by Danzer in the early 1980’s (see [7; 15; 22]).

Power complexes that are also abstract polytopes have repeatedly appeared somewhat unexpectedly in various

contexts, although often under a different name; for example, see Coxeter [4], Effenberger-Kühnel [9], Kühnel [13],

McMullen-Schulte [15, Ch. 8] and Ringel [20]. However, most power complexes are not abstract polytopes, and

have not been very well researched.

The main purpose of this paper is to popularize Danzer’s power complex construction and establish some new

results about covering maps between power complexes. Our discussion is in terms of incidence complexes, a

class of ranked incidence structures closely related to polytopes, ranked partially ordered sets, and incidence

geometries (Danzer-Schulte [8; 21]). In Section 2 we begin by reviewing key facts about incidence complexes

and their automorphism groups. Then in Section 3 we define power complexes and establish some of their basic

properties. A number of applications of power complexes are summarized in Section 4. Finally, Section 5 describes

fairly general circumstances that guarantee the existence of covering maps between two power complexes.

2 Incidence complexes

An incidence complex has some of the key combinatorial properties of the face lattice of a convex polytope; in

general, however, an incidence complex need not be a lattice, need not be finite, need not be an abstract polytope,

and need not admit any familiar geometric realization. The notion of an incidence complex is originally due to

Danzer [7; 8] and was inspired by Grünbaum [11]. Incidence complexes can also be viewed as incidence geometries

or diagram geometries with a linear diagram (see Buekenhout-Pasini [3], Leemans [14], Tits [24]), although here we

study them from the somewhat different discrete geometric and combinatorial perspective of polytopes and ranked

partially ordered sets.

Following Danzer-Schulte [8] (and [21]), an incidence complexK of rank k, or briefly a k-complex , is defined by the

properties (I1),. . . ,(I4) below. The elements of K are called faces of K.

(I1)K is a partially ordered set with a unique least face and a unique greatest face.

(I2) Every totally ordered subset ofK is contained in a (maximal) totally ordered subset with exactly k+2 elements,
a flag, of K.
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These two conditions make K into a ranked partially ordered set, with a strictly monotone rank function with range

{−1, 0, . . . , k}. A face of rank i is called an i-face; often Fi will indicate an i-face. The least face and greatest

face are the improper faces of K and have ranks −1 and k, respectively; all other faces of K are proper faces of
K. A face of rank 0, 1 or n − 1 is also called a vertex , an edge or a facet, respectively. We let F(K) denote the
set of flags of K.

(I3) K is strongly flag-connected , meaning that if Φ and Ψ are two flags of K, then there is a finite sequence of
flags Φ = Φ0,Φ1, . . . ,Φm−1,Φm = Ψ, all containing Φ ∩Ψ, such that successive flags are adjacent (differ in
just one face).

Call two flags i-adjacent , for i = 0, . . . , k−1, if they are adjacent and differ exactly in their i-faces. With this notion
of adjacency, F(K) becomes the flag graph for K and acquires a natural edge-labelling where edges labelled i
represent pairs of i-adjacent flags.

Our last defining condition is a homogeneity requirement for the numbers of i-adjacent flags for each i.

(I4) There exist cardinal numbers c0, . . . , ck−1 > 2, for our purposes taken to be finite, such that, whenever F is
an (i− 1)-face and G a (i+ 1)-face with F < G, the number of i-facesH with F < H < G equals ci.

If F is an i-face and G a j-face with F < G, we call

G/F := {H ∈ K |F 6 H 6 G}

a section of K. It follows that G/F is an incidence complex in its own right, of rank j − i − 1 and with cardinal
numbers ci+1, . . . , cj−1. It is useful to identify a j-face G of K with the j-complex G/F−1. Likewise, if F is an

i-face, the (k − i− 1)-complex Fk/F is the co-face of F inK; if F is a vertex (and i = 0), this is also called the
vertex-figure at F .

An abstract k-polytope, or simply k-polytope, is an incidence complex of rank k such that ci = 2 for i = 0, . . . , k−
1 (see McMullen-Schulte [15]). Thus a polytope is a complex in which every flag has precisely one i-adjacent flag
for each i. For polytopes, the last condition (I4) is also known as the diamond condition.

The automorphism group Γ(K) of an incidence complexK consists of all order-preserving bijections ofK. We say
that K is regular if Γ(K) is transitive on the flags of K. Note that a regular complex need not have a simply flag-
transitive automorphism group (in fact, Γ(K) may not even have a simply flag-transitive subgroup), so in general
Γ(K) has nontrivial flag-stabilizer subgroups. However, the group of a regular polytope is always simply flag-
transitive.

It was shown in [21] (for a proof for polytopes see also [15, Ch. 2]) that the group Γ := Γ(K) of a regular k-complex
K has a well-behaved system of generating subgroups. Let Φ := {F−1, F0, . . . , Fk} be a fixed, or base flag, of

K, where Fi designates the i-face in Φ for each i. For each Ω ⊆ Φ let ΓΩ denote the stabilizer of Ω in Γ. Then
ΓΦ is the stabilizer of the base flag Φ, and Γ∅ = Γ. Moreover, for i = −1, 0, . . . , k set

Ri := ΓΦ\{Fi} = 〈ϕ ∈ Γ | Fjϕ = Fj for all j 6= i〉.

Then each Ri contains ΓΦ, and coincides with ΓΦ when i = −1 or k; in particular,

ci := |Ri : ΓΦ| (i = 0, . . . , k − 1). (1)

Moreover, these subgroups have the following commutation property:

Ri · Rj = Rj · Ri (−1 6 i < j − 1 6 k − 1). (2)

Note here that Ri and Rj commute as subgroups, not generally at the level of elements.

The groups R−1, R0, . . . , Rk form a distinguished system of generating subgroups of Γ, that is,

Γ = 〈R−1, R0, . . . , Rk〉. (3)
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Here the subgroups R−1 and Rk are redundant when k > 0. More generally, if Ω is a proper subset of Φ, then

ΓΩ = 〈Ri | −1 6 i 6 k, Fi 6∈ Ω〉.

For each nonempty subset I of {−1, 0, . . . , k} define ΓI := 〈Ri | i ∈ I〉; and for I = ∅ define ΓI := R−1 =
ΓΦ. (As a warning, the notation Γ∅ can have two meanings, either as ΓΩ withΩ = ∅ or ΓI with I = ∅; the context
should make it clear which of the two is being used.) Thus

ΓI = Γ{Fj |j 6∈I} (I ⊆ {−1, 0, . . . , k});

or equivalently,

ΓΩ = Γ{i|Fi 6∈Ω} (Ω ⊆ Φ).

The automorphism group Γ ofK and its distinguished generating system satisfy the following important intersection
property :

ΓI ∩ ΓJ = ΓI∩J (I, J ⊆ {−1, 0, . . . , k}). (4)

The combinatorial structure of K can be completely described in terms of the distinguished generating system of

Γ(K). In fact, bearing in mind that Γ acts transitively on the faces of each rank, the partial order is given by

Fiϕ 6 Fjψ ←→ ψ−1ϕ ∈ Γ{i+1,...,k}Γ{−1,0,...,j−1} (−1 6 i 6 j 6 k; ϕ,ψ ∈ Γ),

or equivalently,

Fiϕ 6 Fjψ ←→ Γ{−1,0,...,k}\{i}ϕ ∩ Γ{−1,0,...,k}\{j}ψ 6= ∅ (−1 6 i 6 j 6 k; ϕ,ψ ∈ Γ). (5)

Conversely, if Γ is any group with a system of subgroups R−1, R0, . . . , Rk such that (2), (3) and (4) hold, and

R−1 = Rk, then Γ is a flag-transitive subgroup of the full automorphism group of a regular incidence complex K
of rank k (see again [21], or [15, Ch. 2] for polytopes). The i-faces of K are the right cosets of Γ{−1,0,...,k}\{i} for

each i, and the partial order is given by (5). The homogeneity parameters c0, . . . , ck−1 are determined by (1).

For abstract regular polytopes, these structure results lie at the heart of much research activity in this area (see

[15]). In this case the flag stabilizer ΓΦ is the trivial group, and each nontrivial subgroup Ri (with i 6= −1, k) has
order 2 and is generated by an involutory automorphism ρi that maps Φ to its unique i-adjacent flag. The group
of an abstract regular polytope is then a string C-groups, meaning that the distinguished involutory generators

ρ0, . . . , ρk−1 satisfy both the commutativity relations typical of a Coxeter group with string diagram, and the

intersection property (4).

3 Power complexes

In this section we briefly review the construction of the power complexes nK, an interesting family of incidence

complexes with n vertices on each edge, and with each vertex-figure isomorphic toK (see [22], and [15, Section 8D]

for n = 2). These power complexes were first discovered by Danzer in the early 1980’s; however, the construction
announced in [7] was never published by Danzer, and first appeared in print in [22]. The power complexes nK, with

n = 2 and K a polytope, are abstract polytopes and have attracted a lot of attention (see [15, Ch. 8]). In a sense,
these power complexes are generalized cubes; and in certain cases (when K has simplex facets) they can also be

viewed as cubical complexes (see [2; 18]). We briefly review some applications in Section 4.

To begin with, we say that an (incidence) complex K is vertex-describable if its faces are uniquely determined by

their vertex-sets. A complex is vertex-describable if and only if its underlying face poset can be represented by a

family of subsets of the vertex-set ordered by inclusion. If a complex K is a lattice, then K is vertex-describable.

For example, the torus map K = {4, 4}(s,0) is vertex-describable if and only if s > 3. The faces of a vertex-
describable complex are again vertex-describable.
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Now let n > 2 and define N := {1, . . . , n}. Suppose K is a finite vertex-describable (k − 1)-complex with v
vertices and vertex-set V := {1, . . . , v}. Then P := nK will be a finite k-complex with vertex-set

Nv =

v
⊗

i=1

N, (6)

the cartesian product of v copies of N ; its nv vertices are written as row vectors ε := (ε1, . . . , εv). Now recall
that, since K is vertex-describable, we may view the faces of K as subsets of V . With this in mind we take as

j-faces of P , for any (j − 1)-face F of K and any vector ε = (ε1, . . . , εv) in N
v , the subsets F (ε) of Nv

defined by

F (ε) := {(η1, . . . , ηv) ∈ N
v
| ηi = εi if i 6∈ F} (7)

or, abusing notation, the cartesian product

F (ε) := (
⊗

i∈F

N)× (
⊗

i6∈F

{εi}).

In other words, the j-face F (ε) of P consists of the vectors inNv that coincide with ε precisely in the components

determined by the vertices of K not lying in the (j − 1)-face F of K. It follows that, if F , F ′ are faces of K and

ε = (ε1, . . . , εv), ε
′ = (ε1, . . . , εv) are vectors in N

v , then F (ε) ⊆ F ′(ε′) if and only if F 6 F ′ in K and

εi = ε′i for each i not contained in F
′.

It can be shown that the set of all faces F (ε), where F is a face of K and ε a vector in Nv , partially ordered by

inclusion (and supplemented by the empty set as least face), is an incidence complex of rank k. This is the desired

complex P = nK.

The following theorem summarizes a number of key properties of power complexes.

Theorem 3.1. Let K be a finite incidence complex of rank k − 1 with v vertices, and let K be vertex-describable.
Then the power complex P := nK has the following properties.

(a) P is an incidence complex of rank k with vertex-set Nv and each vertex-figure isomorphic toK.

(b) If F is a (j − 1)-face of K and F := F/F−1 is the (j − 1)-complex determined by F , then the j-faces of P
of the form F (ε) with ε inNv are isomorphic to the power complex nF of rank j.

(c) Γ(P) contains a subgroup Λ isomorphic to Sn ≀ Γ(K) = Sv
n ⋊ Γ(K), the wreath product of Sn and Γ(K)

defined by the natural action of Γ(K) on the vertex-set of K. Moreover, Λ acts vertex-transitively on P and has
vertex stabilizers isomorphic to Sn−1 ≀ Γ(K).

(d) If K is regular, then so is P . In this case the subgroup Λ of Γ(P) of part (c) acts flag-transitively on P ; in
particular, if n = 2 and K is polytope, then Λ = Γ(P).

Proof. For power complexes 2K regular polytopesK these facts are well-known (see [15, Section 8D] and [19; 22]).
Here we briefly outline the proof for general power complexes, as no general proof has been published anywhere.

So, as before, let K be a finite vertex-describable complex of rank k − 1.

Begin by making the following important observation regarding inclusion of faces in P : if F (ε) ⊆ F ′(ε′), with
F,F ′, ε, ε′ as above, then F ′(ε′) = F ′(ε). Thus, in designating the larger face we may take ε′ = ε. It follows

that every face containing a given vertex εmust necessarily be of the formF (ε) withF ∈ K, and that any two such
faces F (ε) and F ′(ε) are incident in P if and only if F and F ′ are incident in K. As an immediate consequence,

P must have vertex-figures isomorphic to K. It is straightforward to prove that P actually is an incidence complex

of rank k.

For part (b), let F be a (j − 1)-face of K with vF vertices and vertex-set VF , and let ε be a vector in N
v . Now,

if F ′(ε′) is any face of P with F ′(ε′) ⊆ F (ε) in P , then necessarily F ′
6 F in K and ε′i = εi for each

i 6∈ F ; in other words, the vectors ε and ε′ agree on each component representing a vertex i of K that lies

outside F . It follows that the components of vectors in Nv corresponding to vertices i of K outside of F do not

matter in determining the structure of the j-face F (ε) of P . Hence, if we omit these components and simply write
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ηF := (ηi)i∈F for the “trace" of a vector η on F , then ηF lies in the cartesian product N
vF :=

⊗

i∈VF
N , and

the faces F (ε) and F ′(ε′) of P can safely be designated by F (εF ) and F ′(ε′F ), respectively. Then, in particular,
F (εF ) = NvF is the unique greatest face of nF , and F ′(ε′F ) becomes a face of nF . Moreover, the partial order
on the j-face F (ε) of P is just the standard inclusion of faces in nF . Thus, as a complex, F (ε) is isomorphic to
nF . This proves part (b).

The automorphism group Γ(P) always contains a subgroup Σ isomorphic to Sv
n, the direct product of v copies of

the symmetric group Sn. In fact, for each i = 1, . . . , v, the symmetric group Sn can be viewed as acting on the i
th

component of the vectors inNv (while leaving all other components unchanged), and this action on the vertex-set

Nv induces an action as a group of automorphisms on P . In particular, Σ acts vertex-transitively on P , so the
same holds for Γ(P) as well.

Moreover, Γ(K) is naturally embedded in Γ(P) as a subgroup of the vertex-stabilizer of ε = (0, . . . , 0) in Γ(P).
In fact, each automorphism ϕ ofK determines an automorphism ϕ̂ of P as follows. Define ϕ̂ on the set of vertices

η = (η1, . . . , ηv) by
1

(η)ϕ̂ := (η(1)ϕ, . . . , η(v)ϕ) =: ηϕ,

and more generally on the set of faces F (η) of P by

F (η)ϕ̂ := (Fϕ)(ηϕ).

Then it is straightforward to verify that ϕ̂ is indeed an automorphism of P , and that ϕ̂ fixes ε = (0, . . . , 0). It
follows that the two subgroups Σ and Γ(K) together generate a subgroup Λ of Γ(P) isomorphic to Sn ≀ Γ(K) ∼=
Sv

n ⋊ Γ(K). Clearly, Λ acts vertex-transitively and has vertex-stabilizers isomorphic to Sn−1 ≀Γ(K). Now part (c)
follows.

Finally, suppose K is regular. Then Λ acts flag-transitively on P , and so does Γ(P). Thus P is regular. If n = 2
and K is a regular polytope, then P is also a regular polytope and Γ(P) = Λ. This proves part (d).

We do not know of an example of a power complex nK, with K regular, where the full automorphism group of nK

is strictly larger than its subgroup Sn ≀ Γ(K).

Figure 1: Combinatorics of the complex square γ3
2

In Section 4, we discuss a number of interesting applications of the nK construction. Here we just describe the

most basic example obtained when K = αv−1 (see [5]), the (v − 1)-simplex (with v vertices). In this case nK is
combinatorially isomorphic to the complex v-cube

γn
v = n{4}2{3}2 · · · 2{3}2

in v-dimensional unitary complex v-space Cv , that is, nαv−1 = γn
v . The unitary complex symmetry group of γ

n
v

is isomorphic to Cn ≀ Sv (see Coxeter [6] and Shephard [23]). However, the combinatorial automorphism group of

1Throughout we write maps on the right.
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γn
v is much larger when n > 2, and includes a subgroup isomorphic to Sn ≀ Sv . The case n = 2 always gives the
ordinary real v-cube γv := γ2

v = {4, 3v−2
} (see [5]).

The combinatorics of the complex square γ3
2 = 3{4}2 in C

2 (obtained when v = 2 and n = 3) is illustrated in
Figure 1; there are 9 vertices (denoted i j with i, j = 1, 2, 3), each contained in 2 edges (drawn as 3-cycles), as
well as 6 edges, each containing 3 vertices.

Now let K be an arbitrary incidence complex of rank k, and let 0 6 j 6 k − 1. The j-skeleton skelj(K) of K is
the incidence complex, of rank j + 1, whose faces of rank less than or equal to j are those of K, with the partial
order inherited from K; as greatest face, of rank j + 1, we may simply take the greatest face of K.

The following lemma says that taking skeletons and taking power complexes are commuting operations.

Lemma 3.2. Let K be a finite vertex-describable k-complex, let 0 6 j 6 k − 1, and let n > 2. Then

skelj+1(n
K) = nskelj(K).

Proof. The proof is straightforward. First note that a skeleton of a vertex-describable complex is again vertex-

describable, with the same vertex set as the underlying complex. The proper faces of skelj+1(n
K) are the faces

F (ε) of nK where F has rank at most j and ε lies in Nv . On the other hand, the proper faces of nskelj(K) are

of the form F (ε) where F is a face of skelj(K) of rank at most j and ε lies inNv . But the faces of K of rank at

most j are precisely the faces of skelj(K) of rank at most j. Now the lemma follows.

We conclude this section with a nice application of the lemma. Suppose n > 2 and K is the (unique) complex of
rank 1 with v vertices. Now identifying K with skel0(αv−1) we then have

nK = nskel0(αv−1) = skel1(n
αv−1) = skel1(γ

n
v ). (8)

Thus the 2-complex nK is isomorphic to the 1-skeleton of the unitary complex v-cube γn
v described above.

4 Applications

In this section we briefly review a number of interesting applications of the power complex construction that have

appeared in the literature.

First suppose n = 2 and K = {q} is a q-gon with 3 6 q < ∞. It was shown in [15, Ch. 8D] that 2{q} is
isomorphic to Coxeter’s regular map {4, q | 4⌊q/2⌋−1

} in the 2-skeleton of the ordinary q-cube γq = {4, 3q−2
},

whose edge-graph coincides with that of the cube (see [4, p. 57]). In fact, the method of construction directly

produces a realization of 2{q} in the 2-skeleton of γq , which is identical with the realization outlined in [4]. This

map and its realizations were rediscovered several times in the literature. For example, Ringel [20] and Beineke-

Harary [1] established that the genus 2q−3(q − 4) + 1 of Coxeter’s map is the smallest genus of any orientable
surface into which the edge-graph of the q-cube can be embedded without self-intersections. It is rather surprising

that each map {4, q | 4⌊q/2⌋−1
}, as well as its dual {q, 4 | 4⌊q/2⌋−1

}, can also be embedded as a polyhedron

without self-intersections in ordinary 3-space (see McMullen-Schulz-Wills [17] and McMullen-Schulte-Wills [16]).
When q > 12, the genus of this polyhedron exceeds the number of vertices, 2q , of {4, q | 4[q/2]−1

}, which is

somewhat hard to visualize.

When n = 2 andK is an abstract 2m-polytope given by a neighborly simplicial (2m−1)-sphere, the corresponding
power complex 2K gives anm-Hamiltonian 2m-manifold embedded as a subcomplex of a higher-dimensional cube
(see Kühnel-Schulz [12], Effenberger-Kühnel [9]). Recall here that a polytope is neighborly if any two of its vertices

are joined by an edge. The m-Hamiltonicity then refers to the distinguished property that 2K contains the full
m-skeleton of the ambient cube. In this sense, Coxeter’s map {4, q |4⌊q/2⌋−1

} gives a 1-Hamiltonian surface.

The case when n = 2 and K is an (abstract) regular polytope has inspired a number of generalizations of the 2K

construction that have proved important in the study of universality questions and extensions of regular polytopes

(see [15, Ch. 8]). A particularly versatile generalization is to polytopes 2K,D , where K is a vertex-describable
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regular k-polytope with v vertices, and D is a Coxeter diagram on v nodes admitting a suitable action of Γ(K) as
a group of diagram symmetries. The corresponding Coxeter groupW (D) then can be extended by Γ(K) to obtain
the automorphism groupW (D) ⋉ Γ(K) of a regular (k + 1)-polytope denoted 2K,D. This polytope is generally

infinite, and its vertex-figures are isomorphic to K. When D is the trivial diagram, without branches, on the vertex

set of K, the (k + 1)-polytope 2K,D is isomorphic to the power complex 2K and the Coxeter groupW (D) is just
Cv

2 . This provides an entirely different construction of power complexes 2
K based on regular polytopes K.
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Figure 2: The torus map {3, 6}(3,0)

The polytopes 2K,D are very useful in the study of universal regular polytopes, as the following example illustrates

(again, see [15, Ch. 8]). Let K be a (polytopal) regular map of type {3, r} on a surface, for instance, a torus map
{3, 6}(b,0) or {3, 6}(b,b) (see Figure 2). Suppose we wish to investigate regular 4-polytopes (if they exist) with
cubes {4, 3} as facets and with copies ofK as vertex-figures. In particular this would involve determining when the
universal such structure, denoted

U := {{4, 3},K},

is a finite polytope. It turns out that this universal polytope U always exists (for any K), and that U = 2K,D

for a certain Coxeter diagram D depending on K (see [15, Thm. 8E10]). In particular, U is finite if and only if

K is neighborly. In this case U = 2K and Γ(U) = Cv
2 ⋉ Γ(K) (and D is trivial). For example, if K is the

hemi-icosahedron {3, 5}5 (with group [3, 5]5), then

U = {{4, 3}, {3, 5}5} = 2{3,5}5

and

Γ(U) = C2 ≀ [3, 5]5 = C6
2 ⋉ [3, 5]5.

5 Coverings

In this section we investigate coverings of power complexes. We begin with some terminology; see [15, Ch. 2D] for

similar notions for abstract polytopes.

Let K and L be (incidence) complexes of rank k. A map γ : K → L is called a homomorphism if γ preserves
incidence in one direction; that is, Fγ 6 Gγ in L whenever F 6 G in K. (Automorphisms are bijections that

are order preserving in both directions.) A homomorphism γ is a rap-map if γ is rank preserving and adjacency

preserving; that is, faces of K are mapped to faces of L of the same rank, and pairs of adjacent flags of K are

mapped onto pairs of adjacent flags of L. A surjective rap-map γ is called a covering (map). Similarly we call a

homomorphism γ : K → L a weak rap-map if γ is rank preserving and weakly adjacency preserving, meaning
that γ maps a pair of adjacent flags of K onto a pair of flags of L that are adjacent or identical.

Figure 3 illustrates an example of a covering γ : K → L between a hexagon K with vertices 1, . . . , 6, and a
triangle L with vertices 1, 2, 3, given by i, i + 3 7→ i for i = 1, 2, 3. The edges are mapped by {i, i + 1},
{i+ 3, i + 4} 7→ {i, i + 1}. Thus γ wraps the hexagon twice around the triangle.



Mathematics of Distances and Applications 61

Figure 3: A hexagon wrapped around the triangle

Returning to the general discussion, let K be a k-complex and Σ be a subgroup of Γ(K). Denote the set of orbits
ofΣ inK byK/Σ, and the orbit of a face F ofK by F ·Σ. Then introduce a partial ordering onK/Σ as follows: if
̂F, ̂G ∈ K/Σ, then ̂F 6 ̂G if and only if ̂F = F ·Σ and ̂G = G ·Σ for some faces F andG ofK with F 6 G.

The set K/Σ together with this partial order is the quotient of K with respect to Σ. The triangle in Figure 3 is a
quotient of the hexagon obtained by identifying opposite vertices; here Σ is generated by the central involution in
D6, the group of the hexagon.

Coverings nK → mL with n > m.

The following theorem says that coverings between (vertex-describable) incidence complexes naturally induce

coverings or weak coverings between the corresponding power complexes.

Theorem 5.3. Let K and L be finite vertex-describable incidence complexes of rank k, and let γ : K → L be a
covering. Moreover, let n > m > 2 and f : {1, . . . , n} → {1, . . . ,m} be a surjective mapping. Then γ and
f induce a weak covering πγ,f : nK → mL between the power complexes nK and mL. Moreover, πγ,f is a

covering if and only if f is a bijection (and n = m).

Proof. Suppose V (K) := {1, . . . , v(K)} and V (L) := {1, . . . , v(L)} are the vertex sets of K and L,
respectively. (It will be clear from the context if a label j refers to a vertex ofK or a vertex ofL.) Then v(L) 6 v(K)
since there is a covering map from K to L. DefineN := {1, . . . , n} andM := {1, . . . ,m}.

First note that a typical flag in nK has the form

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)},

where ε is a vector in Nv(K) and Φ := {F−1, F0, . . . , Fk} is a flag of K. Clearly, if r > 1 and Φ,Φ′ are

(r − 1)-adjacent flags of K, then Φ(ε),Φ′(ε) are r-adjacent flags of nK. Similar statements also hold formL.

Now consider the given covering map γ : K → L. For a vertex j of K write j := jγ, so j is a vertex of L.

Since γ is surjective, we may assume that the vertex labeling forK and L is such that the vertices 1, 2, . . . , v(L)
comprise all the vertices of L, and in particular that j = j for each j = 1, . . . , v(L). Now define the mapping

πγ,f : nK → mL

F (ε) → (Fγ)(εf ),
(9)

where as usual F denotes a face of K and ε a vector inNv(K), and

εf := (ε1f, . . . , εv(L)f)

is the vector inMv(L) given by the images under f of the first v(L) components of ε. We claim that π := πγ,f is

a well-defined weak covering.
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First we prove that π is well-defined. For a face F of a complex we let V (F ) denote its vertex set. Now suppose we
have F (ε) = F ′(ε′) in nK, where ε = (ε1, . . . , εv(K)) and ε

′ = (ε′1, . . . , ε
′
v(K)

) belong toNv(K) and F,F ′

are faces ofK. Then necessarily F = F ′, since the vertex sets of F and F ′ must be the same; recall here thatK

is vertex-describable. Thus Fγ = F ′γ. Moreover, εi = ε′i for each i 6∈ V (F ) = V (F ′), so εf and ε
′
f certainly

agree on all components indexed by vertices i with i 6∈ V (F ). All other components of εf and ε
′
f are indexed by

a vertex i of F ; but if i ∈ V (F ) then i = (i)γ ∈ V (Fγ) = V (F ′γ), and hence i indexes a component where
entries are allowed to range freely overM = (N)f . Therefore, (Fγ)(εf ) = (F ′γ)(ε′f ). Thus π is well-defined.

Clearly, π is a homomorphism since this is true for γ. For the same reason, π is rank-preserving and surjective.

It remains to show that π is weakly adjacency preserving. To this end, let

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)}, Φ′(ε′) := {∅, ε′, F ′
0(ε

′), . . . , F ′
k(ε′)}

be flags of nK, where

Φ := {F−1, F0, . . . , Fk}, Φ′ := {F ′
−1, F

′
0, . . . , F

′
k}

are flags of K and ε, ε′ are vectors in Nv(K). Suppose Φ(ε) and Φ′(ε′) are r-adjacent for some r > 0. Then
two possibilities can arise.

If r > 0, then ε = ε′ and Φ,Φ′ must be (r − 1)-adjacent flags of K. It follows that εf = ε′f , and that Φγ,Φ
′γ

are (r− 1)-adjacent flags of L since γ is adjacency preserving. Hence the image flags of Φ(ε) and Φ′(ε′) under
π, which are given by

(Φ(ε))π = {∅, εf , (F0γ)(εf ), . . . , (Fkγ)(εf )}

and

(Φ′(ε′))π = {∅, ε′f , (F
′
0γ)(ε

′
f ), . . . , (F ′

kγ)(ε
′
f )}

respectively, are also r-adjacent. Thus, when r > 0, the map π takes r-adjacent flags of nK to r-adjacent flags of
mL.

Now suppose r = 0. Then Φ = Φ′ (but ε 6= ε′), since the faces Fs and F
′
s of K must have the same vertex

sets for each s > 0; bear in mind that K is vertex-describable. Moreover, since F0 = F ′
0 and r 6= 1, we have

F0(ε) = F ′
0(ε

′) = F0(ε
′), so εi = ε′i for each vertex i ofK distinct from i0 := F0; hence ε and ε

′ differ exactly

in the position indexed by i0. Then we certainly have (Fsγ)(εf ) = (F ′
sγ)(ε

′
f ) for all s > 0. Hence (Φ(ε))π and

(Φ′(ε′))π are either 0-adjacent or identical.

At this point we know that π : nK → mL is weakly adjacency preserving, that is, π is a weak covering. This proves

the first part of the theorem.

Moreover, since the two vectors ε and ε′ differ precisely in the position indexed by i0, the corresponding shortened

vectors (ε1, . . . , εv(L)) and (ε′1, . . . , ε
′
v(L)

) in Nv(L) (underlying the definition of εf and ε
′
f ) also differ only in

the position indexed by i0; note here that i0 = i0, by our labeling of the vertices inK andL. Hence the two vertices

εf = (ε1f, . . . , εv(L)f) and ε′f = (ε′1f, . . . , ε
′
v(L)

f) of mL in (Φ(ε))π and (Φ′(ε′))π, respectively, either

coincide or differ in a single position, indexed by i0; the former occurs precisely when εi0f = ε′i0f . Therefore,

since εi0 and ε
′
i0
can take any value inN , the mapping π is a covering if and only if f is a bijection. This completes

the proof.

Coverings nK → mL with nl
> m.

The previous Theorem 5.3 describes quite general circumstances under which coverings or weak coverings between

power complexes nK andmL are guaranteed to exist. Under the basic condition that n > m this generally leads

to a host of possible weak covering maps. Our next theorem deals with coverings or weak coverings between power

complexes in situations where certain well-behaved (equifibered) coverings between the original complexes K and

L exist. This also permits many examples with n 6 m.

To begin with, letK and L be finite vertex-describable complexes of rank k, and let V (K) := {1, . . . , v(K)} and
V (L) := {1, . . . , v(L)}, respectively, denote their vertex sets. Suppose there is a covering γ : K → L that is
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equifibered (with respect to the vertices), meaning that the fibers γ−1(j) of the vertices j of L under γ all have the
same cardinality, l (say). In other words, the restriction of γ to the vertex sets of K and L is l : 1, so in particular
v(K) = l · v(L).

Important examples of this kind are given by the regular k-polytopesK that are (properly) centrally symmetric, in the

sense that the group Γ(K) contains a central involution that does not fix any of the vertices (see [15, p. 255]); any
such central involution α pairs up the vertices ofK and naturally determines an equifibered coveringK → K/〈α〉,

ofK onto its quotient K/〈α〉, satisfying the desired property with l = 2.

Now returning to the general discussion, let m,n > 2 and l be as above. Define N := {1, . . . , n}, M :=
{1, . . . ,m} and L := {1, . . . , l}. We wish to describe coverings nK → mL that can balance the effect of γ as

an l : 1mapping on the vertex sets, by a controlled change in the base parameters from n tom, providedm 6 nl.

To this end, we may assume that the vertices of K and L are labeled in such a way that

γ−1(j) = Lj := {(j − 1)l + 1, . . . , (j − 1)l + l} (for j ∈ V (L)).

Thus for each j, the map γ takes the vertices ofK inLj to the vertex j of L. By a slight abuse of notation, we then

can write a vector ε = (ε1, . . . , εv(K)) inN
v(K) = (N l)v(L) in the form ε = (ε̂1, . . . , ε̂v(L)), where

ε̂j := (ε(j−1)l+1, . . . , ε(j−1)l+l)

lies inN l for each j = 1, . . . , v(L).

Now suppose that, in addition to γ, we also have a surjective mapping g : N l
→ M (and hencem 6 nl). Then

γ and g determine a mapping
πγ,g : nK → mL

F (ε) → (Fγ)(εg),
(10)

where again F denotes a face of K and ε a vector inNv(K), and

εg := (ε̂1g, . . . , ε̂v(L)g)

is the vector inMv(L) given by the images under g of the components of ε in its representation as (ε̂1, . . . , ε̂v(L)).
We must prove that π := πγ,g is a covering.

First we must show that π is well-defined. Suppose we have F (ε) = F ′(ε′) in nK, where ε = (ε1, . . . , εv(K))

and ε′ = (ε′1, . . . , ε
′
v(K)

) belong to Nv(K) and F,F ′ are faces of K. Then, as in the proof of the previous

theorem, F = F ′, Fγ = F ′γ, and εi = ε′i for i 6∈ V (F ) = V (F ′). Now bear in mind that γ is a covering.
Hence, if i ∈ V (F ) then (i)γ ∈ V (Fγ); or equivalently, if j 6∈ V (Fγ) then V (F ) ∩ Lj = ∅. It follows that, if

j 6∈ V (Fγ), then εi = ε′i for every i in Lj , and therefore ε̂j = ̂ε′j and ε̂jg = ̂ε′jg. Hence εg and ε
′
g agree on

every component represented by vertices of L outside of Fγ = F ′γ. As the remaining components are allowed

to take any value inM , we conclude that (Fγ)(εg) = (F ′γ)(ε′g). Thus π is well-defined.

It is straightforward to verify that π is a rank-preserving surjective homomorphism. To show that π is also weakly

adjacency preserving, let

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)}, Φ′(ε′) := {∅, ε′, F ′
0(ε

′), . . . , F ′
k(ε′)}

be r-adjacent flags of nK, where

Φ := {F−1, F0, . . . , Fk}, Φ′ := {F ′
−1, F

′
0, . . . , F

′
k}

are flags of nK and ε, ε′ lie in Nv(K). Again two possibilities arise. First, if r > 0 then ε = ε′ and Φ,Φ′ are

(r− 1)-adjacent inK. Hence εg = ε′g and Φγ,Φ′γ are (r− 1)-adjacent in L. It follows that the two image flags
under π,

(Φ(ε))π = {∅, εg , (F0γ)(εg), . . . , (Fkγ)(εg)},

(Φ′(ε′))π = {∅, ε′g , (F
′
0γ)(ε

′
g), . . . , (F

′
kγ)(ε

′
g)},
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are also r-adjacent. Now, if r = 0 then Φ = Φ′ (but ε 6= ε′); in fact, V (Fs) = V (F ′
s) and hence Fs = F ′

s for

each s > 0. When s = 0 this gives F0(ε) = F ′
0(ε

′) = F0(ε
′) (since r 6= 1), and therefore εi = ε′i for each

vertex i of K distinct from i0 := F0; hence ε and ε
′ only differ in the position indexed by i0. This already implies

that (Fsγ)(εg) = (F ′
sγ)(ε

′
g) for all s > 0, and hence that (Φ(ε))π and (Φ′(ε′))π are weakly 0-adjacent flags

ofmL. Thus π is a weak covering.

Moreover, since εi = ε′i if and only if i 6= i0, we also know that ε̂j = ̂ε′j if and only if j 6= j0 := (i0)γ. Hence the
two vertices

εg := (ε̂1g, . . . , ε̂v(L)g), ε′g := (̂ε′1g, . . . , ̂ε′v(L)g)

ofmL lying in (Φ(ε))π and (Φ′(ε′))π, respectively, either coincide or differ in a single position, indexed by j0; the
former occurs precisely when ε̂j0g = ̂ε′j0g. Since ε̂j0 can take any value inN

l, the mapping π is a covering if and

only if g is a bijection.

Finally, suppose g is a bijection, so in particular m = nl. Then nK and mL must have the same number of

vertices,

nv(K) = nl·v(L) = mv(L),

and hence π must be a covering that is one-to-one on the vertices.

In summary, we have established the following theorem.

Theorem 5.4. Let K and L be finite vertex-describable incidence complexes of rank k, let γ : K → L be a
covering, and let m,n > 2 and l > 1. Suppose that γ is equifibered with vertex fibers of cardinality l, and that
g : {1, . . . , n}l → {1, . . . ,m} is a surjective mapping (and hence m 6 nl). Then γ and g induce a weak

covering πγ,g : nK → mL between the power complexes nK andmL. Moreover, πγ,g is a covering if and only if

g is a bijection (andm = nl); in this case πγ,g is one-to-one on the vertices.

As an example consider finite regular polygons K = {2p} and L = {p}, with 2p or p vertices, respectively, for
some p > 2. The central symmetry ofK gives an obvious equifibered covering γ : K → L between K and L with
fibers of size l = 2. Now choosem = n2 and pick any bijection g : {1, . . . , n}2 → {1, . . . , n2

}. Then

πγ,g : n{2p}
→ (n2){p}

is a covering. Either complex has n2p vertices, and πγ,g is one-to-one on the vertices. For example, when n = 2
we obtain a covering

πγ,g : 2{2p}
→ 4{p}.

Here 2{2p} is Coxeter’s regular map {4, 2p |4⌊p⌋−1
} described in Section 4.
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A BRIEF SURVEY OF METRICS IN CODING THEORY
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Abstract: The main objects of Coding theory are metric vector or matrix spaces. Subsets of spaces are known as

codes. The main problem is constructing codes of given pairwise distance and having maximal cardinality. Most

known and most investigated spaces are Hamming spaces. Thousands papers and books are devoted to codes

in the Hamming metric. We mention here only two books [1; 2] and will not consider this metric in details. Other

metrics are investigated much less. In this paper, we give many examples of useful metrics. It is still non exhaustive

review.
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Introduction

Coding theory studies techniques to correct errors arising during communications through noisy channels. Its

distinguishing features are using discrete signals and introducing the artificial redundancy. Discrecity allows to

describe signals in terms of abstract symbols not connected with any physical realization. The artificial redundancy

gives possibilities to correct errors using hard enough combinatorial constructions of signals. One can say that

coding theory uses a wide spectrum of mathematical tools from simple binary arithmetic to modern algebraic

geometry. The main objects of Coding theory are metric vector spaces. Subsets of spaces are known as codes.

Main problem is constructing codes of given cardinality and having maximal pairwise distance as large as possible.

Most known and most investigated spaces are Hamming spaces. The distance function between two vectors is

defined as the number of non identical their coordinates. Thousands papers and books are devoted to the Hamming

metrics. We mention here only two books [1; 2]. Other metrics are investigated much less.

In this paper, we describe connections between channels and metrics and give many examples of useful metrics. It

is still non exhaustive review. Also it is important to mention that not all metrics allow the good mathematic theory.

General properties of codes

Let X be an alphabet of q elements. Let X n be the space of all vectors over X of dimension n.

A code C ⊆ X
n of size |C| = M and length n is defined as any set of n-vectors over X n:

C = {x1, x2, . . . , xM}.

We assume also that the space of vectors X n is considered as a metric space. A metric can be defined either by a

distance function, or by a norm function.

We shall consider only integer-valued distance functions and norms.
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A distance d(x,y) between a n-vectors x,y is a function satisfying conditions

d(x,y) ≥ 0, ∀ x,y; (Non-negative).

d(x,y) = 0 ⇐⇒ x = y; (Zero value).

d(x,y) = d(y,x); (Symmetry).

d(x,y) ≤ d(x, z) + d(z,y), ∀ x,y, z (Triangle inequality).

A norm functionN (x) should satisfy next axioms:

N (x) ≥ 0, ∀ x; (Non-negative).

N (x) = 0 ⇐⇒ x = 0; (Zero value).

N (x + y) ≤ N (x) + N (y), ∀ x,y (Triangle inequality).

The norm function allows to construct the distance function as follows:

d(x,y) := N (x − y).

Often distance and norm functions are defined coordinate-wise. A distance d(x, y) between letters of the alphabet
X (respectively, N (x), x ∈ X ) is defined first. Assume that the distance takes all values 0, 1, . . . ,D, whereD

is the maximal possible value. Then the distance between n-vectors x,y ∈ X
n is defined as follows:

d(x,y) =

n
∑

i=1

d(xi, yi).

This distance takes values 0, 1, . . . , nD.

There exist still distance functions which are not coordinate-wise. For instance, the Varshamov distance and the

rank distance (see, below) can not be represented in such a manner.

Similarly, for the coordinate-wise norm, we have

Nn(x) =

n
∑

i=1

N (xi).

It is useful for applications to introduce the generator norm function

W (z) =
D
∑

i=0

N(i)zi,

whereN(i) = |x ∈ X : N (x) = i| , i = 0, 1, . . . ,D, is the number of elements X with norm i. D means the

maximal norm.

The generator norm function of the extended normNn(·) is clearly

Wn(z) =

nD
∑

i=0

Nn(i)zi = W (z)n =

(

D
∑

i=0

N(i)zi

)n

.

We shall consider metrics defined by a coordinate-wise norm Nn(·). The main problem of coding theory is
constructing codes Cn ⊆ X

n of maximal cardinality M if minimal distance d is given. For a metric on X we

define the average norm N and the average pair-wise distance D by

N =

P

x∈X

N (x)

q
=

D
P

i=0

iN(i)

q
;

D =

P

x∈X

P

y∈X

N (x−y)

q(q−1)
=

P

x∈X

N(x)

q
,
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whereN(x) denotes the average distance from X\x to x.

If X is an additive group, then N(x) does not depend on x. Moreover N(x) = q
q−1

N . Hence in this case

D = q
q−1

N .

For the extended metricNn(x) we haveNn = Nn, Dn = qn

qn−1
Nn.

If Cn is a code of cardinalityM and of distance d > Nn, then the Plotkin-style bound is valid:

M ≤

d

d − Nn

.

Let

Sd−1(0) =
{

y : NN (y) ≤ d − 1
}

be the ball of radius d − 1 with the center at the all zero vector 0. Then asymptotically, when n → ∞ and

x = d−1

Dn
< N , the volume of the ball is equal to

Vd−1 = |Sd−1(0)| ≍ cqn(1−R),

where

1 − R = H(α0, α1, . . . , αD) +
D
∑

i=1

αi logq Ni;

αi = Niγ
i

W (γ)
, i = 0, 1, . . . ,D;

γ is the positive root of
γW ′(γ)

W (γ)
= xD,

H(α0, α1, . . . , αD) = −

D
∑

i=0

αi logq αi.

It follows the upper Gilbert-style bound for a code with rateR =
logq M

n
and distance d − 1 = xDn:

R = 1 − H(α0, α1, . . . , αD) −
D
∑

i=1

αi logq Ni.

One can show that this equation can be reduced to the next simple form:

R = 1 − logq W (γ) + xD log γ;

xD = γW ′(γ)

W (γ)
.

Examples of metrics

Hamming metric

The most known is the Hamming metric.

The Hamming norm wH(x) of a vector x is defined as the number of its non zero coordinates.

The Hamming distance between x and y is the norm of its difference: d(x,y) = wH(x − y).

The Hamming metric is matched strongly with all full symmetrical memoryless channels.

Full symmetrical channels are channels such that all non diagonal elements of the transfer probability matrix are

identical.

Huge amount of papers are devoted to this metric.
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Norms and metrics for Zq

Let the alphabetsX be the integer ringZq = {0, 1, . . . , q − 1}. Integer-valued norms and metrics can be defined
in many ways.

It is clear that for any normN (i) = N (q − i), i ∈ Zq.

All elements of Zq can be divided into subsets of equal weight elements Bj = {a : a ∈ Zq, N (a) = j} , j =
0, 1, . . . ,D, whereD ≤

⌊

q
2

⌋

is the maximal norm. If a ∈ Bj , then also q − a ∈ Bj .

The maximal normD can take values between 1 and
⌊

q
2

⌋

.

Open problem: find all possible values ofD for Zq .

Open problem: describe all non-equivalent norms for Zq.

Two extreme cases are the Hamming metric (D = 1) and the Lee metric (D =
⌊

q
2

⌋

).

The Hamming metric is defined by

N (i) =

{

0, if i = 0;
1, if i = 1, . . . , q − 1;

,

soD = 1. The subsets of equal weight elements are

B0 = {0} , B1 = {1, 2, . . . , q − 1} .

The Lee metric is defined by

N (i) =







0, if i = 0;
i, if 1 ≤ i ≤

⌊

q
2

⌋

;

N (q − i), if
⌊

q
2

⌋

< i ≤ q − 1;
,

soD =
⌊

q
2

⌋

. The subsets of equal weight elements are

B0 = {0} , B1 = {1, q − 1} , B2 = {2, q − 2} , . . . , B
⌊

q

2⌋
=
{⌊q

2

⌋

, q −

⌊q

2

⌋}

.

Main results for codes with the Lee metric were obtained by Berlekamp [7]:

• The weight generator function

W (z) =

{

1 + 2z + 2z2 + · · · + 2z
q−1

2 , if q odd;

1 + 2z + 2z2 + · · · + 2z
q−2

2 + z
q

2 , if q even.

• The average vector weight

Nn =

{

n
q2−1

4q
, if q odd;

n
q
4
, if q even.

• The Plotkin-style bound for cardinalityM of a code with Lee distance d:

M ≤

d

d − Nn

, if d > Nn.

• The asymptotic Gilbert-style bound: a code with cardinalityM and Lee distance d exists, if

R =
logq M

n
= 1 − logq W (γ) + xD log γ;

xD = γW ′(γ)

W (γ)
,

whereD =
⌊

q
2

⌋

and xD = d−1

n
.
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All non-equivalent norms for Z4

1. The Hamming metrics with the subsets of equal weight elements B0 = {0}, B1 = {1, 2, 3}, and with the
distance matrix

D =













x\y 0 1 2 3
0 0 1 1 1
1 1 0 1 1
2 1 1 0 1
3 1 1 1 0













.

2. The Lee metrics with the subsets of equal weight elements B0 = {0}, B1 = {1, 3}, B2 = {2}, and with the
distance matrix

D =













x\y 0 1 2 3
0 0 1 2 1
1 1 0 1 2
2 2 1 0 1
3 1 2 1 0













.

3. A new non-Lee metrics (never investigated) with the subsets of equal weight elements B0 = {0}, B1 =
{2}, B2 = {1, 3}, and with the distance matrix

D =













x\y 0 1 2 3
0 0 2 1 2
1 2 0 2 1
2 1 2 0 2
3 2 1 2 0













.

Sharma-Kaushik metrics for Zq

Many norms for Zq were proposed by Sharma and Kaushik [3; 4; 5; 6].

The Sharma-Kaushik normNSK is defined in terms of disjoint sets B0

⋃

B1

⋃

· · ·

⋃

Bm−1 with conditions:

1. B0 = {0} .

2. If x ∈ Bi, then q − x ∈ Bi.

3. If x ∈ Bi, y ∈ Bj and i < j, then the Lee normNLee(x) < NLee(y).

4. |B0| ≤ |B1| ≤ · · · ≤ |Bm−2|, but |Bm−1| ≥ |Bm−2| /2.

5. NSK(x) = s ⇐⇒ x ∈ Bs.

6. dSK(x,y) =
∑n

i=1
NSK(xi − yi)

Example: Sharma-Kaushik metrics for Z9.

Let

1. B0 = {0} , B1 = {1, 8} , B2 = {2, 3, 6, 7} , B3 = {4, 5} .

This is a Sharma-Kaushik metric.

Let

2. B0 = {0} , B1 = {4, 5} , B2 = {2, 3, 6, 7} , B3 = {1, 8} .

This is not a metric because Triangle inequality axiom is not satisfied: N (4+4) = N (8) = 3 > N (4)+N (4) =
2.
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City block metric

The city block metric is known also as the Manhattan metric, or, the modular metric.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be integer-valued vectors, xi, yi ∈ {0, 1, . . . , q−1}, i =
1, 2, . . . , n. Then the distance function is defined by

dM (x,y) =

n
∑

i=1

|xi − yi|.

This metrics is popular in psychology and related areas but not well known in communications. The possible reason

is that there exist no channels matched MLD with city block metrics, there exist no channels matched MDD with city

block metrics. Still channels exist matched ECD with city block metrics. Such channels appear when a signal limiter

is used at the receiver. Error correcting was investigated first by [8] (without any metrics). Few results and code

constructions are known. We present several new results.

• The weight generator function

W (z) = 1 + z + z2 + · · · + zq−1.

• The average vector weight

N =
q − 1

2
; Nn = n

q − 1

2
.

• The average pair-wise distance

D =
q + 1

3
; Dn = n

q + 1

3

qn
− qn−1

qn
− 1

.

• The Plotkin-style bound for cardinalityM of a code with city block distance d:

M ≤

d

d − Nn

, if d > Nn.

• The asymptotic Gilbert-style bound is unknown for city block metrics because balls of radius t have different

cardinalities for different centers. For example, if q = 3, n = 3, t = 3, then the ball with the center (0, 0, 0)
has cardinality 17, while the ball with the center (1, 1, 1) has cardinality 27, i.e., contains all elements!
For integer s, define the s-ary entropy by

Hs(x) = x logs(s − 1) − x logs x − (1 − x) logs(1 − x).

We explain by examples how to derive the alternative bound. Let q = 3. We want to get the rate as a function
of the normalized minimal city distance x = d

n(q−1)
= d

2n
. Note that any ternary code in the Hamming

metric with minimal distance dH is a code with the same distance in city block metric. We have the Gilbert

bound for these codes in the form

R1 = 1 − H3

(

dH

n

)

,

or, in terms of city block distance

R1CB = 1 − H3(2x),

Hence we have the non-zero rate for small distances 2x ≤ 2/3. It goes to the 1, when x runs to 0.
Consider now binary codes in the Hamming metrics with distance dH . If we replace each ”1” in code words
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by q − 1 = 2, we obtain a code in city block metrics with minimal distance d = (q − 1)dH = 2dH . We

have the Gilbert bound for these codes in the form

R2 = 1 − H2

(

dH

n

)

,

or, in terms of city block distance

R2CB = (1 − H2(x)) log3 2.

It gives the non-zero exponent for all allowable distances but for small distances the rate is less than 1.
We get, combine both bounds, that a code with cardinality M = qnRCB and with city block distance

d = x(q − 1)n exists, if

R
(3)

CB = max {R1CB , R2CB} = max {1 − H3(2x), (1 − H2(x)) log3 2} ,

for 0 ≤ x ≤
1

2
. We can obtain in a similar manner for q = 5 that

R
(5)

CB = max
{

R
(5)

1CB, R
(5)

2CB , R
(5)

3CB

}

,

where

R
(5)

1CB = 1 − H5(5x);

R
(5)

2CB = (1 − H3(2x)) log5 3;

R
(5)

3CB = (1 − H2(x)) log5 2.

Rates as functions of the normalized city block distance are shown on Fig.1.

Figure 1: Bounds for City block metrics, q=3 (dash), q=5 (solid)

The Varshamov metric for asymmetric channels
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The Varshamov metric was introduced to describe asymmetric errors in the paper [9]. Let x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) be binary n-vectors. The distance-function is defined as

dV (x,y) =
1

2

[

wH(x− y) + |wH(x) − wH(y)|
]

,

where wH(x) denotes the Hamming weight of x.

The equivalent definition was introduced in [10]:

dV (x,y) = max
{

N01(x,y),N10(x,y)
}

,

where

N01(x,y) = # {(xi, yi) : xi = 0, yi = 1} ,N10(x,y) = # {(xi, yi) : xi = 1, yi = 0}

Many results and code constructions are known.

Main theoretical result sounds that

MH(n, 2d − 1) ≤ MV (n, d) ≤ dMH(n, 2d − 1),

whereMH(n, d) andMV (n, d) denote maximal cardinalities of codes with minimal distance d in the Hamming

metric and in the Varshamov metric, respectively.

The burst metric for dependent errors

The b-burst metric was introduced first in the paper [11], though codes correcting burst were invented much earlier.

The burst normNb(x) of a vector x is defined as follows. Represent this vector as

x = (x1, x2, . . . , xn) = (0m1u1v
b−1

1
0m2u2v

b−1

2
. . . ),

where uj 6= 0, 0m means the all zero string of length m ≥ 0, vb−1 means any string of length b − 1. Such
representation is unique. Then the b-burst norm of x is equal to the number of b-tuples:

Nb(x) = #
(

b-tuples of type (uvb−1)
)

.

For example, if b = 4 and the ternary vector is x = (0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 1), then the

representation as a sequence of b-tuples is x =(0, 0,
...2,2,1,1,

...
...1,1,0,0,

...
...2,0,0,0,

..., 0,
...1,2,1

...), so
N4(x) = 4.

The b-burst distance is defined as

db(x,y) = Nb(x − y).

Many constructions and decoding algorithms are published devoted to correcting burst errors. Still the notion "metric"

is used not very often.

Several general facts about b-burst correcting codes are listed below.

1. The generator weight function of n-dimensional vectors:

Wn(z) =

Dn
∑

i=1

Ai(n)zi,

where Ai(n) denotes the number of vectors with the b-burst i and Dn =
⌈

n
b

⌉

is the maximal possible b-norm of

x. Here

A1(n) =

{

qn
− 1, 1 ≤ n ≤ b;

(q − 1)qb−1(n − b + 1) + qb−1
− 1, n > b;

Ai(n) =
[

(q − 1)qb−1
]i−1

n−b(i−1)
∑

j=0

(

j+i−2

i−2

)

A1 (n − b(i − 1) − j) ; i > 1.
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For large n, the average normWn =
PDn

i=0
Ni

qn ≈
q−1

1+b(q−1)
. The normalized average norm δ = Nn

Dn
≈

b(q−1)

1+b(q−1)
.

2. The upper bound (can be improved) [12].

For any q-ary code with minimal b-distance d and cardinalityM we have

R =
logq M

n
≤ b

[

1 − Hqb

(

qb − 1

qb

−

qb − 1

qb

√

1 −

qb

qb − 1
x

)]

,

where x = d
Dn
is the normalized minimal distance.

3. The lower bound (can be improved) [12].

There exists a q-ary code with minimal b-distance d and cardinalityM such that

R =
logq M

n
= max{R1, R2},

R1 = (1 −
b−1

b
x)
[

1 − H2

(

x
b−(b−1)x

)

log2 q

]

−
x
b
logq (q − 1),

R2 = max
s≥2

1

s

[

1 − Hqb

(

xs
s−1

)]

.

Combinatorial Metrics

Combinatorial metrics were introduced in [13]. Sometimes specific spots of errors are most probable in channels.

Then often we can define a matched metric.

We shall consider both vector signals (x ∈ X
n) and matrix signals (X ∈ X

m×n). To describe coordinates of
signals, we consider two types of index sets:

the Line index set

I = {i | 0 ≤ i ≤ n − 1} ,

and the Array index set

I = {{i, j} | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} .

Hence the set of all signals can be denote equally

X
I = {x | x = (x(u), u ∈ I)} .

For a signal x ∈ X
I, the support is defined by

Q(x) = {i | xi 6= 0, i ∈ I} .

Choose a subset T ∈ I.

A word x ∈ X
I is said to be a T -spot, or T -burst, if

Q(x) ⊆ T.

General Definition.

Consider a set of Basic subsets

T = {T0 = ∅, T1, T2, . . . , Ts} , Tj ⊆ I

with the only restriction
s
⋃

i=0

= I.

TheT-norm is defined by
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1. NT(x) = 0 ⇐⇒ Q(x) = ∅.

2. NT(x) = 1 ⇐⇒ Q(x) ⊆ Ti for some i.

3. NT(x) = k ⇐⇒

Q(x) ⊆ { a junction of exactly k subsets fromT},

but

Q(x) 6⊆ { a junction of k − 1 or less subsets fromT}

A combinatorial metric for the Line index set is said to be Translation invariant if and only if

Ti = T1 + (i − 1) (mod n), i = 1, . . . , n.

A combinatorial metric for the Array index set is said to be Translation invariant if and only if

Tij = T11 + {(i − 1), (j − 1)} ( (mod n1), (mod n2))

i = 1, . . . , n1, j = 1, . . . , n2.

Let NT1
(x) and NT2

(x) be two metrics defined on X I, such that NT1
(x) ≤ NT2

(x), ∀x ∈ X
I. Then

M1(n, d) ≤ M2(n, d), whereMi(n, d), i = 1, 2, are maximal cardinalities of codes.

Examples of combinatorial metrics

Previous metrics

The Hamming metric can be considered as a combinatorial metric defined by Basic subsets

T1 = {0}, T2 = {1}, . . . , Tn = {n − 1}.

Its generalization is the non-uniform Hamming Metric defined by the following Basic subsets:

T1 = {0, 1, . . . , n1 − 1},
T2 = {n1, n1 + 1, . . . , n1 + n2 − 1},
· · · · · · · · ·

Ts =
{

∑s−1

k=1
nk,
∑s−1

k=1
nk + 1, . . . ,

∑s−1

k=1
nk + ns − 1

}

;
∑s

k=1
nk = n

The metric is useful to construct codes when the different coordinates belong to different alphabets. Main results

about codes in this metric can be found in [14].

The b-burst metric can be considered as a combinatorial metric defined by Basic subsets

T1 = {0, 1, . . . , b − 1},
T2 = {1, 2, . . . , b},
· · · · · · · · ·

Tn−b+1 = {n − b, n − b + 1, . . . , n} .

Vectors of weight 1 in this metric are vectors such that all the non zero coordinates can be covered by the only string
of length b.
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Its generalization is the 1-dimensional cyclic b-burst metric defined by Basic subsets

T1 = {0, 1, . . . , b − 1},
T2 = {1, 2, . . . , b},
· · · · · · · · ·

Tn−b+1 = {n − b, n − b + 1, . . . , n} ,

Tn−b+2 = {n − b + 1, n − b + 2, . . . , 0} ,

· · · · · · · · ·

Tn = {n, 0, . . . , b − 2} ,

Vectors of weight 1 are vectors such that all the non zero coordinates can be covered by the only cyclic string of
length b.

The 1-dimensional Hamming-burst (t, b) metric

This metric is defined by Basic subsets

Tα = {α = {i1, i2, . . . , it} | 0 ≤ i1 < i2 < · · · < it ≤ n − 1}
T1 = {0, 1, . . . , b − 1},
T2 = {1, 2, . . . , b},
· · · · · · · · ·

Tn−b+1 = {n − b, n − b + 1, . . . , n} ,

Tn−b+2 = {n − b + 1, n − b + 2, . . . , 0} ,

· · · · · · · · ·

Tn = {n, 0, . . . , b − 2} ,

Vectors of weight 1 are: all the vectors of the Hamming weight t and all vectors such that all the non zero coordinates
can be covered by the only cyclic string of length b.
Codes of T -distance 3 correct all single errors in this metric, i. e., t-fold random errors, or all single b-burst errors.
Such linear (n, k) codes exist, if

2t−1
∑

i=0

(

n−1

i

)

(q − 1)i +

[

b−1
∑

i=t+1

(

b−1

i

)

(q − 1)i

] [

t−1
∑

i=0

(

n−b−1

i

)

(q − 1)i

]

+

[

b−1
∑

i=t

(

b−1

i

)

(q − 1)i

] [

t
∑

i=0

(i + 1)
(

n−b

i

)

(q − 1)i

]

+

[

b−1
∑

i=t+1

(

b−1

i

)

(q − 1)i

] [

b−1
∑

i=t

(

b−1

i

)

(q − 1)i

]

+

[

b−1
∑

i=t

(

b−1

i

)

(q − 1)i

]2

(n − 2b + 1)(q − 1) < qn−k.

Let δ = 2t/n, γ = b/n. Then we have asymptotically that there exist linear codes with rate

R =











1 − 2γ, 0 ≤ δ ≤ δ1()γ;

(1 − γ)H2

(

δ
2(1−γ)

)

log2 q + δ
2

logq(q − 1), δ1(γ) ≤ δ ≤ δ2(γ);

1 − Hq(δ), δ2(γ) ≤ δ ≤
q−1

q

,

where δ1(γ), δ2(γ) are roots of equations

(1 − γ)H2

(

δ1
2(1−γ)

)

log2 q + δ1
2

logq(q − 1) = γ;

(1 − γ)H2

(

δ2
2(1−γ)

)

log2 q + δ2
2

logq(q − 1) + γ = Hq(δ2).

In particular, this means that ordinary linear codes correcting up to t random errors can also correct single b- bursts,

if δ ≥ δ2(γ).
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The 2-dimensional (b1 × b2)-burst metric

The Basic subsets for this metrics are all the 2-dimensional cyclic shifts ( mod n1, mod n2) of the subset T11,

where T11 is a rectangle of size b1 × b2 in the upper left hand corner of the Array index set:

T11 =





(0, 0) (0, 1) · · · (0, b2 − 1)
· · · · · · · · · · · ·

(b1 − 1, 0) (b1 − 1, 1) · · · (b1 − 1, b2 − 1)





Matrices of weight 1 are matrices such that all the non zero coordinates can be covered by the only cyclic b1 × b2

rectangle.

The Weight Enumerator is known for special cases only.

Several results can be found in [15].

The Term Rank Metric

The metric was proposed in [16; 18]. The Array index set is used. The Basic subsets are as follows:

{All rows of the Array Index Set }
⋃

{All columns of the Array Index Set }

This metric is not translation invariant. Matrices of weight 1 are all matrices such that all the non zero coordinates
can be covered by the only row or by the only column.

The Weight Enumerator is unknown for this metric.

Another definition can be given in combinatorial terms. If

X =









x0,0 x0,1 . . . x0,n−1

x1,0 x1,1 . . . x1,n−1

. . . . . . . . . . . .

xm−1,0 xm−1,1 . . . xm−1,n−1









is a m × n matrix over the field GF (q), then the Term Rank Norm of a matrix X ,NTR(X), is defined as
theminimal number of lines (rows or columns) containing all nonzero elements of a matrix.

Easy decodable optimal codes for this metric are described in [19; 20].

Projective metrics

Projective metrics were proposed in [21; 22].

Let Fn
q be a vector space of dimension n over a finite field Fq .

Let

F = {f1, f2, · · · , fN}

be a set of non-zero distinct column vectors from Fn
q containing a basis. This means thatN ≥ n and there exist n

linearly independent vectors inF .

It is convenient to treat F as a n × N matrix.

Each vector f ∈Fn
q can be represented (not uniquely) as a linear combination of columns from F :

f =a1f1 + a2f2 + · · · aN fN .
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The projectiveF -normNF (f) of a vector f is defined as a minimal possible number of non-zero coefficients among
all representations of f :

NF (f) = min#(ai 6= 0 : f =a1f1 + a2f2 + · · · aN fN ).

This definition defines very rich family of metrics which can be useful to describe errors in channels with an additive

noise.

All the vectors fi ∈ F and its multiples (and only these vectors) are of norm 1 and are considered as 1-fold errors.

Examples of projective metrics

The Hamming metric. LetN = n and let

F =



















1 0 · · · 0
0 1 · · · 0
...
... · · ·

...

0 0 · · · 1



















Then this set defines the Hamming norm and the Hamming distance.

If F is a non singular matrix, then it defines formally the new metric but equivalent to the Hamming metric.

The metric for a channel with phase rotation. If a receiver should recover synchronization, then sometimes

data are received as negative:

Input data . . . 0011101 . . . =⇒ . . . 1100010 . . . Output data

Extra redundancy is needed to discover and to remove the phase rotation. An alternative is use of a special metric.

LetN = n + 1 and let

F =



















1 0 · · · 0 1
0 1 · · · 0 1
...
... · · ·

...

0 0 · · · 1 1



















The phase rotation is treated as adding to transmitted blocks the all 1’s block. Declare this block as a 1-fold error.
Use codes correcting 1-folds errors. Such codes are constructed in [23; 24].

The Rank metric

This metric was introduced in [17; 18; 25].

Let q = pm, let Fp be a base field and let rank(f ;Fp) be the rank of a vector f ∈Fn
q over the base field Fp. Let

F be the set of all the vectors of rank 1:

F =
{

f : f ∈Fn
q , rank(f ;Fp) = 1.

}

This set defines the Rank metric.
The theory of codes in the rank metric is presented in [25].
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Linear optimal (n, k, d) codes are called Maximal Rank Distance codes, or, MRD codes. They can be defined in
terms of generator matrices of the form

G =















g1 g2 · · · gn

g
q
1

g
q
2

· · · g
q
n

g
q2

1
g

q2

2
· · · g

q2

n

· · · · · · · · · · · ·

g
qk−1

1
g

qk−1

2
· · · g

qk−1

n















,

where g1, g2, . . . , gn is a set of elements of FqN which are linearly independent over Fq . MRD codes have the

following parameters:

Code length n ≤ N ; Dimension k; Rank and Hamming code distance d = r + 1 = n − k + 1.

Let Ai(n, d) be the number of vectors of a MRD code of rank weight i. Spectra of (n, k, d) MRD codes are given
by the next equations:

A0(n, d) = 1;

Ai(n, d) =

[

n

i

]

i−d
∑

j=0

(−1)j+i−d

[

i

d + j

]

q(m−j)(m−j−1)/2
(

qN(j+1)
− 1
)

, i ≥ d.

Here

[

n

i

]

is the notation for Gaussian numbers:

[

n

i

]

=
(qn

− 1)(qn
− q) . . . (qn

− qi−1)

(qi
− 1)(qi

− q) . . . (qi
− qi−1)

.

There exist fast decoding algorithms for MRD codes [25].

The Vandermonde metric

The Vandermonde F -metric is defined as follows.

Vectors f1, f2, . . . , fN that specify the F -metrics are chosen as columns of the Vandermonde matrix:

F =













u1 u2 . . . uN

u1x1 u2x2 . . . uNxN

u1x
2
1 u2x

2
2 . . . uNx2

N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u1x
n−1

1
u1x

n−1

2
. . . uNxn−1

N













.

Here n ≤ N, xi ∈ Fq should be different, ui ∈ Fq should be non-zero, i = 1, . . . , N .

Optimal linear (n, k, d) codes in this metric can be defined in terms of generator matrices of the form:

G =













v1 v1y1 . . . v1y
n−1

1

v2 v2y2 . . . v2y
n−1

2

v3 v3y3 . . . v3y
n−1

3

. . . . . . . . . . . . . . . . . . . . . .

vk vkyk . . . vky
n−1

k













.

Here vi ∈ Fq are non-zero, and yi ∈ Fq are different. Moreover, we must choose yj that differs from each xi.

A dimension k of the code C must satisfy k + N ≤ q + 1 (it is a necessary condition for the fast decoding
algorithm).

There exist a fast decoding algorithm for these codes.
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Codes are used in the modified Niederreiter public key cryptosystem [26].

Some graph metrics

It is clear that distance among nodes in a connected graph constitutes a metric. The distance, d(n1, n2), between
two nodes n1 and n2 in a connected graph is the length of the shortest path joining them and the diameter is the

maximum of all the distances between any pair of nodes. It is known that Hamming distance among codewords

can be seen as the graph distance among vertices in a Hypercube graph. In the same way, the Lee metric in two-

dimensional signal sets can be associated to minimal routing in a Torus graph.

Examples of graph metrics

Circulant Graph Distances over Gaussian Integer Constellations. The Gaussian integers Z[i] is the subset
of the complex numbers with integer real and imaginary parts, that is:

Z[i] := {x + yi| x, y ∈ Z}.

Z[i] is an Euclidean domain and the norm is defined as:

N : Z[i] −→ Z
+

x + yi 7−→ x2 + y2

If 0 6= α ∈ Z[i], we consider Z[i]α the ring of the classes of Z[i] modulo the ideal (α) generated by α.

A new metric over these subsets of the Gaussian integers is defined in a very natural way. This metric is applicable

when using any value of α (not necessarily with prime norm) and it corresponds to the distance among nodes in its

associated circulant graph.

For β, γ ∈ Z[i]α, consider x+ yi in the class of β − γ with |x|+ |y| minimum. The distanceDα between β and

γ is

Dα(β, γ) = |x| + |y|.

Dα defines a distance over the quotient ring Z[i]α.

A new family of circulant graphs of degree four whose nodes are labeled by Gaussian integers and their adjacency

is determined by the distanceDα was introduced in [27].

Given α = a + bi ∈ Z[i] with gcd(a, b) = 1 we define the graph Gα = (V,E) where:

1. V = Z[i]α is the node set, and

2. E = {(β, γ) ∈ V × V | Dα(β, γ) = 1} is the edge set.

Perfect codes over quotient rings of Gaussian integers were constructed correcting 1-fold errors.

Eisenstein-Jacobi integers and circulant graphs of degree six. The ring of the Eisenstein-Jacobi integers is

defined as:

Z[ρ] = {x + yρ | x, y ∈ Z},

where ρ = (−1 +
√

−3)/2. The ring Z[ρ] is an Euclidean domain with norm
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N : Z[ρ] −→ N

x + yρ 7−→ x2 + y2
− xy

The units of Z[ρ] are the elements with unitary norm, that is {±1,±ρ,±ρ2
}.

For every 0 6= α ∈ Z[ρ] we can consider Z[ρ]α = {β (mod α) | β ∈ Z[ρ]}.

Let 0 6= α = a + bρ ∈ Z[ρ] with gcd(a, b) = 1 and consider Z[ρ]α. Denote the Eisenstein-Jacobi graph
generated by α as EJα = (V,E) and it is defined as follows:

• V = Z[ρ]α is the set of nodes and

• E = {(β, γ) ∈ V × V | (γ − β) ≡ ±1,±ρ,±ρ2 (mod α)} is the set of edges.

Let α = a + bρ ∈ Z[ρ] be such that gcd(a, b) = 1. Denote the distance between nodes β and γ in EJα as

Dα(β, γ). This distance can be expressed as:

Dα(β, γ) = min{|x| + |y| + |z| | x + yρ + zρ2
≡ (γ − β) (mod α)}.

Perfect codes over quotient rings of Eisenstein–Jacobi integers were constructed correcting 1-fold errors.

The subspace metric

A subspace approach for network coding has been proposed in [28]. It allows to overcome many previous restrictions

on network configurations. Coding schemes using this approach are developed in [29]. The subspace approach is

based on the subspace metric.

Let Fq be a finite field of q elements. Denote byWN,q a fixed N -dimensional vector space over the field Fq . Let

P(WN,q) be the set of all subspaces ofWN,q.

The subspace distance between two subspaces U and V is defined as follows:

d(U, V ) = dim(U ⊎ V ) − dim(U ∩ V ). (1)

Codes for network coding are proposed in several papers (see, [28] - [34]).

Conclusion

Metrics are used in many practical applications. The brief survey of such metrics is given.

General properties of codes are considered including simple bounds.

Many examples of metrics are described. In particular, the uniform and non-uniform Hamming metrics, the Lee

and Sharma-Kaushik metrics, the city block (Manhattan) metric, the Varshamov metric, the burst metric, the 2-

dimensional burst metric, the term rank metric, the rank metric, combinatorial metrics, projective metrics, graph

metrics, the subspace metric.

Open problems are pointed.
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REGULAR  INVERSIVE  POLYTOPES 

Norman W. Johnson 

Abstract:  Corresponding to each regular asymptotic polytope P in hyperbolic n-space Hn is an isomorphic 

figure °P in inversive (n1)-space In−1 having many related metric properties.  A regular inversive polytope °P 

has a ৵ৱ৬৩৶৯৴৭  and a ৺৩৬ৱ৽৻ , with 2 being its ৬ৱৰ৭৬৺৩৴ ৩৶৯৴৭ and 2 its ৩৶ৼৱৰ৭৬৺৩৴ ৬ৱ৻ৼ৩৶৫৭.  The 

values of  and  are determined for each regular inversive n-polytope. 

Keywords:  regular polytopes, inversive geometry, non-Euclidean geometry 

ACM Classification Keywords: G.2.1  Discrete mathematics — combinatorics 

Introduction 

The classical real metric spaces (or “spaces of constant curvature”) are the spherical, Euclidean, and hyperbolic 
n-spaces Sn, En, and Hn (n ≥ 1); elliptic n-space ePn results from identifying antipodal points of Sn and 
has many of the same metric properties.  The points at infinity of hyperbolic n-space Hn lie on the absolute 

hypersphere, which has the geometry of a Möbius (n1)-sphere or inversive (n1)-space In−1.  Each k-plane 

of Hn meets the absolute hypersphere in a real inversive (k1)-sphere Ik−1, with I1 being an inversive circle 

and I0 a pair of points.  Two hyperplanes of Hn may be intersecting, meeting in an (n2)-plane; parallel, having 
a single absolute point in common; or diverging, with a common perpendicular.  The corresponding inversive 

(n2)-spheres are respectively separating, tangent, or separated. 

An n-polytope  ࣪ is a partially ordered set of j-dimensional “entities” (1 ≤ j ≤ n), its j-faces, satisfying certain 
incidence conditions, such as those given by McMullen & Schulte (2002, pp. 22–25).  A totally ordered subset 

of j-faces, one of each rank from 1 to n, is a flag.  When  ࣪ is realized as a geometric figure P in some n-

dimensional real space, the unique (1)-face, or nullity, can be taken to be the empty set .  The 0-faces are 
points, the vertices of P, and the 1-faces joining adjacent vertices are edges.  The unique n-face is the body of 

P, essentially its “interior.”  The (n1)-faces are called facets, and the (n2)-faces in which adjacent facets 
meet are ridges.  A 2-polytope is a polygon, and a 3-polytope is a polyhedron.  An n-polytope P is regular if 
its symmetry group is transitive on the flags. 

Dihedral Angles 

It is convenient to denote a regular p-gon of (interior) angle 2/q by the extended Schläfli symbol p:q.  
Then the polygon is spherical, Euclidean, or hyperbolic according as q is less than, equal to, or greater than 

2p/(p2).  A regular hyperbolic polygon can be ordinary, with all its vertices lying on an ordinary circle, or 
asymptotic, with adjacent sides parallel, so that the vertices all lie on the absolute circle of H2 and the angles are 
all zero; a regular asymptotic p-gon thus has the symbol p:oo.  The center of an ordinary or asymptotic 

p-gon is an ordinary point.  An infinite-sided apeirogon oo :q of angle 2/q (q >2), whose center is an 

absolute point, can be inscribed in a horocycle, and an asymptotic apeirogon oo :oo in the absolute circle. 
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A regular polyhedron whose faces are p-gons, arranged q at a vertex, having dihedral angle 2/r, is denoted 

by p, q:r.  The polyhedron is spherical, Euclidean, or hyperbolic according as sin /p sin /r is greater 

than, equal to, or less than cos /q, and it is asymptotic when the vertex section q:r is Euclidean, i.e., when 

r = 2q/(q2).  The regular asymptotic polyhedra of H3 consist of the five convex polyhedra 

3, 3:�3, 4:�, :�, :10̸3�, :

the four star polyhedra 

5̸2, :10̸3�, 5̸2: �5̸2, :�, 5̸2: 

and the three apeirohedra 

4, 4:�, :�, :

In similar fashion, a regular 4-polytope with facets p, q}, r surrounding each edge, and dihedral angle 2/s 

is denoted by p, q, r:s, the polytope being spherical, Euclidean, or hyperbolic depending on the value of 

s.  It is asymptotic when the vertex section q, r:s is Euclidean, i.e., when sin /q sin /s = cos /r.  

Analogous criteria can be developed for higher-dimensional regular polytopes 

p, q,  .  .  .  ,  u, v:w. 

Going in the other direction, a one-dimensional polytope comprises a line segment (or a circular arc) and its two 

endpoints; the whole figure may be called a ditel.  This can be a circular ditel :a (a > 2) in S1, a straight ditel 

:ooin E1, an ordinary hyperbolic ditel :bi (b > 0) in H1, or an asymptotic ditel :0 (an entire hyperbolic 

line with its two absolute points).  Each finite ditel :a, :oo, or :bi has a unique midpoint, halfway 

between the endpoints.  An asymptotic ditel, however, does not have a well-defined midpoint. 

Each vertex of a regular asymptotic n-polytope P in hyperbolic n-space Hn lies on the absolute hypersphere, 

and each j-face (1 ≤ j ≤ n1) lies in a unique j-plane.  The j-plane of a j-face meets the absolute hyper-

sphere in an inversive (j1)-sphere.  The vertices of P and these (j1)-spheres can be taken as the j-faces 

( ≤ j ≤ n1) of an isomorphic regular inversive n-polytope °P.  The (1)-face of °P is (as usual) the empty 

set, and the n-face of °P is the whole absolute hypersphere, regarded as an inversive (n1)-sphere In−1. 

The dihedral angle between two adjacent facets of the inversive n-polytope °P is, in general, the angle between 

two (n2)-spheres on In−1, which is the same as the dihedral angle between the corresponding facets of the 

asymptotic n-polytope P.  For n = 1, P is an asymptotic ditel :0, and °P is an inversive dyad °:0, whose 
two facets are points, the “angle” between which is infinite.  For n = 2, P is a regular asymptotic p-gon p:oo , 
and °P is a regular inversive p-gon °p:oo, adjacent facets of which are tangent point-pairs (i.e., they have 

one point in common) on an inversive circle, the angle between which is zero.  For n ≥ 3, the dihedral angle 
between adjacent facets of a regular inversive n-polytope °P is the positive angle between two separating 

(n2)-spheres on an inversive (n1)-sphere. 

For n ≥ 2, joining the center of a regular asymptotic n-polytope P to any ridge, or (n2)-face, determines a 
median hyperplane of P.  The angle between the median hyperplane and either of the facets that meet at the 
ridge is the midangle, half the dihedral angle.  For both P and the corresponding regular inversive polytope °P, it 

often turns out to be simpler to work with the midangle  rather than the dihedral angle 2
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Metric Formulas 

In the Beltrami–Klein model for hyperbolic n-space Hn, the ordinary points of Hn are represented by the interior 

of an oval (n1)-quadric  in projective n-space Pn, with the points of  itself representing the absolute 
hypersphere.  Let the points X and hyperplanes Ǔ of Pn have homogeneous coordinates ⦅ x  ⦆  =   ( x 0, x 1,  .  .  .  , x n )�and�⟦ u ⟧   =   [ u 0, u 1,  .  .  .  , u n ] 

with ⦅ x  ⦆ treated as a row and ⟦ u ⟧ as a column.  Point X lies on hyperplane Ǔ, written X Ǔ, whenever ⦅ x  ⦆⟦ u ⟧ =  0. Then the (n1)-quadric  can be taken to be the locus of self-conjugate points, or the envelope 
of self-conjugate hyperplanes, in an absolute hyperbolic polarity defined by dual bilinear forms ⦅ x y ⦆  =  ⦅ x  ⦆H ⦅ y ⦆  ˅ �and�⟦ u v ⟧  =   ⟦ u ⟧  ˅ H −1⟦ v ⟧. 

Here H is a symmetric (n1)×(n1) matrix congruent to the pseudo-identity matrix In, 1  =   \1,  .  .  .  , 1,  1\ , 

and the caron denotes the transpose, making ⦅ y ⦆  ˅  a column and ⟦ u ⟧  ˅  a row.  We may, for instance, take H  to 

be the diagonal matrix \ 1, 1,  .  .  .  , 1\ , so that the absolute hypersphere ⦅ x x ⦆ =   0 has the equation 

x 1 
2          x n  2   =   x 0 

2. 

Every ordinary point X with coordinates ⦅ x  ⦆ has ⦅ x x ⦆ <  0, and every ordinary hyperplane Ǔ with coordinates ⟦ u ⟧  has  ⟦ u u ⟧  >  0.   The  discriminant  of  two  ordinary  hyperplanes Ǔ  and V̌  may  be  defined  by 

|| u v ||  =   ⟦ u u ⟧⟦ v v ⟧⟦ u v ⟧2, 

and the hyperplanes are then 

��� intersecting if�|| u v ||  >  0,��� 

���parallel�� if�|| u v ||  =  0,��� 

���diverging� if�|| u v ||  <  0.��� 

When Hn is taken to have constant curvature 1, we have simple expressions for distances and angles (cf. 
Coxeter 1998, pp. 209–210).  In place of the Euclidean distance |XY|, the hyperbolic distance between two 

ordinary points X and Y is given by 
 

                                           ]XY[  =  cosh−1 

 

                  | ⦅ x y ⦆| 
   ————–––———– .  
√⦅ x x ⦆√⦅ y y ⦆ 

 
(1) 

 

The angle between two intersecting or parallel hyperplanes Ǔ and V̌ is given by 

 
                                            (ǓV̌)   =   cos−1 

 

              | ⟦ u v ⟧| 
————–––———– ,  
√⟦ u u ⟧√⟦ v v ⟧ 

 
(2) 

 

and the minimum distance between two diverging hyperplanes Ǔ and V̌ by 

 
                                            )ǓV̌(  =  cosh−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(3) 
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The distance between a point X and a hyperplane Ǔ is given by 

  
                                          ]XǓ(  =  sinh−1 

 

             | ⦅ x  ⦆⟦ u ⟧| 
————–––———– .    
√⦅ x x ⦆√⟦ u u ⟧ 

 
(4) 

 

Given any hyperplane Ǔ and a point X not on Ǔ, a line through X and one of the absolute points of Ǔ is parallel 
to Ǔ in that direction.  Following Lobachevsky, the angle between the perpendicular from X to Ǔ and the parallel 
is called the angle of parallelism for the distance x = ]XǓ( and is given by 

(x)  =  cos1 tanh x  =  2 tan1 ex. ��������������������(5) 

As x increases from zero to infinity, (x) decreases from /2 to 0. 

A projective hyperplane Ǔ, with coordinates ⟦ u ⟧, meets the (n1)-quadric , i.e., the absolute hypersphere 

of  Hn regarded as the inversive (n1)-sphere In1, in an inversive (n2)-sphere ů, a hypersphere of In1, 
which is 

���real� if�⟦ u u ⟧  >   0,��� 

���degenerate if�⟦ u u ⟧  =   0,��� 

��� imaginary� if�⟦ u u ⟧  <   0.��� 

Taking the discriminant of two real or degenerate hyperspheres ů and v̊ to be the discriminant ||u v|| of the 
corresponding hyperplanes Ǔ and V̌, we find that the hyperspheres are 

���separating if� || u v ||   >    0,��� 

���tangent�� if� || u v ||   =    0,��� 

���separated� if� || u v ||   <    0.��� 

Applied to point-pairs ü = {U1, U2} and v̈ = {V1, V2} on an inversive circle, separation has the usual meaning 

associated with cyclic order (Coxeter 1966a, p. 218; 1998, pp. 22–23).  That is, ü and v̈ are separating if 

U1U2//V1V2, tangent if they have a point in common, and separated otherwise.  For n ≥ 3, two hyperspheres 

of  I n1 are separating, tangent, or separated according as they intersect in a real, degenerate, or imaginary 

(n3)-sphere. 

The angle between two separating hyperspheres ů and v̊ of In−1, which is the same as the angle between the 
corresponding intersecting hyperplanes of  Hn, is given by 

 
                                              (ův̊)   =   cos−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(6) 

 

Two separated hyperspheres ů and v̊ of In−1 have an analogous inversive distance (Coxeter 1966b; 1998, pp. 

292–298); this is the same as the minimum distance between the corresponding diverging hyperplanes of Hn and 
is given by 
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                                              )ův̊(  =  cosh−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(7) 

 

The last two formulas are especially relevant to the properties of regular inversive polytopes. 

Antihedral Distances 

If P is a regular n-polytope in a real metric space, the distance from the center O of the body of P to one of its 
vertices is the circumradius 0R, and the perpendicular distance from O to (the center of) a facet is the inradius 

n1R.  When P is centrally symmetric, the antihedral distance between a pair of opposite facets is twice the 

inradius of P.  Although an odd polygon p:q or a regular simplex 3n1:w is not centrally symmetric, 

the regular compound p:q or 3n1 :w of two such polygons or simplexes in dual positions is.  
The distance between two opposite facets of the compound, one belonging to each component, can be taken as 
the antihedral distance of the polytope.  The inradius of a regular asymptotic apeirotope is infinite, but there is no 
antihedral distance, since there are no opposite facets. 

The radius  of a regular inversive polytope °P and its antihedral distance 2 are respectively the inradius and 

the antihedral distance of the corresponding regular asymptotic polytope P.  When  is finite, the antihedral 
distance of °P is the inversive distance between two separated hyperspheres of In−1, opposite facets either of 

°P or of a regular compound of two °P’s.  For an inversive apeirotope,   is infinite.  The subradius   of °P is 
the radius of a facet of °P. 

The inradius 0R of an asymptotic ditel :0 or the radius  of an inversive dyad °:0 is infinite.  For a regular 
inversive p-gon °p:oo ,  is the distance for which the angle of parallelism is /p, and it follows from (5) that 

tanh  = cos /p.  Values for particular polygons are given in the table below, where we write  and ̄     for the 

golden-section number 1 ̸2(√͞51) and its inverse 1 ̸2(√͞51). 

Table 1.  Regular Inversive Polygons 

       Polygon       2 tanh 

     °3 :oo 

     °4 :oo 

     °5 :oo 

     °5̸2:oo 

     °6 :oo 

     °p:oo 

   ° oo :oo 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

            1 

         √͞2 

 

̄ 

         √͞3 

    
2 cos /p 

            2 
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With the help of some hyperbolic trigonometry, we obtain a simple formula for the radius  of a regular inversive 

polyhedron °{p, q}:r  in terms of its subradius   and midangle  : 

                                                                                          tan /r 
                                                tanh   =  sinh   tan   =  ———– . 
                                                                                                             tan /p 

 
(8) 

 
The particular cases are listed in the following table. 

Table 2.  Regular Inversive Polyhedra 

     Polyhedron         tan         tanh  

   °3, 3 : 

   °3, 4 : 

   °4, 3 : 

   °3, 5 :10̸3 

   
°5, 3 : 

   °
5̸2, 5 :10̸3 

   °5, 5̸2: 

   °5̸2, 3 : 

   °3, 5̸2: 

   °4, 4 : 

   °3, 6 : 

   °6, 3 : 

           1̸3√͞3

            1 

           1̸3√͞3 
            
    √(34)/5 

           1̸3√͞3 
            
    √(34)/5 
            
    √(34̄  )/5 

           1̸3√͞3 
            
    √(34̄  )/5 

              1 

            √͞3 

           1̸3√͞3 

              1̸3 

          1̸3√͞3 

          1̸3√͞3 
           
   √(34)/5 
           
   √(34)/5 

           1̸5√͞5 

           1̸5√͞5 
           
   √(34̄  )/5 
           
   √(34̄  )/5 

             1 

             1 

             1 

 

From the relationship tanh  = sinh   tan , which holds for all regular inversive n-polytopes with n ≥ 3, 

we obtain the parameters for the seventeen regular inversive 4-polytopes °p, q, r:s, as given in the 
following table.  The last figure is an apeirotope.  Irrational values of s are rounded to four decimal places. 
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Table 3.  Regular Inversive 4-Polytopes 

                4-Polytope       tan       tanh  

      °3, 3, 3 :  

      °3, 3, 4 :  

      °4, 3, 3 :  

      °3, 4, 3 :  

      °3, 3, 5 :  

      °5, 3, 3 :  

      °5̸2, 5, 3 :  

      °3, 5, 5̸2:  

      °5,5̸2, 5 :  

      °5̸2, 3, 5 :  

      °5, 3, 5̸2:  

      °5̸2, 5, 5̸2:  

      °3,5̸2, 5 :  

      °5,5̸2, 3 :  

      °5̸2, 3, 3 :  

      °3, 3, 5̸2:  

      °4, 3, 4 :  

        1̸2√͞2 

          √͞2 

        1̸2√͞2 

           1 

            2 

        1̸2√͞2 

             

            ̄ 

             

            2 

           ̄   2 

            ̄ 

             

            ̄ 

        1̸2√͞2 

           ̄   2 

         √͞2 

           1̸4 

           1̸2 

           1̸2 

        1̸2√͞2 

      1̸4√͞2 2 

      1̸4√͞2 2 

         1̸2 

         1̸2 

         1̸2 

          1̸2 

          1̸2 

         1̸2̄ 

         1̸2̄ 

         1̸2̄ 

      1̸4√͞2̄   2 

      1̸4√͞2̄    2 

         1 

 

There are six regular inversive 5-polytopes °p, q, r, s:t, whose midangles  and radii  can be determined 
from the following table.  The last three are apeirotopes. 

Table 4.  Regular Inversive 5-Polytopes 

               5-Polytope       tan       tanh  

    °3, 3, 3, 3 : 

    °3, 3, 3, 4 : 

    °4, 3, 3, 3 : 

    °4, 3, 3, 4 : 

    °3, 3, 4, 3 : 

    °3, 4, 3, 3 : 

        1̸5√͞15̅ 

          √͞3 

        1̸5√̅͞ 

          √͞3 

          √͞3 

           1 

           1̸5 

       

1̸5√͞5 

       

1̸5√͞5 

          1 

          1 

          1 
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For n ≥ 6, there are just four regular asymptotic polytopes in hyperbolic n-space Hn: the asymptotic versions 
of the regular n-simplex and the dual n-orthoplex (cross polytope) and n-orthotope (block polytope) 

3n1 :an,�3n2, 4 :bn,� 3n2 :an, 

and the asymptotic orthic n-apeirotope (grid apeirotope) 

 3n3, 4 :bn. 

Each of these figures has a corresponding regular inversive polytope in In−1.  The parameters an and bn are 
defined by 
 
                                                                         
                                      tan  ––    = 
                                             an 

 
 ⎹  n2 
 ⎹ ––––––  ⎷   n 

 

and 

 
         
tan  ––     = 
       bn  

 
    
√ n2 . 
 

 

(9)
 

Note that limn→∞ an = 4 and limn→∞ bn = 2.  The following table gives the midangle  and radius  of each 

regular inversive n-polytope (n ≥ 6). 

Table 5.  Regular Inversive n-Polytopes 

                n-Polytope      tan      tanh  

 

    °3, 3,  .  .  .  ,  3, 3 :an 
 

    °3, 3,  .  .  .  ,  3, 4 :bn 
 

    °4, 3,  .  .  .  ,  3, 3 :an 
 

    °4, 3,  .  .  .  ,  3, 4 :bn 
 

 
     ⎹  n2 
     ⎹ –––––– 
     ⎷   n 

 
   √ n2 

 
     ⎹  n2 
     ⎹  –––––– 
     ⎷   n  

 
   √ n2 
 

 

          1 
       –– 
        n 

          1 
       –––– 
      √n 

          1 
       –––– 
      √n 

          1 
 

 

Regular inversive polytopes with identical vertex sections have the same midangle , and dual polytopes 

°p, q,  .  .  .  ,  u, v:w�and�°v, u,  .  .  .  ,  q, p:o 

have the same radius .  Also, except for polygons °p:oo  with more than six sides, tan  and tanh  
either are rational numbers or have expressions involving nothing worse than nested square roots. 
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Conformal Models 

The Euclidean plane can be given the topology of a sphere by means of a “one-point compactification,” i.e., by 
adjoining a single point at infinity Ȯ that lies on every line.  If such extended lines are treated as infinite (or 
“great”) circles on the same footing as ordinary (or “small”) circles, and if we allow a circle-preserving trans-
formation, or circularity, to move the point Ȯ, the resulting “inversive plane” or parabolic sphere Ṡ2 provides 
a conformal model for the inversive sphere I2.  A circularity is called a homography or an antihomography 
according as it preserves or reverses orientation; homographies are also known as Möbius transformations. 

An ordinary point with Cartesian coordinates ( x, y ) has parabolic coordinates 

( 1̸2( x
2y21 ),  x ,  y ,  1 ̸2( x

2y21 ) ), 

while the exceptional point Ȯ is 

( 1,  0,  0,  1 ). 

A small circle with center ( h, k ) and radius r  has parabolic coordinates 

[ 1̸2( r2h2k21 ),  h ,  k ,  1 ̸2( r
2h2k21 ) ], 

The equation of a small circle is ( xh )2( yk )2 = r 2.  A great circle, i.e., a line, with inclination   and 
displacement  c  has  coordinates 

[ c, sin  , cos  , c ], 

 with 0 ≤   <  .  The equation of a line is y cos   = x sin     c; if   ≠ /2, the line has slope m = tan   

and y-intercept b = c sec  .  Parabolic coordinates for points and circles of Ṡ2 (and nonzero scalar multiples 

thereof) can be taken as homogeneous coordinates for points and circles of I2. 

An inversive circle c̊, with coordinates ⟦ c ⟧   =   [ c 0, c 1, c 2, c3 ],  is real, degenerate, or imaginary according as 
the quadratic form ⟦ c c ⟧   =   c1

2c2
2c3

2c0
2 

Is positive, zero, or negative.  In the nondegenerate cases an inversion in c̊ is the involutory circularity I2 → I2 
induced by the pseudo-orthogonal inversion matrix  
 
 
 
              1 
C  =  ——— 
         ⟦ c c ⟧  

  





 




c0
2c1

2c2
2c3

2          c0c1                     c0c2                     c0c3 
                                                                      
         c1c0            c0

2c1
2c2

2c3
2          c1c2                     c1c3 

                                                                        
           c2c0                        c2c1            c0

2c1
2c2

2c3
2         c2c3 

                                                                        
         c3c0                        c3c1                     c3c2         c0

2c1
2c2

2c3
2 

 










(10)

 
(cf. Schwerdtfeger 1962, pp. 117–118).    Each  point ⦅ p ⦆ =  ( p 0 , p 1 , p 2 , p3 )  is  interchanged with the 

point ⦅ p ⦆ C .  If ⟦ c c ⟧ > 0, this is a hyperbolic inversion, leaving all points on the real circle c̊ invariant and 
taking each circle orthogonal to c̊ into itself.  If ⟦ c c ⟧ < 0, the circularity is an elliptic inversion in the imaginary 
circle c̊, leaving no real points invariant.  Every circularity of I2 is the product of (at most four) hyperbolic 
inversions. 

If we now fix a central inversion in a particular real inversive circle , say the unit circle or the x-axis, we obtain 
a conformal model for the metric hyperbolic sphere S̈2 (cf. Johnson 1981, pp. 452–454).  A point on one side 
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of  inverts into a point on the other side, and such antipodal point-pairs represent the ordinary points of the 

hyperbolic plane H2.  The self-antipodal points on the “equator”  are the absolute points of H2.  Inversive circles 

orthogonal to  (“great” circles of S̈2) represent ordinary lines of H2.  A circularity of I2 that takes  into itself is 
an isometry of H2.  The mapping I2 → H2 preserves angular measure, and the minimum distance between two 
diverging lines in H2 is the same as the inversive distance between the representative separated circles in I2 

(cf. Coxeter 1998, pp. 308–311).  Note that a regular inversive polygon °p:oo whose vertices all lie on  is 

the trace on  of a regular asymptotic polygon p:oo . 

The mapping just described can be made one-to-one by identifying antipodal points of S̈2 or, equivalently, by 

restricting the domain to points on one side of , e.g., the interior of the unit circle or points with positive y-
coordinates, with hyperbolic lines represented by inversive circular arcs instead of whole circles.  In this manner 
we obtain Poincaré’s “conformal disk” and “upper half-plane” models for the hyperbolic plane. 

As a model for the inversive sphere I2, the completed Euclidean plane can be replaced by the elliptic sphere S2, 
taken as the unit sphere in Euclidean 3-space.  A conformal mapping from the “equatorial plane” z = 0 to S2 
can be achieved by stereographic projection, in which a line through an arbitrary point (x, y, 0) and the “north 

pole” (0, 0, 1) meets the sphere again in the point (, , ), with (0, 0, 1) itself corresponding to the 
exceptional point Ȯ (cf. Schwerdtfeger 1962, pp. 22–29).  The relationship between two-dimensional Cartesian 

coordinates ( x, y) and spherical coordinates (, , ) is given by 

 

 

 
 = 
 

       2x 
—————–, 
x2y21 

 
 = 
 

       2y 
—————–, 
x2y21 

 
 = 
 

x2y21 
—————–. 
x2y21 

 
(11)

The parabolic coordinates ( 1 ̸2( x
2y21 ), x , y , 1 ̸2( x

2y21 ) ) of a point can be replaced by normalized 

coordinates  (1, , , ),  with   2 2 2  =  1. 

A regular asymptotic polyhedron p, q:r of finite inradius can be represented in the Beltrami–Klein model for 

H3 by a regular Euclidean polyhedron p, q:r′ inscribed in the unit sphere.  Although it does not preserve 
angles between ordinary planes, so that r′ ≠ r, the Beltrami–Klein model is conformal on the absolute sphere.  

Thus the inversive circles in which adjacent face-planes of p, q:r′ meet the sphere intersect in an angle 

of  2/r, producing a regular inversive polyhedron °p, q:r. 

The above procedures can be extended to construct conformal Euclidean and spherical models for hyperbolic 

n-space and inversive (n1)-space and for regular inversive n-polytopes °p, q,  .  .  .  ,  u, v:w. 
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Introduction

A divergence function is a skew-symmetric squared distance like function on a manifold. In information geometry,

which is a geometric theory of statistical inference, divergence functions play important roles. The Kullback-Leibler

divergence is a typical example of such divergence functions [Amari and Nagaoka, 2000].

Recently, theory of complex systems has been developing rapidly. In complex systems, Tsallis statistics is one of

anomalous statistics based on generalized entropies [Tsallis, 2009]. A q-exponential family is an important statistical

model in Tsallis statistics, which includes various long tail probability distributions.

In this paper, we construct a divergence function on a q-exponential family from the viewpoint of affine differential

geometry. For this purpose, we study generalized conformal geometry and affine hypersurface theory.

In information geometry, affine differential geometry is more useful than Riemannian geometry, and it is known that

affine differential geometry generalizes geometry of distance. See [Matsuzoe, 2009], for example.

Statistical manifolds and generalized conformal geometry

First, let us recall geometry of statistical manifolds. Further details about statistical manifolds and generalized

conformal equivalence relations, see [Matsuzoe, 2009; Matsuzoe, 2010], for example.

Definition 1 ([Kurose, 1994]). Let (M,h) be a semi-Riemannian manifold and let ∇ be a torsion-free affine
connection on M . We say that the triplet (M,∇, h) is a statistical manifold if the covariant derivative ∇h is a
totally symmetric, that is, the following equation folds:

(∇Xh)(Y,Z) = (∇Y h)(X,Z),

where X,Y and Z are arbitrary vector fields on M . The symmetric (0, 3)-tensor field C := ∇h is called the

cubic form of (M,∇, h). (In information geometry, the triplet (M,h,C) is also called a statistical manifold.)

For a statistical manifold (M,∇, h), we can define another torsion-free affine connection by

Xh(Y,Z) = h(∇XY,Z) + h(Y,∇∗
XZ).

We call∇∗ the dual connection of∇ with respect to h. In this case, the triplet (M,∇∗, h) is a statistical manifold,
which is called the dual statistical manifold of (M,∇, h).
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Here let us recall that a statistical model is a statistical manifold [Amari and Nagaoka, 2000]. Let (Ω,F) be a
measurable space, and let S be a parametric statistical model on Ω. That is, S is a set of all probability densities
on Ω parametrized by θ = (θ1, . . . , θn) ∈ Θ ⊂ R such that

S =

{

p(x; θ)

∣

∣

∣

∣

p(x; θ) > 0,

∫

Ω

p(x; θ)dx = 1

}

,

where x is a random variable on Ω. We assume that S is a manifold with a local coordinate system (θ1, . . . , θn).

For simplicity, set ∂i := ∂/∂θi. We define a symmetric matrix (gF
ij) (i, j = 1, 2, . . . , n) by

gF
ij(θ) :=

∫

Ω

(∂i log p(x; θ)) (∂j log p(x; θ)) p(x; θ)dx.

If (gF
ij(θ)) is positive definite, it determines a Riemannian metric onM . We call g

F the Fisher metric onM .

For an arbitrary constant α ∈ R, we can define a torsion-free affine connection ∇(α) on S by

Γ
(α)

ij,k(θ) :=

∫

Ω

{

∂i∂j log p(x; θ) +
1 − α

2
(∂i log p(x; θ)) (∂j log p(x; θ))

}

(∂k log p(x; θ)) p(x; θ)dx,

where Γ
(α)

ij,k(θ) is the Christoffel symbol of the first kind, i.e., g
F (∇

(α)

∂i
∂j , ∂k) = Γ

(α)

ij,k(θ). The affine connection

∇
(α) is called the α-connection onM . For an arbitrary constant α ∈ R,∇(α) and∇(−α) are mutually dual with

respect to gF , and the triplets (M,∇(α), gF ) and (M,∇(−α), gF ) are dual statistical manifolds. We remark that
(M,∇(α), gF ) is invariant under the choice of the reference measure on Ω. Hence we call (M,∇(α), gF ) an
invariant statistical manifold.

A statistical model Se is an exponential family if Se =
{

p(x; θ)
∣

∣p(x; θ) = exp
[
∑n

i=1
Fi(x)θ

i
− ψ(θ)

]]

,

where F1(x), . . . , Fn(x) are random variables on Ω, and ψ is a convex function onΘ. For an exponential family,
the Fisher metric gF and the α-connection∇(α) are given by

gF
ij(θ) = ∂i∂jψ(θ), Γ

(α)

ij,k =
1 − α

2
CF

ijk(θ) =
1 − α

2
∂i∂j∂kψ(θ).

Since Γ
(1)

ij,k ≡ 0, the 1-connection ∇(1) is flat and {θ1, . . . , θn
} is an affine coordinate system on Se. For this

reason, the 1-connection ∇(1) on an exponential family Se is called an exponential connection.

Next, we consider the 1-conformal equivalence relation on statistical manifolds.

Definition 2 ([Kurose, 1994]). We say that statistical manifolds (M,∇, h) and (M, ∇̄, h̄) are 1-conformally
equivalent if there exists a function λ such that

h̄(X,Y ) = eλh(X,Y ),

∇̄XY = ∇XY − h(X,Y )gradhλ,

where gradhλ is the gradient vector field of λ with respect to h. A statistical manifold (M,∇, h) is said to be
1-conformally flat if (M,∇, h) is locally 1-conformally equivalent to some flat statistical manifold.

Geometry of q-exponential family

In this section, we consider geometry of q-exponential families. First, let us recall the definitions of q-exponential

functions and q-exponential families

For a fixed positive number q, the q-exponential function and the q-logarithm function are defined by

expqx :=

{

(1 + (1 − q)x)
1

1−q , q 6= 1, (1 + (1 − q)x > 0),
expx, q = 1,

logq x :=







x1−q
− 1

1 − q
, q 6= 1, (x > 0),

log x, q = 1, (x > 0),
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respectively. When q → 1, the q-exponential function recovers the standard exponential, and the q-logarithm
function recovers the standard logarithm. A statistical model Sq is said to be a q-exponential family if Sq =
{

p(x, θ)
∣

∣p(x; θ) = expq

[
∑n

i=1
θiFi(x) − ψ(θ)

]

, θ ∈ Θ ⊂ R
n
}

. We remark that a q-exponential family is

obtained from the maximization principle of the generalized entropy in Tsallis statistics [Tsallis, 2009].

In the same manner as an exponential family, we can define geometric objects on Sq . We define the q-Fisher metric

gq , the q-cubic form Cq, and the q-exponential connection∇q(e) by

g
q
ij :=

∂2ψ

∂θi∂θj
, C

q
ijk :=

∂3ψ

∂θi∂θj∂θk
, gq(∇

q(e)
X Y,Z) := gq(∇

q(LC)

X Y,Z) −
1

2
Cq(X,Y,Z),

respectively, where ∇q(LC) is the Levi-Civita connection with respect to gq . In this case, (Sq,∇
q(e), gq) is a

flat statistical manifold. Denote by ∇(2q−1) the (2q − 1)-connection on Sq , i.e., α = 2q − 1. The triplet
(Sq,∇

(2q−1), gF ) is an invariant statistical manifold. The following lemma is given in [Matsuzoe and Ohara, 2011].

Lemma 1. For a q-exponential family Sq, consider a flat statistical manifold (Sq,∇
q(e), gq), and an invariant

statistical manifold (Sq,∇
(2q−1), gF ). Then these two statistical manifolds are 1-conformally equivalent, that is,

gq(X,Y ) =
q

Zq
gF (X,Y ),

∇
q(e)

X Y = ∇
(2q−1)

X Y − gF (X,Y )gradh

(

log
q

Zq

)

,

where Zq(θ) =
∫

Ω
p(x; θ)qdx. In particular, (Sq,∇

(2q−1), gF ) is 1-conformally flat.

The geometric divergence on q-exponential family

In this section, we consider realizations of q-exponential families into affine space, and constructions of geometric

divergences. For more details about affine differential geometry, see [Nomizu and Sasaki, 1994].

Let M be an n-dimensional manifold, and let f be an immersion from M to R
n+1. Denote by ξ a transversal

vector field, that is, the tangent space is decomposed as Tf(p)R
n+1 = f∗(TpM)⊕ Span{ξp}, (

∀p ∈M). We
call the pair {f, ξ} an affine immersion fromM toRn+1.

Denote byD the standard flat affine connection. Then we have the following decompositions:

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ, (1)

DXξ = −f∗(SX) + τ(X). (2)

We call ∇ a induced connection, h an affine fundamental form, S an affine shape operator, and τ a transversal

connection form. If the affine fundamental form h is nondegenerate, the immersion f is said nondegenerate. If

τ = 0, the affine immersion {f, ξ} is said equiaffine. It is known that the induced objects (M,∇, h) becomes a
1-conformally flat statistical manifold if the affine immersion is nondegenerate and equiaffine [Kurose, 1994].

The induced objects depend on the choice of transversal vector field. For a function φ onM , and a vector field Z

onM , if we change a transversal vector field ξ to ξ̄ = eφξ + f∗(Z),Then the induced objects change as follows
(See Chapter 2 in [Nomizu and Sasaki, 1994]):

h̄(X,Y ) = e−φh(X,Y ), (3)

∇XY = ∇XY − e−φh(X,Y )Z, (4)

τ̄(X) = τ(X) + e−φh(X,Z) − dφ(X). (5)

Theorem 1. For a q-exponential family Sq =
{

p(x, θ)
∣

∣p(x; θ) = expq

[
∑n

i=1
θiFi(x) − ψ(θ)

]}

, set

fq(p(θ)) = {θ1, . . . , θn, ψ(θ)}T ,

ξq = {0, . . . , 0, 1}T ,

ξF
q = {e−φξq + f∗gradhφ},
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where φ = log(Zq/q) andZq(θ) =
∫

Ω
p(x; θ)qdx. Then the pair {fq, ξq} is an affine immersion which realizes

the flat statistical manifold (Sq,∇
q(e), gq). The pair {fq, ξ

F
q } is an affine immersion which realizes the invariant

statistical manifold (Sq,∇
2q−1), gF ).

Proof. From the definitions of q-Fisher metric, q-exponential connection and Equations (1)-(2), the affine immersion

{fq, ξq} realizes (Sq,∇
q(e), gq) inRn+1. From Lemma 1 and Equations (3)-(5), the affine immersion {fq, ξ

F
q }

realizes (Sq,∇
2q−1), gF ) inRn+1.

Finally, we define the geometric divergence on q-exponential family. For a nondegenerate equiaffine immersion

{f, ξ}, the conormal map ν : M → Rn+1 of {f, ξ} by νp(f∗X) = 0 and νp(ξ(p)) = 1. Then we define a
skew-symmetric function ρ onM ×M by

ρ(p, q) = νp(f(q) − f(p)).

The function ρ is called the geometric divergence [Kurose, 1994; Matsuzoe, 2010]. In fact, ρ induces the given

statistical manifold structure, that is, the geometric divergence ρq for {fq, ξq} induces (Sq,∇
q(e), gq), and ρF for

{fq, ξ
F
q } induces (Sq,∇

2q−1), gF ).

Conclusion

A q-exponential family is an important statistical model in Tsallis statistics. In this paper, we give a hypersurface

affine immersion of q-exponential family. As a consequence, we obtain a divergence function on a q-exponential

family, which is an important distance like function in information geometry.
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METRIC BASED RECOMMENDER SYSTEMS
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Abstract: Information overload and an abundance of choices create situations where selecting one option becomes

extremely difficult or even worse, a guessing game. Collaborative ranking systems address this problem by creating

intelligent rankings of items based on user opinions aggregation. This paper presents a metric-based multi-criteria

recommender system that can be used on non-rigid sets of criteria. These systems fare well with respect to

accuracy, transparency and flexibility.
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Introduction

This paper presents metric-based multi-criteria recommender systems that can be used on non-rigid sets of criteria

(that may be defined by the users of a system). The approach uses a novel concept of an ideal candidate, which is

an aggregation of users’ digital belief systems: the algorithm first calculates a hypothetical ideal candidate, which is

then used as the pivot point.

The paper is structured as follows. First, we briefly present the motivation and related results. Then, an overview

of the algorithm is informally described, an example scenario in which the algorithm is applied is discussed, and

a detailed description of the algorithm itself is given. We then describe a proof of concept implementation of the

algorithm and a user study evaluating the perceived accuracy of the algorithm and usability of the system. We finish

with conclusions and a brief discussion of future work.

Motivation and related facts

The biggest motivating factor for recommendation systems in general is that of information overload. Our society

produces more information than it produces anything else [13; 27; 28]1. Information overload leads to situations

where the inputs to one’s decision making process exceed the “capacity to assimilate and act on the information

as well as the ability to evaluate every alternative” [25]. Information overload has also been linked with negative

psychological impacts created by the illusion that more choices lead to better results [19]. Recommendation systems

generally use single criteria ratings that define how good an entity is. For example [15] uses a single 10 star rating

for each movie for their recommendations. More recently, multi-criteria recommendation systems have become

popular, as evidenced by Yahoo! Movies’ recent movie recommender system. Various surveys and papers [1;

2] have shown the increase in accuracy multi-criteria rating systems can achieve and have indicted the need for

research activity in this area. Because of the amount of research out there, other papers [31] present methods

on how to efficiently evaluate a recommender system. Transparency, “the opposite of secrecy” [17], is important

because it goes hand-in-hand with trust and accountability. Transparency increases trust, hence the acceptance of

a recommendation [11]. Transparency increases accountability too, as seen in numerous situations presented in

Wikileaks (http://www.wikileaks.org). Fundamentally, a multi-criteria system allows for more transparency
because one sees how each rating is broken down to create the overall rating. Flexibility is also paramount: it

allows users to participate with their own preferences and knowledge. There has also been extensive work done

1The amount of digitally stored information in 2009 was estimated to be 500 exabytes [29].

http://www.wikileaks.org
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on content, collaborative and hybrid based recommender systems and social information filtering, see for example

[5; 22; 7; 2; 24]. Demographic, utility and knowledge based systems have been proposed by [7]. Recently, matrix

factorisation methods have been used in [16].

Multi-criteria approaches to recommendation and ranking systems have been considered in [1; 12]. The authors

crawled Yahoo! Movies and extracted a number of movie ratings decomposed into 4 criteria; they found that using

multi-criteria ratings allows for more accurate ratings than single ratings. One approach they used was to simply

divide the multi-criteria problem intoM single criteria recommendation problems, thus treating each criteria as a

single rating. Another approach taken by [21] treats tags as multiple dimensions and first infers users’ preferences

for tags and then resultantly for items (movies).

Multi-criteria approaches to recommendation and ranking systems are subject to limitations which were first proved

for voting systems. The most famous result, Arrow’s Impossibility Theorem [4] (also known as Arrow’s Paradox),

states that no voting system can turn individual preferences into a global (community) ranking if there are three or

more options to choose from and a few “innocent-looking” conditions (such as, non-dictatorship, Pareto efficiency,

and independence of irrelevant alternatives) are satisfied. Another limitation may appear because of the lack of

independence of preferences.

Metric-Based Algorithms

Overview

Our main algorithm applies on a system composed of 5 parts: the users, the entities, the value dimensions, the belief

system and the ideal candidate. Entities are anything that the system is recommending or ranking. For example in a

movie recommender system, the movies would be the entities. Value dimensions are a set of factors that influence

the ratings of an entity. For example, taste and price are value dimensions that influence the ratings of menu items

in a restaurant. All entities are defined over a set of value dimensions. Users collaborate within the system by rating

an entity over the set of value dimensions. For example a user may rate price high and taste poor, or price low and

taste excellent.

The belief system is personal to each user. Each user is allowed to tell the system what ideal value they want a

value dimension to have, and how important that value dimension is to them. For example, most people’s belief

system would have a value of ‘low’ for the dimension ‘price’ but depending on your level of income, the importance

of price may vary. Finally, the ideal candidate is the set of ideal value dimensions. The system determines the ideal

value dimensions by aggregating all users’ belief systems into an average. That is, if there were 2 people in the

system, and user one’s belief system had the ideal value for price set to high, and user two’s belief system had

the ideal value for price set to low, then the ideal candidate will have it’s ideal value for price set to ‘in between low

and high’. The ideal candidate can be thought of as the belief system of a hypothetical user that takes everyone’s

opinions into account.

Value dimensions can be either hard or soft. Hard value dimensions are factual, such as the price of an item, or

the location of a building. Soft value dimensions are subjective, i.e. an opinion. The major difference between

a soft and hard value dimension is that a hard dimension cannot be rated, while a soft one can. While a hard

value dimension cannot be rated, it’s belief weight can still be set. The price of an entity is a factual piece of

information (bar bargaining practices), so it is an example of a hard value dimension. On the other hand, quality

is a subjective (hence soft) value dimension as there are no standard measurements to quality which is subject to

individual perspectives.

The ideal candidate discussed above is the global ideal candidate (i.e. all users’ belief systems are aggregated into

one). The system also uses a local ideal candidate, which is simply equivalent to a single user’s belief system. The

distinction between a local and global ideal candidate results in two different types of rankings and two different

types of recommendations—a global and local ranking and a global and local recommendation. A global ranking
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Dimension Low value High value

Humour (d1) not funny hilarious

Complexity (d2) no brainer very complex

Action (d3) no action action packed

Acting (d4) bad excellent

Table 1: Ranges for each dimension.

Inception Rush Hour Dumb and Dumber

d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

Frodo 2 5 4 5 4 1 4 4 3 1 1 4

Gimly 2 4 4 5 5 1 3 4 4 1 1 5

Bilbo 1 5 5 4 4 2 4 4 5 2 2 5

Sam 2 5 5 4 5 3 5 5 5 1 2 4

Pippin 2 5 4 4 3 2 5 4 4 1 1 5

Average 1.8 4.8 4.4 4.4 4.2 1.8 4.2 3.2 4.2 1.2 1.4 4.6

Table 2: Ratings given to each dimension per user and an average of all the ratings per entity.

of entities is one which calculates distances between an entity and the global ideal candidate, and a local ranking

calculates distances between an entity and a local ideal candidate. Likewise, a global recommendation uses the

global ideal candidate, which represents a community at large, and a local recommendation uses the local ideal

candidate (personal to each individual). The ideal candidate refers to the global ideal candidate unless explicitly

stated otherwise.

The algorithm that has been developed for the multi-criteria recommendation process is based on a distance metric

that calculates the distance between an entity and the ideal candidate. The distances are then weighted to take into

account importance levels. Two types of recommendations can be performed. One recommends similar items by

finding similar entities to a pivot entity. The second recommends any items that match each user’s belief system.

That is, the second method is the same as the ranking algorithm, except instead of using the ideal candidate, it uses

the specific user’s belief system.

An example

We present an example to illustrate the developed algorithms, formally defined in the next section. In the scenario

we have defined 5 users, 3 entities and 4 criteria. The entities we are rating are movies and the value dimensions

that they are rated over are d1 = humour, d2 = complexity, d3 = action and d4 = acting. The five different users have

all rated each movie along a set of 4 value dimensions.

The data we use is shown in Table 1, Table 2 and Table 3. All the data is presented as ratings between 1 and 5.

This means that dimensions are rated on a 5-point scale, as are all the weights. What the scales represent per

dimension is described in Table 1.

From Table 3 we can loosely categorize each user as follows: Frodo likes a well balanced movie and the quality of

acting is very important. Gimly likes complicated, preferably action movies with some comedy, where complexity

and acting matters most to him. Bilbo likes simple funny movies but no one particular dimension is overly important

to him. Sam likes funny and dumb movies, and would prefer no action, but is not that fussed about action movies;

the dumb part is important to him. Pippin likes action movies with no complexity (important). In short: Frodo is well

balanced, Gimly likes complicated action with comic relief, Bilbo likes simple action comedies, Sam likes comedy

sans action and Pippin likes action sans comedy.
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Value dimensions Weights

d1 d2 d3 d4 w1 w2 w3 w4

Frodo 3 3 3 5 2 2 2 5

Gimly 3 4 5 5 2 4 3 4

Bilbo 5 2 3 5 3 3 3 3

Sam 5 1 1 5 4 5 3 1

Pippin 1 1 5 5 5 5 5 1

Table 3: Users’ belief system.

Dimension Ideal value Ideal weight

d1 3.4 3.2

d2 2.2 3.8

d3 3.4 3.2

d4 5.0 2.8

Table 4: The ideal candidate calculated from all the user belief systems.

The three entities the algorithms will be applied to are the movies ‘Inception’, ‘Rush Hour’ and ‘Dumb and Dumber’,

the ratings of which can be seen in Table 2.

The first step is to calculate the ideal candidate, which is an average of all the belief systems. The ideal candidate

can be seen in Table 4. From this table we can see that the most important dimension is d2 with a height of 3.8. The

dimension that matters least in the system is d4. Next we can determine the rankings of the entities by calculating

the additive distance between each entity’s average dimensional ratings, and the ideal candidate. We also apply

the ideal weights to the calculations. Table 5 shows the global rankings of the system because the distances are

calculated from the global ideal candidate. There is also the concept of the local ideal candidate which calculates

the distance between an entity and a belief system which is local to the user in question. So we may also have a

local ranking for each user, which is shown in Table 6. The local rank list is also the recommendation list.

From Table 5 and Table 6 we see that, according to the data provided, the rankings make sense. In Table 6, the

person who likes complicated movies gets Inception ranked highest, the person who likes fun and dumb movies

gets Dumb and Dumber. Table 7 shows the rankings for Sam, after we take out all of his rating data. So the system

now has no information on Sam’s ratings, but retains his belief system. We can see that, while the distances have

changed, the order of recommended movies is perfect for him.

In Table 8 we see the second recommendation method, which finds the similarity between entities. In that table

Inception is more similar to Dumb and Dumber than it is to the Rush Hour. This is a result of using the global

ideal candidate as the pivot point. Alternatively, we can use specific belief systems as the pivot point for computing

similarities. This is shows in Table 9, which is specific to the user Gimly, who likes complicated action movies. In

that table, it shows that Inception is more similar to Rush Hour than to Dumb and Dumber (which would hold true for

a recommendation personal to Gimly). A system using this recommendation process would recommend Rush Hour

to Gimly if he was looking at the Inception page.

Entity Rank Distance

Rush Hour 1 0.1506

Dumb and Dumber 2 0.1857

Inception 3 0.1983

Table 5: Rankings of each entity.
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Rank Entity Distance Rank Entity Distance

Frodo 1st Inception 0.2402 Gimly 1st Inception 0.1541

2nd Rush Hour 0.242 2nd Rush Hour 0.173

3rd Dumb and Dumber 0.272 3rd Dumb and Dumber 0.2545

Bilbo 1st Rush Hour 0.14 Sam 1st Dumb and Dumber 0.0934

2nd Dumb and Dumber 0.155 2nd Rush Hour 0.195

3rd Inception 0.22 3rd Inception 0.2721

Pippin 1st Inception 0.163

2nd Rush Hour 0.1761

3rd Dumb and Dumber 0.2053

Table 6: Local rankings of each entity for each user.

Sam

Rank Entity Distance

1st Dumb and Dumber 0.2882

2nd Rush Hour 0.3647

3rd Inception 0.4514

Table 7: Recommended movies for Sam created from Sam’s belief system and ignoring all his ratings in Table 2.

Inception Rush Hour Dumb and Dumber

Inception 1.0 0.9523 0.9868

Rush Hour 0.9523 1.0 0.9655

Dumb and Dumber 0.9868 0.9655 1.0

Table 8: Similarities between each movie, with 1 representing full similarity.

Gimly

Inception Rush Hour Dumb and Dumber

Inception 1.0 0.9811 0.8997

Rush Hour 0.9811 1.0 0.9186

Dumb and Dumber 0.8997 0.9186 1.0

Table 9: Similarities between each movie, personalized to Gimly’s belief system.
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Main Algorithm

The algorithm developed for the multi-criteria recommender system in [3] uses a weighted sum approach which

is defined in multi-objective optimization literature [14]. The goal of a recommendation system is to construct the

Users×Items 2-dimensional matrix by predicting the missing values in the matrix. The approach we take involves

the reconstruction of a 3-dimensional matrix, with the third dimension being the set of criteria defined over the items,

i.e. the value dimensions. Additionally, we use a weighted approach so that more important value dimensions make

more of a difference to the final calculations.

For the rest of this section we use the following notation. The set of users U has n = |U | elements. The set of

entities denoted by E has m = |E| elements. The set of value dimensions is denoted by V ; let l = |V | be the

number of dimensions for each entity. Finally, letW be the set of weights such that |W | = |V |.

Our goal is to predict values in the n × m × l matrix. There are three concepts used by the proposed algorithm:

1) value dimensions (i.e. criteria), 2) the belief system, and 3) the ideal candidate. Value dimensions determine the

ratings of each entity in E. Each entity is defined by l value dimensions, which are collaboratively rated and then

normalized to the range [0, 1] before being used as the input to the algorithm. Therefore, each entity is a vector
e = (v1, v2, · · · , vl) for all v ∈ V .

A belief system (see Table 3) allows each user to define their beliefs using two components: 1) the values for

each criteria and 2) the weights attached to each criteria. The weights are normalized to the range [0, 1] with 0
representing no importance and 1 indicating utmost importance. Formally, each user u has a belief system B,

which is the ordered pair Bu = (vu, wu) where vu = (v1, v2, · · · , vl), wu = (w1, w2, · · · , wl) are vectors
and vi, wi represent the user’s preferred value for value dimension i and weight i, respectively.

The ideal candidate is used as the pivot point for all distance calculations. Instead of calculating the distance

of entities from the origin or from other entities, the algorithm makes use of a hypothetical ideal entity that is an

aggregation of each users’ belief system (see Table 4). Formally, the ideal candidate is an ordered pair I =
(vI , wI), where vI = (v1, v2, · · · , vl), wI = (w1, w2, · · · , wl) and are calculated as follows:

I =
1

N

N
∑

i=1

Bi =

(

1

N

N
∑

i=1

vi,
1

N

N
∑

i=1

wi

)

. (1)

Equation (1) is referred to as the global ideal candidate IG, which takes into account every user’s belief system.

The local ideal candidate IL is specific to each user and is simply equal to Bu. The ideal candidate is an entity as

well, hence any algorithm that can calculate the distance or similarity between two entities can operate similarly with

the ideal candidate.

Discrete Metrics and Similarities

LetM be a nonempty set of nonnegative real numbers with the greatest element a = 1. Then d : M × M → R

is a metric onM and the ordered pair (M, d) is a metric space [9]:

d(x, y) =

{

1

2
(1 + |x − y| − |1 − x − y|), if x 6= y,

0, if x = y,
(2)

For our multi-criteria problem we can naturally extend the metric toM
l

dl(x, y) =
1

l

l
∑

i=1

d(xi, yi), x, y ∈ M
l, (3)

and to a weighted metric dw : M
l
× M

l
× M

l
→ R:
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dl(x, y,w) =
1

l

l
∑

i=1

(1 − wi)d(xi, yi), x, y, w ∈ M
l (4)

The weights have to be normalized in the range 0 ≤ w ≤ 1. From Table 3 we can see that the higher the weight
wi is, the more important it is. The more important a weight is the less it increases the distance results. Therefore,

as a weight approaches 0, it’s importance is reduced and the distance is increased. See more details in [3].

From equation (4) we can define a multi-criteria rating function in terms of e ∈ E, u ∈ U and I . We define two

rating functions, the global rating function rG : E × I → R:

rG(e, IG) = dw(e, vI , wI), (5)

and the local rating function rL : E × I → R:

rL(e, IL) = dw(e, vu, wu). (6)

The difference between rG and rL is that the global rating function calculates the distance between an entity and

the global ideal candidate IG while the local one calculates the distance between the local ideal candidate IL.

There are two ways in which recommendations can be made using the algorithms. The first is a ranking of items

obtained by using function (6). The results of this can be seen in Table 7. The second method uses a similarity

metric to recommend entities that are similar to other entities. The similarity method can also be divided into two

functions, one which uses the global ideal candidate IG to obtain global recommendations, and one which uses a

local ideal candidate IL to obtain personalized recommendations.

From [10], any normalized distance metric d can be converted into a similarity metric s defined as follows: s =
1 − d : 0 ≤ d ≤ 1. Equations (2), (3) and (4) are normalized distance metrics that return a value in the range
[0, 1]. If d is a normalized distance between two entities e1 and e2, then we can define a global similarity metric sG

as:

sG(e1, e2, IG) = 1 − |dw(e1, vI , wI) − dw(e2, vI , wI)|, (7)

and the local similarity metric as:

sL(e1, e2, IL) = 1 − |dw(e1, vu, wu) − dw(e2, vu, wu)|. (8)

Since sG and sL are both normalized similarity metrics, because d is normalized, they both satisfy the following

“coherence” properties [10] for all x, y, z, I : sG|L(x, x, I) ≥ 0, sG|L(x, x, I) ≥ sG|L(x, y, I), sG|L(x, y, I) =
sG|L(y, x, I), sG|L(x, y, I)+sG|L(x, z, I) ≤ sG|L(x, z, I)+sG|L(y, y, I), sG|L(x, x, I) = sG|L(y, y, I) =
sG|L(x, y, I) ⇐⇒ x = y.

The following functions showcase part of the pseudo code used for the developed prototype system. The function

distance represents equation (4), the function rating represents equations (6), (5), and the function similarity

represents equations (7,) (8).Funtion distane( rating, ideal, weight )min = 1max = 5x = (min - rating) / (min - max)y = (min - ideal) / (min - max)if x == y, return 0return (1 - weight) * (0.5 * (1 + |x - y| - |1 - x - y|))EndFuntion rating( entity )



110 Mathematics of Distances and Applicationsnum_dims_used = 0total_distane = 0For eah dimension dim in entity.ategoryrating = average_rating(dim)total_distane += distane(rating, dim.ideal, dim.weight)num_dims_used += 1End For// Return a rating in between 0 and 1 (1 means perfet)return 1 - (num_dims_used / total_distane)EndFuntion similarity( entity1, entity2 )return 1 - |rating(entity1) - rating(entity2)|End
Implementation

A proof of concept system was developed for a local restaurant in Auckland, New Zealand. Users are required to

sign up to obtain personalized recommendations. Signing up also requests demographic information so it can be

used for extracting intelligence from the data (segmenting user preferences in to region, for example). Signed in

users can add or edit a value dimension, set their beliefs, rate a menu item or view details about a menu item.

Adding a value dimension and editing a value dimension use the same input screen. End users can only add soft

value dimensions. Only administrators can add hard value dimensions, such as Price, via a different input screen.

Once a hard value dimension is added it becomes part of an entity’s profile. For example, having added Price, each

priced entity has attached to it a new property, called price, the value of which can be changed on the entity’s edit

page. Furthermore, the type of scale that is used can be chosen by the user as well. The prototype implementation

supports the addition of ordinal and nominal scales. The user must also specify which category the value dimension

applies over.

Once value dimensions are provided, users can set their beliefs. Figure 1 shows the belief entry screen. Two

columns are shown, one for the ideal value for a belief and the other for the weight of the value dimension. There

are two scale types: one is an ordinal scale with a low and high range and the other a nominal scale. These ideal

values are used to calculate the global ideal value and importance of a dimension.

Users can also obtain valuable statistics at this point. For example clicking on the value dimension ‘healthiness’,

you will be informed that 44 people in the system care about this dimension and that most people think that the

healthiness of mains, desserts and starters should be, ideally, almost as healthy as you can get and that while

healthiness matters, it is not vital nor is it very important in determining the rating of food. You will also be told that

while healthiness matters somewhat in the United States, it’s more important in Germany, and less important in

Canada. This is of course reflective of the beliefs of the system’s users.

The prototype allows users to rate menu items over all soft value dimensions entered into the system; hard value

dimensions are facts and can only be changed by the administrators of the system. The rating screen can be seen

in Figure 2. Users are free to ignore certain value dimensions. The more a value dimension is ignored, the more

obvious it becomes that this value dimension is not worth having in the system. A straightforward extension would

be for the system to provide a confidence level to each value dimension’s importance level.

The system can perform two types of recommendations, one based on entity-to-entity similarity and one showing

users predicted ratings of all the entities in the system (that have been rated by anyone). The second type of

recommendation does not depend on entity-to-entity similarity, nor on user similarity, only on the similarity between

a user’s belief system and the entity’s profile (which is composed of value dimensions and their aggregated values).

The first type of recommendation (entity-to-entity) is shown in Figure 3. It uses the user’s belief system as the pivot

point if the user is logged in.
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Figure 1: Setting your beliefs involves setting an ideal value and a weight.

The system will list all the details about the entity in question. This includes how many users have rated it, what the

global rating is, what the predicted rating for the user is and any hard values. It will then show the user the rating

screen in the case that a user wants to rate it, and this will be followed by a number of item-to-item recommendations

based on the similarity calculations between this entity and every other entity, with the user’s belief system used as

the pivot point.

Evaluation

A user survey was carried out on a random sample of 20 patrons of the restaurant that the prototype was developed

for. Each user was asked to use the system and rate items that they had tried. They were then given a list of 5

recommendations and asked to rank the algorithms in order from most to least accurate. We obtained 85 unfiltered

orderings of the algorithms. After filtering them out for incomplete orderings we had 78 orderings. In addition to

ranking the algorithms that were employed, the participants of the survey were also asked a number of questions

regarding the usability of the system. The following five algorithms were rated:

1. Algorithm A: Rating based on global ideal candidate and average ratings–equation 5.

2. Algorithm B: The predicted rating based on user’s belief system and average ratings–equation 6.

3. Algorithm C: Weighted sum [2].

4. Algorithm D: Adjusted weighted sum [2].

5. Algorithm E: Rating based on global ideal candidate and user’s personal ratings.

The results of the algorithm rankings are presented in Table 10. The first 5 columns of the table represent how many

times the algorithm was ranked at that position. So, the Algorithm B was ranked first 29 times, second 14 times, etc.
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Figure 2: Rating a menu item.

Figure 3: Recommended items when viewing the Lamb Shank page.
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1st 2nd 3rd 4th 5th %1st Linear rating Exp rating % exp % lin

Algorithm A 13 21 32 8 4 16.7 265 1048 21.4 22.4

Algorithm B 26 14 12 24 3 33.3 273 1250 25.6 23.1

Algorithm C 12 21 18 21 7 15.4 247 962 19.7 20.9

Algorithm D 7 4 4 6 58 9 133 460 9.4 11.2

Algorithm E 21 19 13 19 7 27 265 1170 24 22.4

Table 10: The rankings of each of the algorithms and their additive scores.

The algorithm that has been proposed in this paper is Algorithm B. It can be seen from the results that it does better

than all the others. Algorithm A is also used by the system, not for personal results, but for global rankings of items.

The only difference between A and B is that B uses the user’s personal belief system to calculate the ratings and A

uses the global ideal candidate. As it turns out, the personalized algorithm, based on a digitized belief system, is

the most accurate of them all.

A number of other statistics were also calculated. The %1st column represents the percentage that the algorithm

came first. Algorithm B dominates this by being the most accurate 33 percent of the time out of all 5 algorithms and

algorithm E comes in second with 27 percent. The 2 algorithms together, both of which add in a personal aspect to

the rating process, are the most accurate 60 percent of the time.

The next 4 columns are an additive ranking that was calculated for each algorithm by taking into account the number

of times the algorithms came in each position rather than in just first spot. Each position was given a weighting and

then a total rating was calculated. The algorithm with the highest rating wins, and again it shows that B came in

on top with A and E a close second. One may note here that even though algorithm E came in first place almost 2

times more frequently than algorithm A, their linear rating is exactly the same. This happens because algorithm A

came in third place almost 3 times more frequently than algorithm E, which linearly made a significant difference.

The linear rating for algorithm L was calculated using the formula ratingL =
∑M

i=1
(M − i) ∗ Li and the

exponential rating was calculated with ratingL =
∑M

i=1
2M−i

∗ Li, where Li represents the number of times

algorithm L came on the ith place. The linear rating gives a consistent weight to each of the positions, which

assumes that the most accurate algorithm is worth as much more than the second most accurate algorithm is worth

over the third most. The exponential model seems to be more accurate; it gives more value to the difference in

weight between the first and second place than the difference in weight between the second and third place.

Methods on evaluating recommender systems are presented in [31]. The evaluation method we used was a mix of

a user study and online study. While the users were given specific tasks to do, those tasks were prerequisites for

allowing/encouraging them to roam free within the system. This allowed us to also collect data that was not relevant

to the algorithm presented in this paper, but on the dynamics of the user interface, the experienced speed of the

calculations and the perceived accuracy of the results (described above).

A number of properties are considered desirable in a recommender system [31]. Prediction accuracy was shown

to be better than for some of the other algorithms. Ranking measures was explicit in the system because the

recommendations use the user’s own belief system (i.e. ideal candidate) as the pivot point to determine the similarity

between items. Measuring the accuracy of this ranking would require the user to have tried all the dishes in the list

(given the nature of the prototype) and so was unfeasible to perform.

Item coverage is an important property for a recommendation system. While some algorithms may be limited to

recommending only items that have a lot of associated data, our algorithm has 100 percent coverage. The accuracy

of cases where one item has a large number of ratings and another item has only one was not tested, but adding

a confidence level to ratings is a technique that may be used to alleviate that situation. A similar property is user

coverage (i.e. providing recommendations based on a given number of users within the system). The prototype we

developed provides full coverage, and may also be enhanced with the addition of a confidence level.
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One flaw of this algorithm is that it is extremely susceptible to the cold start problem, in which items that have

not been given data would be quite useless. If value dimensions have not been given importance levels, or belief

systems have not been defined, then the system would be unusable.

Conclusion

The system that has been implemented is a proof of concept for the envisioned final system. The current implementa-

tion provides a ranking based on any number of value dimensions, with weights and ideal values definable by the

users. There are many directions the work on this framework can take.

First, the ontology system, which provides the ability for users to arrange the entities under categories and link

categories if need be, can be made much more robust with the addition of the ability to categorize. It is still not clear

if a universal ontology would be best for the framework, or if other methods should be used to categorize entities

into classes of value dimensions. One such method would be collaborative tagging as described in [26]. That is,

instead of arranging the structure in a directory-like manner, the users can tag a category instead, and the entities

within that group will implicitly have the same tags, creating a folksonomy. The value dimensions could be attached

to tags instead of the category as well. This may work better to enable the ability to share value dimensions across

categories as well as impressive recommendations.

Secondly, the governance mechanisms have not been implemented in a way that is scalable. The governance

mechanisms determine how the system governs itself at the micro and macro levels. Concepts such as policy

citations on ‘talk-pages’ enhance governance at the micro-level on website such as Wikipedia [6]. The macro-level

governance mechanisms (namely the aggregation of the belief systems and rankings) are in place, but there is a lot

of work that needs to be done at the micro-level.

Thirdly, work is needed on trust and reputation support. Incorporating trust into users’ profiles would be one direction.

Perhaps the framework should take a user’s reputation into account when applying the value dimension weightings in

the algorithms, maybe just for the global rankings. These extra calculations could, however, give rise to performance.

The current system implementation can be slow at times because it is running five different algorithms at the same

time for the purpose of allowing users to rank various algorithms (as discussed in Section Evaluation).

And finally, the system does not take temporal dynamics in to account. As time goes by, items become less valuable

and no longer appealing in the same way. One approach that tackles this problem keeps degradation information

along with the rating data and creates a temporal model out of the rating patterns [33].

Giving users less work to do in the system, i.e. by automating certain processes, is also desirable. One example

may be the weighting system for value dimensions. The trust system [30] developed for Wikipedia could be used

to create implicit weightings over the value dimensions by determining collaborative importance through analyzing

a value dimension’s revision history.

Knowledge extraction mechanisms are needed for the framework to be useful. This is the component that will

provide the most value to users in the long run. The ranking algorithm is a central part of the entire knowledge

extraction system. This part can answer questions such as: What is a positive contribution to the world? What

is a negative contribution to this world, and why? What is the most important value-dimension for universities, for

countries, or for various businesses?

A problem faced by this recommendation system and many others is the cold-start problem. How do we get initial

input form users so that the system gets in to a usable state. Wikipedia addressed this by appealing to the expert

community [6]. Other systems, which are not that appealing to "experts" have adopted a hybrid approach [32] that

assigns ratings to items based on their similarity to other items that have already been rated, e.g. in a trial run of the

system.

Another area of future work is method to enable iterative aggregation, that is, how to enable the inclusion of nominal

value dimensions.

The evaluation section showed that user’s ranked the proposed algorithm at a higher subjective accuracy than the

other algorithms that were implemented. Another area of research in this regard would be to implement various
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other algorithms and carry out another evaluation study against the proposed system. Furthermore, [31] pointed

out a number of evaluation criteria for recommendation systems that were not included in this evaluation, such

as the user’s intent (which in our case was to test the system since they were hand picked—but this is not the

intent of a real user of a recommendation system), how much they trust the recommendations, the novelty of a

recommendation (i.e. whether the user knew about the recommended item or not), serendipity, diversity, utility,

adaptability and scalability.
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RANK CODES OVER GAUSSIAN INTEGERS AND SPACE TIME BLOCK CODES

Hafiz M.Asif, Ernst Gabidulin, Bahram Honary

Abstract: Maximum rank distance (MRD) codes have been used for the construction of space time block code

(STBC) using a matrix method. Like orthogonal STBC’s in most popular cases, MRD-STBC’s can also achieve full

diversity. Though an OSTBC is known to yield the best BER performance, a unique case is described where MRD-

STBC performs better than Alamouti code (OSTBC). Moreover, the viability of Gabidulin’s decoding algorithm has

been established by decoding complex symbols generated from MRD-STBC’s. Under this decoding scheme, MRD-

STBC’s have been shown to be preferred candidate for higher antenna configuration as the decoding complexity of

Gabidulin’s algorithm is far less than that of maximum likelihood (ML) decoding algorithm.

Keywords: Rank codes, Gaussian integers, space time block codes, orthogonal space time block codes.

MSC: 12E20

Introduction

The design of error-correcting codes for two dimensional signal spaces has been widely considered. Different

authors have constructed new error-correcting codes over quotient rings of Gaussian integers by using the Mannheim

measure as it was introduced in [Huber, 1994]. Complex constellations based on graphs allow to construct rank

codes over Gaussian integers. In turn, such codes can be used as space time block codes.

The idea of exploiting transmit diversity was introduced by Vahid Tarokh et al. [Tarokh et al., 1998] and it was

later on adopted for much simpler structure by Alamouti [Alamouti, 1998]. His work was later on extended and

formally developed to originate space time block codes (STBC) [Tarokh et al., 1999]. In addition, for 2× 1 scenario,
Alamouti code achieves full diversity gain. In [Lusina et al., 2003], the application of rank codes for forming STBC

was introduced. Rank codes [Gabidulin, 1985], due to rank distance property, make themselves useful candidate for

STBC’s. The construction of rank codes is presented based on direct matrix method as MRD-STBC’s. MRD-STBC

codes performs better than orthogonal STBC (OSTBC) under certain criteria. Moreover, little work was found on

decoding MRD-STBC except ML scheme which is extremely complex for higher antenna configuration. Therefore,

first, the idea of using interleaved MRD codes (I ) is introduced to construct MRD-STBC’s forNtx > 4. Second, a
decoding algorithm has been described that can effectively decode MRD-STBC.

The Gaussian integers

The set Z[i] of Gaussian integers is the subset of the complex numbers C with integer real and imaginary parts,

i.e.,

Z[i] := {a + bi | a, b ∈ Z}.

If 0 6= π = u + vi ∈ Z[i], then we denote, Z[i]π , the ring of the classes of Z[i] modulo the ideal (π)
generated by π. Therefore, we write β ≡ β′ (mod π) if β and β′ belong to the same class modulo (π). It
is well known that the cardinality N of Z[i]π equals N = u2 + v2. From now on, we consider the case when

0 < u < v and u2 + v2 = p ≡ 1 (mod 4), p is a prime. Zπ is a set of representatives of the residue classes

Z[i]π . These constellations have been previously modeled by quotient rings of Gaussian integers, [Huber, 1994],
[Costa et al., 2004], [Nóbrega et al., 2001]. Constellations and the metric based on associated graphs were intro-

duced in [Martínez et al., 2005]. We denote byMZπ the constellation defined by K.Huber [Huber, 1994] and by

GZπ the constellation based on graphs. In general, for a given π they are different as well as associated metrics.
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The Mannheim constellationMZπ

For a given π and any Gauss integer α = a + bi, define the projection α onMZπ as ρα := α − qαπ where,

qα :=

[

απ

p

]

.

The operation [c + di] denotes rounding in Gaussian integers and is defined by [c + di] = [c] + [d]i with [c]
denoting rounding to the closest integer.

Next statements are evident.

1. ρα(ρα) = ρα.

2. The Mannheim setMZπ is the image of the set {0, 1, . . . , p − 1} under the projection ρ∗.

3. For any α ∈ MZπ , ρα = α.

For α = a + bi ∈ MZπ , the Mannheim weight is defined by wM (α) = |a| + |b|. For any α = a + bi, the

Mannheim weight is defined by wM (α) = wM (ρα). The Mannheim distance between two elements α and β in

Z[i]π is defined as dM (α, β) = wM (α−β). In fact, the Mannheim distance is not true distance as it was shown
first by example in [Martínez et al., 2005]. We give more general explanations.

Let π = u + vi, 0 < u < v, u2 + v2 = p. Introduce

r =
v + u − 1

2
, m = v − r =

v − u + 1

2
, & s =

⌊

v(u − 1) − u2

2v

⌋

.

Lemma 1. Let p be a prime such that u = 1, or, u = v − 1. Then the Mannheim distance is a true distance.

Proof. In this case the setsMZπ and GZπ associated metrics coincide. The proof for the graph based metric

can be used (see, [Martínez et al., 2005]).

Theorem 1. Let p be a prime such that u 6= 1 and u 6= v−1. Then the Mannheim distance is not a true distance.
More precisely, it does not fulfil the triangular inequality.

Proof. First show that v(u−1) > u2. Since u 6= v−1, it follows that u ≤ v−2. It is impossible that u = v−2
since the left and the right parts must have the different parity. Hence u ≤ v − 3, v ≥ u + 3. If we assume that
v(u − 1) < u2, we obtain v < u + 1 + 1/(u − 1), or, v ≤ u + 1 with contradiction to v ≥ u + 3. Therefore
the integer s introduced above is non negative.

For a true distance function and any three elements x, y, z must be d(x, z) ≤ d(x, y) + d(y, z) (the triangular
inequality). We present three elements x, y, z ∈ MZπ such that dM (x, z) > dM (x, y)+dM (y, z). Namely, let
x = u+(m+s)i, y = −i, z = 0. By direct calculation, one can show that ρx = x. Hence all three x, y, z are in

MZπ . We have dM (x, z) = wM (x−z) = wM (x) = u+m+s and dM (y, z) = wM (y−z) = wM (−i) =
1. Also we have x−y = u+(m+ s+1)i and by direct calculation ρx−y = x−y−π = −(v−m− s−1)i.
Thus dM (x, y) = wM (x − y) = wM (ρx−y) = wM (−(v − m − s − 1)i) = v − m − s − 1. Finally,
dM (x, z) − dM (x, y) − dM (y, z) = u + m + s − v + m + s = 1 + 2s > 0. The triangular inequality
fails.
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Figure 1: Constellations Z2+5i, p = 29.

The graph constellation GZπ

For β, γ ∈ Z[i]π , consider x+ yi in the class of β − γ with |x|+ |y| minimum. The distanceDπ between β and

γ isDπ(β, γ) = |x| + |y|. This distance function is called the graph distance since it coincides with the distance

function of the following graph.

Given π = u + vi ∈ Z[i] we define the graph Gπ = (V,E) where:

1. V = Z[i]π is the node set, and

2. E = {(β, γ) ∈ V × V | Dπ(β, γ) = 1} is the edge set.

We callGπ the Gaussian Graph generated by π.

The constellation GZπ consists of Gaussian integers in the square with vertices (ri, r,−ri,−r) and in four
triangles with vertices (r+ i, r+(m−1)i, r−m+2+(m−1)i), (−r− i,−r− (m−1)i,−(r−m+2)−
(m− 1)i), (ri− 1, ri−m+1, (r−m+2)i−m+1), (−ri+1,−ri+m− 1,−(r−m+2)i+m− 1).
ConstellationsMZπ and GZπ are presented below for π = 2 + 5i, p = 22 + 52 = 29.

Rank codes over Gaussian integers

The constellation GZπ can be considered as a representation of the finite field GF (p). Extension fields of
degree n over Gaussian integers can be represented as n-tuples of GZn

π . Also they can be defined in the matrix

representation. Let f(x) = xn + fn−1x
n−1 + · · ·+ f1x + f0 be a primitive polynomial overGF (p). Then the

companion matrix

Mn =























0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
. . . 0 0

...
...

...
...

. . .
...

0 0 0
. . . 0 1

−f0 −f1 −f2 . . . −fn−2 −fn−1























(1)

represents a primitive element of the extension field GF (pn). Matrices M i
n, i = 1, . . . , pn

− 1, represent all
non zero elements of the extension field. To obtain an extension field over GZπ , one can replace each entry by
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corresponding value of GZπ . Afterwards all matrix operations should be fulfilled modulo π.

Example. Let π = 1 + 2i, p = 5. Then GZπ consists of {0,±1,±i}. Let f(x) = x2 + x + 2 be the primitive
polynomial overGF (5). We have,

M2 =

[

0 1
−2 −1

]

, M2
2 =

[

−2 −1
2 −1

]

, . . . ,M23
2 =

[

2 2
1 0

]

, M24
2 =

[

1 0
0 1

]

.

The corresponding matrices over GZπ are as follows:

˜M2 =

[

0 1
−i −1

]

, ˜M2
2 =

[

−i −1
i −1

]

, . . . , ˜M23
2 =

[

i i

1 0

]

, ˜M24
2 =

[

1 0
0 1

]

.

A rank code with rank distance d is a set of n × n matrices over GF (p) such that the difference of two code
matrices has rank not less than d. This property holds true, if elements of GF (p) are replaced by elements of
GZπ .

Rank codes as space time codes

Code construction

It was investigated that if a linear code of block size 4 is formed in such a way that the absolute value of the
determinant of each pairwise difference is equal to 4 then rank code (and all its coset codes) performs better than
Alamouti code. The construction of such is described as follows.

Let x2 + x+ 1 be a primitive irreducible polynomial over GF(2), then the elements ofGF (22) form an MRD code

of block size 4. The direct matrix construction (using Eq.(1)) is obtained as follows:

[

0 0
0 0

]

,

[

0 1
1 1

]

,

[

1 1
1 0

]

,
[

1 0
0 1

]

.

Having mapped 0 to 1 and 1 to -1 (BPSK), the code becomes

[

1 1
1 1

]

,

[

1 −1
−1 −1

]

,

[

−1 −1
−1 1

]

,

[

−1 1
1 −1

]

.

Two important observations can be made on the above MRD; (1) The sum of square modules in each is equal to 4

and (2) The absolute value of the determinant of each pairwise difference is equal to 4. From physical point of view,

the first condition is a transmitting power for a matrix while the second condition is a measure of difference between

code matrices.

Next we consider orthogonal STBC (OSTBC) construction and select four such codes which fulfil the above mentioned

two properties.

LetG = {0, 1, α, α2 , α3, ..., α14
} be an additive group of 16 elements. Let GS = {0, 1, α, α2

} be a subgroup

of G comprising 4 elements. The first coset of GS is equal to GS , i.e., addition of 0 to GS which in turn yields

GS . Now, 16 different Alamouti codes (16 blocks) can be constructed out of which the following four are selected:
[

0 −0∗

0 0∗

]

,

[

0 −α∗

α 0∗

]

,

[

α2
−1∗

1 α2∗

]

,

[

1 −1∗

1 1∗

]

.

The symbol {.}∗ indicates conjugate of the element. It can easily be verified that the blocks are orthogonal blocks

(i.e., the determinant is identity matrix). After modulation or the mapping (0, 1, α, α2) to (1, j,−1,−j), which has

been selected by exhaustive search approach, we obtain:

[

1 −1
1 1

]

,

[

1 1
−1 1

]

,

[

−j j

j j

]

,

[

j j

j −j

]

.

It can be checked the above four OSTBC blocks satisfy the above mentioned two conditions. Hence, the two sets,

each of 4 different 2 × 2 block, can be compared.
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Figure 2: Orthogonal codes vs. MRD over GF(22) for 2 × 1 scenario

Simulation analysis

Simulation was carried out for comparing all described configurations of MRD with the corresponding OSTBC’s

described in the previous section. 2 × 105 symbols per SNR value were transmitted in each case.

The channel matrix HC was calculated based on Rayleigh fading. The received signal y is calculated as y =
HCc + n, where c is the transmitted block code (2 × 2) and n is AWGN . Maximum likelihood decoding was

used to decode the transmitted symbols in both cases (MRD and orthogonal). Each received signal is compared

against all possible blocks (qNtx ) to select the block with minimum error, i.e., with minimum Euclidean distance.

Fig.2 shows BER performance comparison of 2× 1 OSTBC and 2× 1 MRD-STBC which were designed based on
the construction given in Section . First, it is important to note that MRD-STBC achieves full rate diversity because

its slope is parallel to that of OSTBC. Second, there is a coding gain of about 1.8 dB over OSTBC which can
further be multiplied by using different primitive polynomial or so. It is to be noted that OSTBC performs better than

MRD-STBC for general case, i.e., if the above two conditions are not fulfilled.

Rank codes, when used as complex symbols, may lose the rank of the code block if traditional modulation schemes,

such as n − PSK , are applied. As mentioned earlier, Gaussian integers can be used to map rank codes to

corresponding complex constellations. In what next follows we describe how Gaussian integers can improve MRD-

STBC’s performance to some extent, especially in low SNR region, in two systems, i.e., 3 × 3 and 5 × 5 systems
over GF(53) and GF(55) respectively.

3 MRD-STBC over GF(53)

Let x3 + 3x + 2 be the primitive polynomial of degree 3, where the coefficients of the polynomial are from GF(5).
Then the first non-zero companion matrix, with extension degree 3, can be written as follows (i.e., the elements of
GF(53):

C =





0 0 3
1 0 2
0 1 0
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Let β be a root of the above polynomial then the above companion matrix, in vector form, is as follows:

Cvec = G =
[

β β2 β3
]

(2)

where,

β3 = 2x + 3 and note that it is our generator matrix,G, as well. We can calculate the corresponding parity check
matrix,H , by using the relationship GHT = 0. The corresponding calculatedH is as follows:

H =

[

h1 h2 h3

h5
1 h5

2 h5
3

]

=

[

1 β103 β98

1 β19 β118

]

(3)

Afterwards, MRD-STBC symbols are mapped to complex domain using Gaussian integers, and finally Gabidulin’s

decoding was applied on the received signal which will be discussed shortly.

5 MRD-STBC over GF(55)

Let x5 + 2x4 + 2x2 + x + 2 be the primitive polynomial of degree 5, where the coefficients of the polynomial are
from GF(5). Then the first non-zero companion matrix, with extension degree 5, can be written as follows (i.e., the
elements of GF(55):

C =













0 0 0 0 3
1 0 0 0 4
0 1 0 0 3
0 0 1 0 0
0 0 0 1 3













Let β be a root of the above polynomial then the above companion matrix, in vector form, is as follows:

Cvec = G =
[

β β2 β3 β4 β5
]

(4)

where,

β5 = 3x4 + 3x2 + 4x + 3 and note that it is our generator matrix, G, as well. The corresponding parity check
matrix (H) is as follows:

H =









h1 h2 h3 h4 h5

h5
1 h5

2 h5
3 h5

4 h5
5

h25
1 h25

2 h25
3 h25

4 h25
5

h125
1 h125

2 h125
3 h125

4 h125
5









=









1 β3011 β1464 β1459 β2348

1 β2559 β1072 β1047 β2368

1 β299 β2236 β2111 β2468

1 β1495 β1808 β1183 β2968









(5)

Interleaved MRD

A 4 × 1 MRD-STBC code can easily be constructed for 4 transmit antennas, i.e., Ntx = 4. In order to increase
the code length Ntx to certain extent, we can use a direct concatenation of consecutiveM matrices such that the
concatenated code is also a unique MRD [Sidorenko and Bossert, 2010], i.e.,

I =
[

M (1) M (2) M (3) . . . M (i)

]

, M i
∈ M, (6)
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Algorithm 1 Decoding MRD-STBC (qm;n, k, d)

1: Input: Received y ∈ GF(qm)Ntx

2: Demodulate received signal, y, use Eq.(7) to nullify channel effect and then write the result in vector form.

3: Compute syndrome s = yHT whereH is parity check matrix.

4: Compute matrixMi using Eq.(8) such thatMi 6= 0 starting with i = t, t − 1, .... The value of i determines
rank of the error vector,m.

5: Solve Eq.(9) to find σi ∀ i = 0, 1, . . . ,m− 1, wherem =rank of the error vector. Also, write σ(x) as shown
by Eq.(10).

6: Solve Eq.(10) using Berlekamp-Massey type algorithm [Berlekamp, 1968] in order to findm number of roots of

this equation. Represent these roots as z1, z2, . . . , zm.

7: Solve Eq.(11) for any value of i to find Ei, where i = 1, 2, . . . ,m.
8: Solve Eq.(12) using again Berlekamp-Massey algorithm to find Y .

9: Calculate error vector, e, using Eq.(13).

10: Codeword c = y − e or decoding failure

11: If success, write c again in matrix form to find BER etc.

whereM is defined by Eq.(1) and i = 1, 2, 3 . . . , i is the interleaving order. The matrix I is known as interleaved

MRD code [Sidorenko and Bossert, 2010]. Based on this definition, three MRD-STBC’s were constructed forNtx =
4, 8, and 12 respectively. Finally, the advantage of using I codes is to increase the error-correction ability of the
algorithm while the time complexity of the algorithm becomesO(id2

r) (i is the interleaving order) which is still better
than ML decoding. If dr be the rank distance, then number of errors that can be corrected (t) in I code, for i

interleaving order, is i(i + 1)/(dr − 1) [Sidorenko and Bossert, 2010]:

Decoding 4 × 1 MRD-STBC using Gabidulin’s algorithm

In this section, it is presented how Gabidulin’s algorithm [Gabidulin, 1995] can be used to decode MRD-STBC which

is symbolically written as MRD(qm;n, k, d). The complete steps of the algorithm to decode STBC blocks have
been shown in Algorithm I.

Followings are the equations which have been referred to in Algorithm 1:

yrec = H⊤(c + n) = c + H⊤n H is parity check matrix. (7)

Mi =











s0 s2−1

1 . . . s2−i+1

i−1

s1 s2−1

2 . . . s2−i+1

i
...

...
...

...

si−1 s2−1

i . . . s2−i+1

2i−2











. (8)

(σ0, σ1, ..., σm−1)Mm = −

[

sm, s2−1

m+1, ...s
2−m+1

2m−1

]

. (9)

σ(x) =
m

∑

i=0

σix
2i

, σm = 1. (10)

m
∑

j=1

Ejz
2i

j = si, i = 0, 1, ..., d − 2. (11)

Zt = Y Ht. (12)

e = EY. (13)

The complexity of this decoding algorithm is O(d2
r) where dr = n − k + 1 = 4 is the rank distance of the

code. It guarantees to correct all errors with rank ≤ ⌊
dr−1

2
⌋ [Sidorenko and Bossert, 2010]. It can easily be seen

that the decoding complexity is far less than that of ML decoding which runs full search and compares all possible
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Figure 3: Gaussian integers vs 5-PSK for mapping 3 × 3 MRD-STBC.

combinations, i.e., O(qNtx) where Ntx is the number of transmitting antennas. Furthermore, Interleaved MRD

codes (I ) that have been used to construct Ntx > 4 STBC’s are based on MRD-STBC for Ntx = 4, i.e., for
Ntx = 8, andNtx = 12.

First, simulation was run to analyze the performance of 3 × 3 and 5 × 5 mentioned above. Gaussian integers
were used to map the blocks to complex symbols. At the receiver, Gabidulin’s decoding algorithm was used to

decode the symbols. 2 × 105 symbols per SNR value were transmitted in each case. The noise was AWGN and

Rayleigh fading was used to model channel response of the system. Fig.3 shows performance curves for 3 × 3
MRD-STBCs that were constructed according to the above described procedure. The system was first modulated

by 5−PSK followed by Gaussian integers mapping. The figure shows the comparison of MRD-STBCs under two

complex mapping schemes. It is evident from the figure that slight performance gain can be obtained in low SNR

region by the use of Gaussian integers. The rank conservation property is better maintained by these integers in

low SNR region. Furthermore, it is also clear from the graph that the gain reduces with the increase in SNR and

Gaussian integers do not perform well for high SNR values. More or less, the same can be said for 5 × 5 system
as depicted in Fig.4. Further experiments are required to investigate these integers for modulation. For instance,

Gaussian integers over different fields (GF(7), GF(11) etc.) may produce better results. These investigations are
left for future work.

Second, simulation was carried out to assess the viability of Gabidulin’s decoding scheme for MRD-STBC especially

under higher antenna configuration due to its low complexity. Because Gabidulin’s decoding scheme requires vector

form to function, 4×4MRD-STBC has been constructed to exhibit 4-transmit antenna configuration. The 4-receiving
antennas increase the rank of the channel matrix and thus help to nullify channel effect and convert received symbols

in a vector for the decoding scheme. In a similar fashion, 8 × 4, and 12 × 4 MRD-STBC’s were constructed using
interleaved MRD codes represented by Eq.6.

Fig.5 shows BER comparison of 4 × 4, 8 × 4, and 12 × 4 MIMO systems. In each case, Gabidulin’s algorithm
was used to decode recovered received symbols. We can see a gradual performance improvement due to I codes

with incremental increase in interleaving order. From the curves in Fig.5, we can see that almost over 1.5dB gain
of 12 × 4 system is observed over 8 × 4 system. Similarly, there is a gain of 4dB of 12 × 4 over 4 × 4 system.
The performance will be much better if the same system is decoded using ML scheme but decoding complexity

increases significantly. Asymptotically, Gabidulin’s algorithm is far better than ML decoder because its complexity

isO
(

d2
r

)

whereas that of ML isO
(

qNtx)
)

. This implies that (1) ML is not suitable to delay sensitive applications

or the applications which cannot afford high computational complexity and (2) ML-decoder is almost impractical for

higher antenna configuration (Ntx ≥ 4) as its complexity grows exponentially with increase in Ntx. Hence, it
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Figure 4: Gaussian integers vs 5-PSK for mapping 5 × 5 MRD-STBC.

Figure 5: BER Performance Comparison of Gabidulin’s Decoding Scheme forNtx = 4,Ntx = 8, andNtx = 12.

is reasonable to say that depending upon the trade-off between computational complexity and antennas number

(Ntx), I with Gabidulin’s decoding may be an elegant replacement to traditional ML-decoder for STBC’s. We
observe that Gabidulin’s algorithm is approximately 5 times faster than ML-decoder.

Concluding Remarks

In this paper, the direct matrix construction of MRD-STBC has been presented and it was shown that the rank

codes can achieve full diversity gain much like OSTBC’s. Though, the performance of OSTBC is generally better

than MRD-STBC yet it does outperform OSTBC provided the absolute value of the determinant of each pairwise

difference is equal to 4 for both types of block code. The role of Gaussian integers has been highlighted especially
low SNR region by exhibiting two STBC cases. Furthermore, we have also evaluated the viability of Gabidulin’s

decoding algorithm to decode MRD-STBC. The algorithm is well-suited to higher transmit antenna codes which

have been constructed using interleaved MRD-STBC’s and which output reasonable BER performance at the cost

of low complexity.
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ULTRAMETRIC FECHNERIAN SCALING OF DISCRETE OBJECT SETS

Hans Colonius, Ehtibar N. Dzhafarov

Abstract: Universal Fechnerian Scaling (UFS) is a principled approach to computing “subjective” distances among

objects (stimuli) from their pairwise discrimination probabilities. It is based on the concept of ‘dissimilarity function’

leading to a locally symmetrical quasimetric in the context of Dissimilarity Cumulation (DC) theory developed by

Dzhafarov and Colonius. Here we show that, for finite sets of objects, the replacement of dissimilarity cumulation

with a dissimilarity maximization procedure results in “subjective” distances satisfying the ultrametric inequality.

Keywords: Fechnerian scaling; dissimilarity function; quasimetric; ultrametric.

ACM Classification Keywords: G.2.3 Discrete Mathematics – Applications;

MSC: 54E05, 54E15, 54E35, 05C12

Introduction

In experimental psychology, there are many different procedures for gaining insight into a person’s subjective

representation of a given set of objects, like colors or tones, pictures of faces, semantic terms, etc. Eliciting

numerical judgments about the perceived similarity of a pair of stimuli (objects), or estimating the probability with

which a stimulus x is recognized as stimulus y (confusion probabilities), are among the most common methods with

a long tradition in this field [Shepard, 1957]. A discrimination paradigm focal for this paper involves a set of stimuli

S = {s1, s2, . . . , sN},N > 1, presented two at a time to a perceiver whose task is to respond to each ordered
pair (x,y) by “x and y are the same” or by “x and y are different”. Each ordered pair (x,y) is then assigned (an
estimate of) the discrimination probability function1

ψxy = Pr [x and y are judged to be different] (1)

Often the investigator seeks an embedding of subjects’ judgments in a Euclidian (or, Minkowskian) space via

multidimensional scaling (MDS), or in an ultrametric space (rooted tree structure) via cluster analysis (CA), such that

distances among the points representing the stimuli correspond as closely as possible to the observed discrimination

probabilities. Both procedures are based on the probability-distance hypothesis [Dzhafarov, 2002], that is, the

assumption that for some distance functionHxy and some increasing transformation f

ψxy = f(Hxy). (2)

The problem for MDS and CA is that experimental data show systematic violations of symmetry and constant self-

dissimilarity (i.e., generally, ψxy = ψyx and ψxx = ψyy, respectively, for distinct x and y).

Dzhafarov and Colonius [Dzhafarov, Colonius, 2007] developed a principled approach to solve this problem, Universal

Fechnerian Scaling (UFS), which is applicable to all possible (finite or infinite) stimulus spaces endowed with “same-

different” discrimination probabilities. UFS is based on the theory of Dissimilarity Cumulation (DC)

[Dzhafarov, Colonius, 2007; Dzhafarov, 2008a; Dzhafarov, 2008b], which provides a general definition of a dissimilarity

function and shows how to impose topological and metric properties on stimulus sets.

1Notation convention: real-valued functions of one or more arguments that are elements of a stimulus set are indicated by strings without

parentheses, e.g., ψxy instead of ψ(x,y)
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The next section gives an outline of only those aspects of UFS and DC theory that are relevant for finite object sets.

For the general case, we refer to the papers above and [Dzhafarov, 2010a]. Subsequently, a new (finite) variant

based on the ultrametric property will be introduced.

Concepts and Results from DC Theory and UFS for Finite Spaces

Notation conventions. LetS be a finite set of objects (stimuli). A chain, denoted by boldface capitals,X,Y, . . .,

is a finite sequence of objects. The set
⋃∞

k=0
S

k of all chains with elements inS is denoted by S . It contains the

empty chain and one-element chains (conveniently identified with their elements, so that x ∈ S is also the chain

consisting of x). Concatenations of two or more chains are presented by concatenations of their symbols, XY,

xYz, etc. Given a chainX = x1, . . .xn and a binary (real-valued) function F , the notation FX stands for

n−1
∑

i=1

Fxixi+1,

with the obvious convention that the quantity is zero if n is 1 (one-element chain) or 0 (empty chain).

Dissimilarity function and quasimetric. For a finite set S, a real-valued function D : S × S → ℜ is a

dissimilarity function if it has the following properties:

D1 (positivity) Dab > 0 for any distinct a,b ∈ S;

D2 (zero property) Daa = 0 for any a ∈ S.

Note that a dissimilarity function need not be symmetric and need not satisfy the triangle inequality. A dissimilarity

functionM that does satisfy the triangle inequality is called a quasimetric:

Mab +Mbc ≥Mac (3)

for all a,b, c ∈ S.

Definition 1. Given a dissimilarityD on a finite setS, the quasimetric G induced byD is defined as

Gab = min
X∈S

DaXb, (4)

for all a,b ∈ S.

ThatG is a quasimetric is easy to prove (see, e.g., [Dzhafarov, Colonius, 2006; Dzhafarov, Colonius, 2007]).

Psychometric increments and Fechnerian distance. IfS is endowed with ψ, as defined in (1), then (following a

certain “canonical” transformation of the stimuli)2, the dissimilarity function can be defined as either of the two kinds

of psychometric increments

Ψ(1)
ab = ψab − ψaa and Ψ(2)

ab = ψba − ψaa. (5)

Due to the canonical form of ψ, these quantities are always positive for b 6= a. Denoting byD eitherΨ(1) orΨ(2),

one uses (4) to compute, respectively, the quasimetrics G1ab orG2ab (called Fechnerian distances).

The quantity

G∗
ab = G1ab +G1ba = G2ab +G2ba (6)

then is a metric on S, called the overall Fechnerian distance. The equality of the two computations is easy to

establish [Dzhafarov, Colonius, 2006].

2For details, including the concept of regular minimality see [Dzhafarov, Colonius, 2006]
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Ultrametric Fechnerian Scaling of Discrete Object Sets

Any empirical data set being finite, DC theory for finite sets can be viewed as an alternative data-analytic tool to

nonmetric (MDS): rather than seeking a nonlinear transformation of a given set of dissimilarities into a (usually

Euclidean) metric, DC replaces the dissimilarity value for each ordered pair of points with the shortest length

(“cumulated dissimilarity”) of a finite chain of points connecting the first element of the pair with the second one

resulting in a quasimetric induced by the dissimilarity function.

However, for many empirical dissimilarities on sets of high-dimensional stimuli, or with an underlying collection of

hierarchical features, a representation by a rooted tree structure may sometimes be more appropriate. Thus, it

seems reasonable to look for a data-analytic alternative to CA based on the principles of Fechnerian Scaling. The

basic idea consists in replacing the “dissimilarity cumulation” procedure by “dissimilarity maximization”. Given a

chainX = x1, . . . xn and a binary (real-valued) function F , the notation∆FX stands for

max
i=1,...,n−1

Fxixi+1,

again with the obvious convention that the quantity is zero if n is 1 or 0. A dissimilarity functionM on a finite setS

is called a quasi-ultrametric if it satisfies the ultrametric inequality,

max{Mab,Mbc} ≥Mac (7)

for all a,b, c ∈ S.

Definition 2. Given a dissimilarityD on a finite setS, the quasi-ultrametric G∞ induced byD is defined as

G∞
ab = min

X∈S
∆DaXb, (8)

for all a,b ∈ S.

ThatG∞ is a quasi-ultrametric is easy to prove. A reasonable symmetrization procedure, yielding a metric that can

be called the overall Fechnerian ultrametric, is

G∞∗

ab = max{G∞
ab, G∞

ba} (9)

then yields a (symmetric) ultrametric onS, called the overall Fechnerian ultrametric.

Conclusion and Further Developments

On a finite set, any dissimilarity function induces a quasimetric by the “dissimilarity cumulation” procedure of

DC theory [Dzhafarov, Colonius, 2006; Dzhafarov, Colonius, 2007]. Here we have suggested a complementary

approach inducing a quasi-ultrametric by a "dissimilarity maximization” procedure. A systematic comparison between

the two procedures for different types of dissimilarity data sets is left for future investigation, but the following can be

noted right away.

First, unlike the DC theory, its ultrametric counterparts does not generalize to arbitrary stimulus sets. Thus, for

arc-connected spaces the Fechnerian ultrametric is identically equal to zero.

Second, unlike in the UFS, the overall Fechnerian ultrametric is not the same for the two kinds of psychometric

increments, as defined in (5): the equality of the two sums in (6) does not have an analog with (9) in which G∞ is

computed fromΨ(1) and fromΨ(2).

There is, however, one important similarity. [Dzhafarov, 2010b] has shown that the procedure of computing quasimetric

distances from dissimilarities can also be described in terms of a series of recursive corrections of the dissimilarity
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values for violations of the triangle inequality. It can be shown that a corresponding series of recursive corrections on

the dissimilarity values for violations of the ultrametric inequality would yield the induced quasi-ultrametric distances.

One can consider procedures intermediate between cumulation and maximization of dissimilarities by defining, for

any dissimilarity functionD, the length of a chainX = x1, . . . xn by

DX = ((Dx1x2)k + . . .+ (Dxn−1xn)k)1/k. (10)

For k → ∞ this would result in the ultrametric approach outlined above. For finite k, the procedure is generalizable

to arbitrary dissimilarity spaces. This follows from the fact the use of (10) is equivalent to the use of the original DC

in which one, first, redefines D intoDk (which yields another dissimilarity function), and then redefines the locally

symmetrical quasimetric G induced byDk intoG1/k (which yields another locally symmetrical quasimetric).
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SYMMETRIZATION: RANKING AND CLUSTERING IN PROTEIN INTERFACES

Giovanni Feverati, Claire Lesieur, Laurent Vuillon

Abstract: Purely geometric arguments are used to extract information from three-dimensional structures of

oligomeric proteins, that are very common biological entities stably made of several polypeptidic chains. They

are characterized by the presence of an interface between adjacent amino acid chains and can be investigated

with the approach proposed here. We introduce a method, called symmetrization, that allows one to rank interface

interactions on the basis of inter-atomic distances and of the local geometry. The lowest level of the ranking has

been used previously with interesting results. Now, we need to complete this picture with a careful analysis of the

higher ranks, that are for the first time introduced here, in a proper mathematical set up. The interface finds a very

nice mathematical abstraction by the notion of weighted bipartite graph, where the inter-atomic distance provides

the weight. Thus, our approach is partially inspired to graph theory decomposition methods but with an emphasis

to “locality”, namely the idea that structures constructed by the symmetrization adapt to the local scales of the

problem. This is an important issue as the known interfaces may present major differences in relation to their size,

their composition and the local geometry. Thus, we looked for a local method, that can autonomously detect the

local structure. The physical neighborhood is introduced by the concept of cluster of interactions. We discuss the

biological applications of this ranking and our previous fruitful experience with the lowest symmetrized level. An

example is given, using the prototypical cholera toxin.

Keywords: symmetrization, protein interfaces, oligomeric proteins, graphs, bonds ranking, interaction clusters.
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Introduction

The present work is motivated by the biological problem of understanding and possibly predicting the assembly

of biological molecules. This is one of the most common processes in living cells: proteins and, more generally,

biological molecules, interact with each other by temporary or permanently associating into a unit that realises some

biological function. Actually, the majority of proteins are permanently formed of several subunits organized into

small polymers known as oligomeric proteins [Goodsell, 2000]. Understanding the mechanisms of their formation

is particularly important due to their implication in several pathologies, from bacterial infections to protein misfolding

diseases (Alzheimer, Parkinson, ...) [Iacovache, 2008; Lesieur, 1997; Kirkitadze, 2002; Harrison, 2007]. The

association of different subunits requires the formation of specific intermolecular bonds, thus constituting what is

called an interface. Unfortunately, in spite of extensive analyses, the identification of the patterns, in the polypeptidic

chain, responsible for the establishment of an interface remains difficult.

The long term perspective of our work is to rationalize the interface, namely to establish a clear understanding of

its sequence-structure relationship, in order to perform interface prediction as well as interface design. The shape
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and the function of proteins are encoded within their sequence, i.e. in their amino acid composition. But it is not

yet possible, by simply reading the primary sequence of a protein, to know its three-dimensional structure or the

quaternary organization, in the case of a protein oligomer. One of the difficulties is the non linear encoding of the

information in the sequence, that requires three-dimensional analysis. Another difficulty is due to the degeneracy

between sequences and structures, consisting in the observation that several sequences can code for the same

shape, that indicates a versatile role of the amino acids. The secondary structures of proteins which are mainly

composed of α helices, β structures and loops are partially understood, and several prediction programs are now

available.

One possible strategy to decipher the sequence-structure relationship of protein interfaces is through the analysis

of the interface geometry. This is motivated by the observation, made in the early 50’s by F. Crick [Crick, 1953],

that the formation of the coiled-coil interface is due to the appropriate geometrical and chemical complementarity

of the two interacting domains, as in a lock and key mechanism. The key has a particular geometry combined to

some contact points which together provide it the capacity to associate to one lock. Moreover, he also observed that

protein interfaces of similar geometry have similar chemistry, namely similar contact points.

Here we follow the same line of thinking, moving from the geometry toward the chemistry. We develop the

“symmetrization”, a method to decipher interface properties through the analysis of its geometry and interactions.

Their strength is measured by some “distance”. Indeed, we rely on the notion that physical interactions decrease

with increasing distance. With this, the symmetrization produces a hierarchical ranking of the interactions. The

notion of physical neighborhood appears by a concept of “clusters of interactions” (see later).

In [Feverati, 2010] we succeeded in showing that it is possible to encode some information of the interface in a

graph (interaction network). Comparative statistics on many protein graphs has been a fruitful method to extract

useful features for the intermolecular beta sheet interface geometry [Feverati, 2012]. These results were based on

the lowest level of ranking, called S0. All the higher levels were neglected: possibly a 90% of the actual interactions

was ignored, focusing on the strongest only. It is important now to explore the structure of the neglected interactions

and estimate the information they may contain. To assess this, we need a careful mathematical understanding of

the symmetrization, that will be revisited from a more mathematical point of view, in order to develop its full potential.

Methods and results

The symmetrization, first introduced in [Feverati, 2010] and fully developed here for the first time, extract information

on the interfaces from the three-dimensional PDB protein structures. The term information is understood in a very

wide sense: which atoms form intermolecular bonds, which is the role of the different amino acids in the interface,

how the charge or the hydrophobic character of some atomic groups in the amino acids matters in forming or

stabilizing the interface, and so on.

In an interface, the typical distances between atoms of two adjacent chains are of the order of 2-5 Angström. Thus it

is important to work at the atomic scale, even if the ultimate information must be expressed at the amino acid scale

because the formation of proteins always passes through one or few amino acid sequences.

LetA,B the set of atoms of the first, second subunit, respectively. We indicate with d(a, b) a distance between an
atom a ∈ A and an atom b ∈ B. Notice that the notation itself indicates the set to which the atoms belong, namely

the first parameter of d( , ) must be in A, the second inB.

The mathematical development that will be presented in this section is actually independent of the explicit distance

function adopted and of the space dimension. Thus, the presentation holds in a generic metric space (or even less

than it because we don’t actually need the triangular inequality, for the derivation. We need it for the interpretation,

in the Discussion section). In the Discussion section, we will present an example based on the Euclidean distance

inR
3.

We call raw interface the following set of ordered pairs

R0 = {(a, b) ∈ A × B, such that d(a, b) ≤ d0} , d0 ≥ 0 some cut-off (1)
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namely pairs of atoms at distance lower than the cut-off are in the interface. In the present Methods section, the

actual cut-off value is immaterial, namely the construction holds whatever its value is. For the purposes of discussing

intermolecular interactions, it is often fixed to

d0 = 5 Angström (2)

This definition of the interface does not provide any measure to distinguish pairs whose atoms are at different

distances or in different locations. On the contrary, firstly physical interactions decrease when distance grows,

secondly two interactions of equal strength may not play the same role if they are in different parts of the molecules,

inserted in different atomic environments.

This means that besides the distances, we need to rank the interactions within an interface, with a ranking sensitive

to the local conditions.

The lowest level

We will make large use of the minimum function

min S , where S = some set of reals (3)

to extract the minimum distance in the set. As we have in mind applications, we will use finite sets. Thus, the

minimum will always be realized. Let define a first subset of the raw interface by

LA =
{

(a, b) ∈ R0 : d(a, b) = min
{

d(a, c) : c ∈ B and (a, c) ∈ R0

}

}

(4)

This set associates to every atom a ∈ A its closest neighbour on B (or neighbours, if equidistant), namely it

minimizes the distances by respect to the atoms of the first subunit. Similarly, we consider the set of pairs that

minimises distances by respect to the atoms of the second subunit

LB =
{

(a, b) ∈ R0 : d(a, b) = min
{

d(c, b) : c ∈ A and (c, b) ∈ R0

}

}

(5)

The symmetrized interface is the subset of the raw interface defined as the intersection of these two sets

S0 = LA ∩ LB , S0 ⊆ R0 (6)

A restatement of the definition is that a necessary and sufficient condition for a pair (a, b) ∈ R0 to be in S0 is to

satisfy the system of equations











d(a, b) = min
{

d(a, c) : c ∈ B and (a, c) ∈ R0

}

d(a, b) = min
{

d(c, b) : c ∈ A and (c, b) ∈ R0

}
(7)

Notice that the unknowns are not numbers but pairs of R0. In practice the logic is the following. Let fix an arbitrary

pair (a, b). Is that pair the shortest (or one of the shortest if several have equal length) of all the bonds coming out
of a (like rays of a star)? If not, then (a, b) cannot solve the system. If yes, then is (a, b) the shortest (or one of
the shortest if several have equal length) of all the bonds coming out of b? If yes, then (a, b) solves the system
and belongs to S0. In other words, when both equations are satisfied, the bond under examination minimizes two

distinct sets of bonds, one at each of its extremes: it is a local minimum. This is our notion of symmetrization of a

set of bonds.

Theorem 1. IfR0 6= {}, then S0 cannot be empty.
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Proof. Let consider the pair (ā, b̄) that minimizes the whole set of distances ofR0 (there must be at least one such

pair)

d(ā, b̄) = min{d(c1, c2) : c1 ∈ A , c2 ∈ B , (c1, c2) ∈ R0} (8)

It is a global minimum. This implies that the set appearing on the right hand side of the following equation is also

minimized

d(ā, b̄) = min{d(c1, b̄) : c1 ∈ A , (c1, b) ∈ R0} (9)

Similarly, (8) implies also that the following expression is verified

d(ā, b̄) = min{d(ā, c2) : c2 ∈ B , (a, c2) ∈ R0} (10)

These last two equations actually constitute the system in (7), thus the pair (ā, b̄) belongs to S0 which, in that way,

cannot be empty. From now on, we will always assume that R0 is not empty. �

Corollary 1. If an atom a appears more than once in S0, then it appears with equidistant pairs

d(a, b1) = d(a, b2) where (a, b1), (a, b2) ∈ S0 (11)

Proof. Indeed, multiple minima are allowed. �

The higher levels

In this subsection we will prove that the procedure of symmetrization can be iterated. We start by defining a new set

of bonds

Ri = Ri−1 − Si−1 , i = 1, 2, . . . (12)

As in (7), we look for pairs (a, b) ∈ Ri that solve the following system











d(a, b) = min
{

d(a, c) : c ∈ B and (a, c) ∈ Ri

}

d(a, b) = min
{

d(c, b) : c ∈ A and (c, b) ∈ Ri

}
(13)

The subset that solves this system of equations defines the symmetrized set at level i

Si = {(a, b) ∈ Ri : it solves (13)} , Si ⊆ Ri (14)

The proof of theorem 1 can now be repeated here, after replacingR0 withRi. This shows that, as long asRi 6= {},

its subset Si cannot be empty as it must contain at least the global minimum, namely a pair (ā, b̄) that minimizes
all distances of Ri

d(ā, b̄) = min{d(c1, c2) : (c1, c2) ∈ Ri} (15)

All what is stated from (12) to here can be repeated at all orders. Considering that we have a finite number of atoms

and that the symmetrized sets are not empty, at some point the recursion (12) will stop with an empty set

RM = {} with RM−1 6= {} , M = number of levels (16)

By the definition of the recursion (12), it is obvious that a level cannot intersect the previous ones thus we state the

following theorem.

Theorem 2. Different levels are separated: Si ∩ Si−1 = {}
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The initial set of bonds R0 is now the union of disjoint sets

R0 =
⋃

0≤i<M

Si (17)

Thus the initial set of bonds has been sliced in levels, with each bond uniquely classified into a level. An important

theorem that we will use later is now stated.

Theorem 3. At least one atom in a pair must appear in one pair of the previous symmetrized set, namely

(a1, b1) ∈ Si =⇒ (a1, c) ∈ Si−1 or (c′, b1) ∈ Si−1 for some c, c′ (18)

(both are possible). Equivalently, one can say that each bond of Si contains at least one atom of Si−1.

Proof. To show this, let suppose by absurd that they both do not appear. In that case, for the pair (a1, b1) it would
be equivalent to replaceRi byRi−1 in (13), because no record of this pair is present in Si−1. But then, the system

of equations that defines the level i (13) would look as the definition of the previous level i − 1, indicating that the
pair belongs to Si−1, that is absurd because of (12). The second formulation re-writes the first one. The following

corollary is obvious. �

Corollary 2. With respect to Si, a new pair (a, b), namely one with both new atoms, cannot be found before the
level i + 2, namely in Si+2.

The flow chart of the whole symmetrization procedure is represented in Figure 1.

Towers and clusters

The pairs at level zero of the symmetrization can be used as the starting point of towers of bonds. The lowest parts

of the towers define non intersecting clusters of bonds. Each pair at level zero defines the level zero (ground) of

each tower by

T0(a, b) = {(a, b)} ∀ (a, b) ∈ S0 (19)

Each tower level higher that the ground is recursively defined by choosing all bonds of Si that have one atom in

common with the lower tower level

Ti(a, b) = {(a′, b′) ∈ Si : either (a′, c) ∈ Ti−1(a, b) or (c, b′) ∈ Ti−1(a, b) for some c} (20)

The full tower will be the union of all levels

T (a, b) =
⋃

i≥0

Ti(a, b) (21)

Notice that the tower and its levels are always labelled by the initial ground pair, namely (a, b) ∈ S0.

Theorem 4. At each level, the union of all towers exhausts the corresponding symmetrized set:
⋃

(a,b)∈S0

Ti(a, b) = Si (22)

Proof. First, this property holds at level 0 (19). For higher i, we prove it by induction, supposing that it holds at i−1
and showing that this implies its validity at i. So, at this level we have

T =
⋃

(a,b)∈S0

Ti(a, b) =

⋃

(a,b)∈S0

{

(a′, b′) ∈ Si : either (a′, c) ∈ Ti−1(a, b) or (c, b′) ∈ Ti−1(a, b) for some c
}
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Construction of R0

(atom pairs closer than or equal to d0)

Iteration counter: i = 0

FromRi, construction of the sets LA and LB

LA : for each atom of A, the closest partner in B, within Ri

LB : for each atom of B, the closest partner in A, within Ri

Symmetrized level: Si = LA ∩ LB

The rest: Ri+1 = Ri − Si Is Ri+1 empty?

Yes

No

End

i → i + 1

Figure 1. Flow chart of the symmetrization algorithm.

The symmetrized set Si does not depend on which ground pair (a, b) is considered so the union operation goes
inside the braces producing (in two positions) the term

⋃

(a,b)∈S0

Ti−1(a, b) = Si−1 (23)

We have supposed that this holds true so we can write

T =
{

(a′, b′) ∈ Si : either (a′, c) ∈ Si−1 or (c, b
′) ∈ Si−1 for some c

}

(24)

The condition inside the braces is actually the statement of theorem 3 so it is satisfied by all the pairs of Si, that is

precisely the thesis. �

Corollary 3. The union of all towers covers R0:

⋃

(a,b)∈S0

T (a, b) = R0 (25)

Proof. It is a direct consequence of (22) and (17). �
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Notice that the definition of tower (20) allows the case of bonds belonging to a symmetrized set higher than the

ground to be in more than one tower. Thus, two towers can have nonvanishing intersection and the union in (25)

redundantly covers the initial set of bonds. On the other hand, it is very easy to provide examples of non intersecting

towers: just consider two groups of atoms whose inter-group distances are all larger than the cut-off. The meeting

level of two towers is the lowest integer at which they share one or more bonds:

Tℓ(a, b) ∩ Tℓ(c, d) 6= {} , 0 ≤ ℓ < M , (a, b), (c, d) ∈ S0 (26)

The towers will provide useful information to interpret the bonds organisation of the interface. We define the following

relationR between members of R0 by saying that two bonds are in relation if one can walk from the first to the last

by always traversing intersecting towers:

(a, b)R(c, d) ⇔ ∃

{

(ei, fi) ∈ R0 , i = 1, . . . ,N
}

for someN such that

T̂ ∩ T (e1, f1) 6= {} , T (e1, f1) ∩ T (e2, f2) 6= {} , T (e2, f2) ∩ . . . 6= {} ,

. . . ∩ T (eN , fN ) 6= {} , T (eN , fN ) ∩ T̃ 6= {} (27)

where T̂ is a tower that contains (a, b) and T̃ is one that contains (c, d).

Theorem 5. The binary relationR is an equivalence relation.

Proof. First, the relation is reflexive (a, b)R(a, b), as a tower intersects itself. Second, it is symmetric

(a, b)R(c, d) = (c, d)R(a, b) (28)

because the set intersection is commutative. Third, it is transitive

(a, b)R(c, d) and (c, d)R(e, f) ⇒ (a, b)R(e, f) (29)

To see this, one can simply walk back one of the paths of the left hand side, join it with the other and use the joined

path to connect the two bonds on the right hand side. �

This equivalence relation partitions the set R0 into equivalence classes, members of the quotient set

Q = R0/R = {[(a, b)] : (a, b) ∈ R0} (30)

Two different equivalent classes represent two groups of bonds that cannot be connected by a bond in R0. By

(1), this means that the respective atoms are separated from each other of more than the cut-off distance (1), thus

forming two separated domains of points. They are also called patches, or regions of the interface. By the definition

itself, it is obvious that a tower belongs to a single patch. Vice versa, a patch in general contains several towers;

actually it contains all the towers that have a (pairwise) nonvanishing intersection.

Two towers at a level lower than the meeting one (26) do not intersect. Thus the bonds belonging to levels lower than

the intersection one are well separated and form clusters around the two level 0 bonds that generate the towers.

Let ℓ the lowest meeting level for a given tower, namely the lowest integer that satisfies (26) for the tower T (a, b).
Then, all its bonds that are ranked at a level lower than ℓ belong to the cluster C(a, b) that emanates from (a, b)

C(a, b) = {(e, f) ∈ T (a, b) : (e, f) ∈ Si , 0 ≤ i < ℓ} (31)

The bonds at the meeting level or higher are not attributed to this cluster, because they are equally well described

as members of the nearby cluster C(c, d). One can go further. Following (26), one can look for the level ℓ1 at which

a third tower is met, thus form a larger cluster. The construction can go on and will stop when the full patch will be

included in the cluster. This hierarchical division into clusters is important because it provides a notion of vicinity

between bonds, and thus between atoms, based on the ranks and on the meeting levels.
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Complexity of the symmetrization algorithm

For simplicity, we suppose that the two subunits A and B have the same number of atoms n. We compute the

complexity of the algorithm by counting the operations needed for the construction of the sets Ri and Si with

i = 0, 1, · · · ,M − 1.

For the set R0, the expression (1) considers the pairs of atoms at a distance lower than a given cut-off. Thus, for

each atom a ∈ A we must evaluate the distance to each atom b ∈ B and make the choice to include or not the

pair (a, b) in R0 by comparing with the cut-off. This construction of R0 requires n
2 operations. Particularly, in the

worst case the cardinality ofR0 is quadratic and of the order of n
2, O(n2).

The worst case arises when the two subunits are strongly connected; in graph theory such event is called a complete

bipartite graph, that occurs when each atom of A is connected to each atom of B, as in the following example

A:

B:

When all the distances between pairs of atoms are less than the cut-off, R0 turns out to be a complete bipartite

graph with exactly n2 pairs of atoms.

Now, the symmetrization uses the sets defined in (4) and (5). In order to construct LA, for each atom a we consider

all the atoms b such that the pair (a, b) is in R0. In the worst case we need to consider all the pairs between

atoms of A and atoms of B. Thus the construction of LA uses n2 operations. The same argument holds for the

construction of LB. The intersection of LA and LB requires once more n2 operations, in the worst case. Thus, at

worst, the symmetrization at level 0 needs 3n2 operations, that is O(n2) operations. Notice that the cardinality of
LA and LB can be estimated to be of order n. Actually, it is precisely n if the distances are all different. The size

of S0 cannot be greater that the one of LA, LB ; it is expected to be of order n or lower.

A new level is built with the subtraction indicated in (12). This operation is estimated to remove a linear number of

pairs of atoms (that is O(n) pairs of atoms). As the removal of a linear set from a quadratic set doesn’t affect the
order, the cardinality of R1 turns out to be quadratic. We will use this counting at all levels, claiming that the size

of all the Ri is quadratic in n and their symmetrization needs O(n2) operations. Clearly, this is an overestimation,
because we know that the cardinality of Ri decreases, with i, down to zero (16) thus the number of operations

needed by its symmetrization decreases accordingly. A more careful counting is possible but has no effect on the

final order.

The maximum value of the number of levels in (16) isM = n2, corresponding to a case where at each level we

remove only one pair of atoms from R0, precisely the one that attains the global minimum (15). In practice, the

actual number of levels is often less than n (see the example given later).

The total number of operations is evaluated to n2 + Mn2, that amounts to n2 + n2n2, given the maximum value

ofM . This means O(n4) operations for the whole construction.

Comparison with connected components decomposition

It is very natural to express the notion of interface by the form of a graph. Its set of vertices is

V = A ∪ B (32)

The set of edges (bonds) is R0 itself. As we only consider bonds between A and B, the graph is automatically

bipartite. We do not need to consider loops (bonds joining a vertex with itself). Also, the graphs are simple, as we

do not attach any meaning to parallel edges.

In [Feverati, 2010] and in later publications, we have systematically represented the level S0 of interface proteins by

undirected bipartite graphs (Gemini graphs) and carefully investigated their properties.
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The connected components are a global decomposition of a graph into subgraphs, where the reference length used

to separate the different components is the same everywhere. The symmetrization, instead, is a local decomposition

of the graph into subgraphs because the ranking is decided by the local features of the graph.

In connected component analysis, a “running” cut-off is used in order to evaluate how far two (or more) parts of the

interface are. In the case of an interface, we could introduce a cut-off f with 0 < f < d0 in order to consider

only pairs of atoms with distance less than f. This construction helps to investigate the structure of the interface

and can be used to propose pairs of atoms considered crucial to maintain the interface. On the other hand, it is

somehow artificial because the cut-off is not aware of the local “geometry”. For example, a very densely populated

region and a sparse one are treated on an equal ground by a global cut-off while they are ranked differently by the

symmetrization.

Thus, the stratification ofR0 into levels, produced by the symmetrization, is another way to investigate the pertinence

of the interface. In particular, there are atoms which are involved at many levels in the towers; these atoms could be

important in the construction of the interface itself. We will use all this information in future publications to investigate

a new measure of the stability of the interface and to focus on pairs of amino acids with atoms appearing at many

different levels of the towers.

Discussion

Example

The subunit B of the cholera toxin protein (CtxB) is a pentamer made of identical chains of 103 amino acids, showing

the cyclic group C5 symmetry. We use the Protein Data Bank structure 1EEI, where the chains are enumerated

from D to H. From now on, unless explicitly specified, all the results and the discussion are based on the Euclidean

distance in R
3. The raw interface R0 (1) contains 740 bonds of length smaller that 5 Angström. This interface

decomposes in 30 levels Si, i = 0, 1, . . . , 29 (17), as shown in table 1.

The lowest levels of the towers are indicated in Figure 2 and 3.

At the level 0, one recognizes 10 black straight line segments, namely 10 clusters. Six of them join at level 2, by a

purple. Two join at level 3, by a red segment. Two clusters are still disjoint and will join at some higher level.

Table 1. Decomposition of the interface in levels, for the CtxB protein (1EEI). In average, each

symmetrized level has 24.7 bonds. The total interfaceR0 has 740 members.

level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

bonds in the level 33 39 34 32 33 37 32 29 30 32 34 38 38 35 25

level 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

bonds in the level 29 33 36 25 27 24 17 13 8 7 6 4 4 4 2

Table 2. Effect of the variation of the cut-off in the range [5,25] Angström. The table indicates the

number of pairs in S0, at three different values of the cut-off d0. The test has been performed on 40

proteins of stoichiometries from 3 to 8. We show one example per stoichiometry.

d0 ↓ name→ 1PM4 1J8D 1EEI 1U1S 1HX5 1Q3S

5 Angström 15 36 33 22 18 72

6.5 Angström 16 36 33 23 19 75

25 Angström 18 36 33 23 19 79
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Figure 2. A planar projection of the interface of the CtxB protein is shown; axis coordinates are

indicated in Angström. The projection has been chosen to maximise the visibility of the interface.

Only atoms belonging to the amino acids in the range [96, 103] in chain D and [23, 31] in chain E
are shown. We restrict to it in order to have an image of reasonable size. The four lower levels are

shown in colors: S0 black, S1 blue, S2 purple, S3 red. The stars represent atoms: cyan for the

subunit D, green for the subunit E. The unconnected atoms will all join at some level higher than level

3. Here and in the next figure, please notice that the apparent crossing of the straight line segments is

an artifact of the projection; in the three dimensional space they actually avoid each other (in general).
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Figure 3. Zoom on the left part of Figure 2. Each image adds one level on top of the previous ones.

Two bonds appear at level zero and form the basis of two towers. They meet at level 2, thanks to the

purple segment closest to “vertical”, that joins one atom of each tower.
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Features of the symmetrization

We present now the features of the symmetrization that we find important in studying the protein interfaces. We

also suggest that the symmetrization could help to treat problems issued of different domains, like other biological

interfaces.

1. The whole construction is independent on the explicit distance function. In relation to protein interfaces, this

means that one could replace the three-dimensional Euclidean distance by some other distance that knows

about the actual interaction energy of the pair. This would allow to interpret the ranking in a strict sense: the

higher the rank the weaker the strength1. Unfortunately, this goal is not easily realized, the major problem

being that part of the interaction energy between subunits is accumulated as torsion or bending of covalent

bonds. This requires a description based on three or four atoms while the distance is a function of two atoms.

Said otherwise, the correct interaction energy is not just the sum of pairwise interactions but also contains

three and four atom terms. While here we remain with the Euclidean distance, we plan to perform, in a future

publication, several tests in order to appreciate the relative importance of two, three and four atom interaction

terms and present a distance expression that (somehow) simulates their effects.

2. The symmetrization self-adapts to the size and packing of the interface. To clarify this point, imagine we

define an interface by taking (a) its ten shortest distances, or (b) the three shortest distances for each atom.

In (a), the number of representatives would be totally uncorrelated to the actual interface size, while in (b) the

local arrangement of points and the interaction strengths would play no role. In particular, an atom connected

with three others or a second atom connected with ten others would be treated in the same way. We have

observed an enormous variability in the type, number and local organization of atoms or amino acids present

in an interface so we mandatorily need to avoid situations as those described in (a) or (b).

3. The symmetrization makes the set S0, the lower levels content and the clusters (31) weakly dependent upon

the cut-off value. Indeed, if d0 → ∞ (or simply higher that the largest distance in the data set), the full

construction becomes cut-off and scale independent. Decreasing it down to a finite value, still sufficiently

large by respect to the pairs in S0, is expected to have a limited influence on the lowest levels, because

the whole procedure is based on minimizations while, if we decrease the cut-off, we just slice out widely

separated pairs. The validity of this argument strongly depends on the actual data set. In the domain of

protein interfaces, it is strongly supported by the data in table 2.

This indicates that a good strategy to choose the cut-off consists in fixing it to a value such that the effect of

a variation on the lowest levels (before meeting) is negligible. Physically, this represents the very common

situation where the interaction of sufficiently far apart objects is screened by the interposed ones and the

contribution to the bond energy becomes negligible. This is why we choose d0 = 5 Angström in order to
capture intermolecular interactions at the interfaces.

4. The symmetrization applies to all scales, namely one could replace the atoms by some interacting entity at

some distance scale. Indeed, the only scale length in the problem is the cut-off, that can be removed by

simply sending it to infinity. This can be particularly interesting in analysing problems where two or more

different scale lengths appear.

5. As the levels are obtained by minimization, they are “fragile” to perturbations or experimental errors, if these

are sufficiently large to swap the relative distances of two atoms. Most probably this is not a serious issue if

clusters are considered. A more complete analysis will be performed in later publications.

1Notice that the triangular inequality is needed to supports this interpretation.
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Connection with biology

Having adopted the Euclidean distance, the symmetrization produces a ranking that is purely geometric, because

atomic positions only matter while the atom and interaction types do not play any role. The F. Crick approach cited in

the Introduction was also purely geometric. If some “improved” distance based on the actual chemical interactions

was implemented, as suggested at point 1 in paragraph Features of the symmetrization, the ranking would become

geometrical and chemical. With our purely geometric criterion, in previous papers we have show that the lowest

symmetrized level S0 contains useful information on the interfaces. Its use has been validated in [Feverati, 2010]. It

has been employed in [Zrimi, 2010] to help investigating the role of histidines in the protein assembly.

More recently, in [Feverati, 2012] it has been shown that the intermolecular β-sheet interfaces are made of two

interdigitated interaction networks, one involving backbone (BB) atoms only, the other involving at least one side-

chain (SC) atom. The two networks have slightly different amino acids and bond compositions and some specific

pattern of charged and hydrophobic amino acids. The hydrophobic amino acids observed in the BB network are

similar to those observed in intramolecular β-sheets. The SC network is slightly enriched in charged amino acids

and the spatial distribution of the charged amino acids in the interface has some peculiar pattern specific to the

intermolecular case.

The work of J. Janin and collaborators [Janin, 2008] indicates that an interface is composed of two parts, the core

and the rim. The core is completely inaccessible to the solvent molecules, typically water, while the rim is exposed

to them. The distinction is geometrical, based on the position and on steric hindrance of atoms. The core is more

conserved during evolution. The complementarity of the two subunits is more pronounced in the core than in the

rim.

On the opposite, the symmetrization, albeit geometrical, does classify according to the strength of the interactions.

The two classifications (core/rim versus symmetrization) are “dual”, in the sense that they complement each other

by giving different information on the same entity. For example, atoms of the core can appear at many different

levels thus, in general, it would not be appropriate to claim that some levels describe the core, some others the rim.

A consequence of our choice of using the notion of the interaction strength is that we have instruments to

characterize the physical neighborhood: the patches, the clusters and the meeting levels.

If the cut-off is well chosen, patches represent different regions of the interface, namely groups of atoms sufficiently

far apart to be considered independent. This phenomenon is common, as quite often an interface is made of several

patches. Different patches in the same interface can play different roles during assembly and possibly they have

different evolutive histories. The notion of independent region or patch is somehow hard to define thus it is very

important to have a procedure to construct it. The present definition is based on atomic interactions while the one

we used in [Feverati, 2010] was based on the proximity along the amino acid sequence.

The clusters (31) may help to characterize fundamental blocks of an interface, at least for those clusters whose

meeting level is very high. A block can mean some group of atoms that is recurrent, in interfaces of similar geometry,

or that is conserved during evolution, or that has some special role in the recognition of the two subunits during the

assembly.

The assembly is a complex phenomenon where the two partners, namely the subunits, need to recognize each

other, then stabilize the interface. In most cases it is not known how these steps develops. Thus, the levels seem

to suggest the sequence of events occurring during the assembly, the lower levels accommodating first, the higher

levels later.

Conclusion

The whole analysis presented so far has been triggered by the problem of investigating biological interfaces, namely

interfaces that form during the biochemical activity in a cell, between or inside proteins, protein-DNA or protein-RNA

complexes and so on.
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We have proposed a new approach to the treatment of protein interfaces, based on the idea that the ranking of

interactions helps clarifying their role. Our previous experience with the lowest level S0 has been so fruitful that we

believe the full set-up constructed here will allow to improve the description of interfaces.

The main tool, in our view, is the cluster. Indeed, it identifies the locally strongest bonds and the meeting level

indicates how rich are the interconnections within each cluster.

Higher levels, clusters, towers and patches are presented here for the first time, in a proper mathematical

development. The hope is that their full biological relevance will appear after a comparative analysis of many

interfaces of similar geometry, as it has been the case with the level 0. Also, with the use of S0 alone, as we did

in our previous papers, it was not possible to evaluate the role of the interactions that were neglected. The need to

address this issue has strongly motivated the present work.
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INTERVALS AS ULTRAMETRIC APPROXIMATIONS

ACCORDING TO THE SUPREMUM NORM

Bernard Fichet

Abstract: Given two distances d and d′ defined on a finite set I , with d ≤ d′, we characterise the set of all

ultrametrics lying between d and d′ (if any), showing they are the union of finitely many intervals with a common top

endpoint, the subdominant ultrametric of d′. We also provide an algorithm to compute the bottom of any interval,

given by any upperminimal ultrametric of d less than d′. A series of approximations according to the supremum

norm derive from this.

Keywords: ultrametric, subdominant ultrametric, upperminimal ultrametrics, approximation, supremum norm

MSC: G3: Statistics

Given a dissimilarity (or a distance) d defined on a finite set I , we here propose an algorithm for computing an

upperminimal ultrametric d∗ of d bounded by a fixed dissimilarity d′ (if any), so yielding a solution of the sandwich

problem : find an ultrametric lying between d and d′ (we recall that an ultrametric u on I obeys the ultrametric

inequality: u(i, j) ≤ max[u(i, k), u(j, k)] for all i, j, k in I).

As observed by Chepoi and Fichet (2000), the latter problem admits a very simple characterisation via a subdominant

approximation. Namely, the subdominant ultrametric d′∗ of d
′ is (the greatest) solution, provided that it is greater

than d (a contrario, there is no solution). Moreover, it is well known that there are efficient algorithms for computing

a subdominant, such as the one defined by the single linkage procedure.

Similar results hold with upperminimal ultrametric approximations of d: the sandwich problem has a solution

if and only if there is an upperminimal ultrametric of d which is less than d′. We recall that, as opposed to

the subdominant which is the best lower approximation, there are finitely many best upper approximations, the

upperminimal ultrametrics of d. The complete linkage algorithm builds a particular approximation (several in case

of ties), but it was not before the eighties that some dividing procedures compute any of them (Van Cutsem (1984),

Leclerc (1986)).

Our algorithm extends the latter ones, in order to satisfy the boundary constraint. It is recursive and (formally)

depicts all the solutions (if any). It involves a so-called d-admissibility condition of a given partition of I , and a

threshold graph G associated with d′. At a given step, we know whether there is no solution, or there is a possible

one related to a new minimal partition less than the one given by the connected components ofG.

Thus, the set of solutions of the sandwich problem appears as the finite union of intervals of the type [d∗, d′∗], with
common top endpoint d′∗. A series of derivative problems may be solved by this way, such as :

· Characterising all ultrametrics at a least supremum norm of d and d′, d ≤ d′, so recovering the results of (Chepoi-

Fichet, 2000), and (Farach et al., 1995).

· Given d, find the minimum λ ≥ 1, such that there is an ultrametric lying between (1/λ) d and λd.

· Given a partial dissimilarity d, characterising all ultrametric extensions of d.

Authors’ Information

Bernard Fichet - Aix-Marseille University. Laboratoire d’Informatique Fondamentale.

bernard.fichet@lif.univ-mrs.fr



148 Mathematics of Distances and Applications

DISTANCES ON ANTIMATROIDS

Yulia Kempner, Vadim E. Levit

Abstract: An antimatroid is an accessible set system (U,F) closed under union. Every antimatroid may be
represented as a graph whose vertices are sets of F , where two vertices are adjacent if the corresponding sets are

differ by one element. This graph is a partial cube. Hence an antimatroid with the ground set U of size n may be

isometrically embedded into the hypercube {0, 1}n. Thus the distance on an antimatroid considered as a graph

coincides with the Hamming distance. A poset antimatroid is an antimatroid, which is formed by the lower sets

of a poset. We consider different definitions of the distance between elements of an antimatroid, and give a new

characterization of poset antimatroids.

Keywords: antimatroid, partial cube, zigzag distance, Hamming distance.

ACM Classification Keywords: G.2

MSC: 05C12; 52B40

Introduction

An antimatroid is an accessible set system closed under union. There are two equivalent definitions of antimatroids,

one as set systems and the other as languages [Korte et al., 1991]. An algorithmic characterization of antimatroids

based on the language definition was introduced in [Boyd & Faigle, 1990]. Later, another algorithmic characterization

of antimatroids which depicted them as set systems was developed in [Kempner & Levit, 2003]. Antimatroids can

be viewed as a special case of either greedoids or semimodular lattices, and as a generalization of partial orders

and distributive lattices. While classical examples of antimatroids connect them with posets, chordal graphs, convex

geometries etc., [Glasserman & Yao, 1994] used antimatroids to model the ordering of events in discrete event

simulation systems. In mathematical psychology, antimatroids are used to describe feasible states of knowledge of

a human learner [Eppstein et al., 2008]. There are also rich connections between antimatroids and cluster analysis

[Kempner & Muchnik, 2003].

Let U be a finite set. A set system over U is a pair (U,F), whereF is a family of sets over U , called feasible sets.

Definition 1. [Korte et al., 1991] A finite non-empty set system (U,F) is an antimatroid if (A1) for each non-empty
X ∈ F , there exists x ∈ X such thatX − x ∈ F

(A2) for allX,Y ∈ F , andX * Y , there exists x ∈ X − Y such that Y ∪ x ∈ F .

Any set system satisfying (A1) is called accessible.

Proposition 2. [Korte et al., 1991] For an accessible set system (U,F) the following statements are equivalent:

(i) (U,F) is an antimatroid

(ii) F is closed under union (X,Y ∈ F ⇒ X ∪ Y ∈ F )

A set system (U,F) satisfies the chain property [Kempner & Levit, 2010] if for allX,Y ∈ F , andX ⊂ Y , there

exists a chainX = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such thatXi = Xi−1 ∪ xi andXi ∈ F for 0 ≤ i ≤ k.

It is easy to see that this chain property follows from (A2), but these properties are not equivalent. Examples of
chain systems include antimatroids, convex geometries, matroids and other hereditary systems (matchings, cliques,

independent sets, etc.).
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Definition 3. [Korte et al., 1991] The set system (U,F) is a poset antimatroid if U is the set of elements of a finite
partially ordered set (poset) P andF is a family of lower sets of P . The maximal chains in the corresponding poset

antimatroid are the linear extension of P .

A game theory gives a framework, in which poset antimatroids are considered as permission structures for coalitions

[Algaba et al., 2004]. The poset antimatroids can be characterized as the unique antimatroids which are closed

under intersection [Korte et al., 1991]. The feasible sets in a poset antimatroid ordered by inclusion form a distributive

lattice, and any distributive lattice can be built in this way. Thus, antimatroids can be seen as generalizations of

distributive lattices.

Distance on graphs and antimatroids

Definition 4. For each graph G = (V,E) the distance dG(u, v) between two vertices u, v ∈ V is defined as

the length of a shortest path joining them.

Definition 5. IfG and H are arbitrary graphs, then a mapping f : V (G) → V (H) is an isometric embedding if
dH(f(u), f(v)) = dG(u, v) for any u, v ∈ V (G).

Let U = {x1, x2, ...xn}. Define a graph H(U) as follows: the vertices are the finite subsets of U , two vertices
A and B are adjacent if and only if the symmetric difference A △ B is a singleton set. Then H(U) is the
hypercube Qn on U [Djokovic,1973]. The hypercube can be equivalently defined as the graph on {0, 1}n in which

two vertices form an edge if and only if they differ in exactly one position. The shortest path distance dH(A,B)

on the hypercube H(U) is the Hamming distance between A and B that coincides with the symmetric difference

distance: dH(A,B) = |A △ B|. A graph G is called a partial cube if it can be isometrically embedded into a

hypercubeH(U) for some set U .

Definition 6. [Doignon & Falmagne, 1997] A family of sets F is well-graded if any two sets P,Q ∈ F can be

connected by a sequence of sets P = R0, R1, ..., Rn = Q formed by single-element insertions and deletions

(|Ri △ Ri+1| = 1), such that all intermediate sets in the sequence belong to F and |P △ Q| = n.

Any set system (U,F) defines a graph GF = (F , EF ), where EF = {{P,Q} ∈ F : |P △ Q| = 1}.

Since a familyF of every antimatroid (U,F) is well-graded, each antimatroid is a partial cube ([Ovchinnikov, 2008])
and may be represented as a graph GF that is a subgraph of the hypercube H(U). Thus the distance on an
antimatroid (U,F) considered as a graph coincides with the Hamming distance between sets, i.e. dF (A,B) =
|A △ B| for any A,B ∈ F .

Poset antimatroids and zigzag distance

For an antimatroid (U,F) denote Ck = {X ∈ F : |X| = k} a family of feasible sets of cardinality k. A lower

zigzag is a sequence of feasible sets P0, P1, ..., P2m such that any two consecutive sets in the sequence differ

by a single element and P2i ∈ Ck, and P2i−1 ∈ Ck−1 for all 0 ≤ i ≤ m. In the same way we define an

upper zigzag in which P2i−1 ∈ Ck+1. Each zigzag P0, P1, ..., P2m is a path connecting P0 and P2m, and so the

distance on the zigzag d(P0, P2m) = 2m is always no less than the distance dF (P0, P2m) on an antimatroid
(U,F).

Figure 1(a) shows two sets (A = {1, 2, 3, 5} and B = {1, 3, 4, 5}) that are connected by a lower zigzag, such
that the distance on the zigzag is 4, while |A △ B| = 2. Note, that the distance on the upper zigzag is indeed 2.
For two setsX = {1, 2, 5} and B = {3, 4, 5} the distance on the lower zigzag and on the upper zigzag is equal
to 6, while |X △ Y | = 4. In order that the distance on zigzags be equal to the distance on an antimatroid, the
antimatroid have to be poset antimatroid. This property gives a new characterization of poset antimatroids.
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Figure 1: (a) An antimatroid without distance preserving zigzags and (b) a poset antimatroid without total distance

preserving zigzags.

Theorem 7. An antimatroid (U,F) is a poset antimatroid if and only if every two feasible sets A,B of the same

cardinality k can be connected by a lower and by an upper zigzags such that the distance between these sets

dF (A,B) coincides with the distance on the zigzags.

Proof. The proof of the sufficiency may be found in [Kempner & Levit, 2012]. To prove the necessity we show that

the antimatroid (U,F) is closed under intersection, i.e., for each A,B ∈ F the set A ∩ B ∈ F . If A ⊆ B or

B ⊆ A the statement is obvious. So we consider only incomparable sets. We use induction on dF (A,B).

If dF (A,B) = 1 then the sets are comparable, so we begin from dF (A,B) = 2. Since the sets are incomparable,
we have A = (A ∩ B) ∪ a and B = (A ∩ B) ∪ b. So the lower distance preserving zigzag connecting A and

B must go via A ∩ B, i.e.,A ∩ B ∈ F .

Let dF (A,B) = m. If |A| = |B| then there is a distance preserved lower zigzag connecting A with B. Hence

there is a ∈ A − B such that A − a belongs to the zigzag, and b ∈ B − A withB − b on the zigzag, such that

dF (A− a,B − b) = |A△B| − 2 = m− 2. By the induction hypothesis (A− a)∩ (B − b) = A∩B ∈ F .

Let |A| < |B|. The definition of an antimatroid (A2) implies that there exists b ∈ B − A such that A ∪ b ∈ F .

Since dF (A∪b,B) = dF (A,B)−1, by the induction hypothesis (A∪b)∩B = (A∩B)∪b ∈ F . SinceA * B

and |A| < |B|, then 1 ≤ |A−B| < |B−A|. Hence dF (A, (A∩B)∪b) = |A−(A∩B)|+1 = |A−B|+1 <

|A − B| + |B − A| = dF (A,B). By the induction hypothesis A ∩ ((A ∩ B) ∪ b) = A ∩ B ∈ F .

Note that if for a zigzag P0, P1, ..., P2m the distance on the zigzag d(P0, P2m) = 2m = dF (P0, P2m) =
|P0 △P2m| then the zigzag preserves the distance for each pair Pi, Pj , i.e., dF (Pi, Pj) = d(Pi, Pj) = |j− i|.

For poset antimatroids there are distance preserving zigzags connecting two given sets, but these zigzags are

not obliged to connect all feasible sets of the same cardinality. In Figure 1(b) we can see that there is a poset

antimatroids, for which it is not possible to build a distance preserving zigzag connecting all feasible sets of the

same cardinality. To characterize the antimatroids with total distance preserving zigzag we introduce the following

definitions.

Each antimatroid (U,F) may be considered as a directed graph G = (V,E) with V = F and (A,B) ∈ E ⇔

∃c ∈ B such that A = B − c. Denote in-degree of the vertex A as degin(A) = |{c : A − c ∈ F}|, and

out-degree as degout(A) = |{c : A ∪ c ∈ F}|. Consider antimatroids for which their maximum in-degree and

maximum out-degree is at most p, and there is at least one feasible set for which in-degree or out-degree equals p.

We will call such antimatroids p-antimatroids.
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Theorem 8. In p-antimatroid (U,F) all feasible sets Ck of the same cardinality k can be connected by a lower

zigzag and by an upper zigzag such that the distance between any two sets Pi, Pj in each zigzag coincides with

distance on the zigzag d(Pi, Pj) = |j − i| if and only if p < 3.

The proof of the sufficiency may be found in [Kempner & Levit, 2012]. To prove the necessity let (U,F) be a p-

antimatroid with p > 2. Let the out-degree of some A be equal to p. Then there are some a, b, c ∈ U such that

A ∪ a,A ∪ b,A ∪ c ∈ F . So there is a sub-graph ofGF isomorphic to a cube (see Figure 1(b)), and hence it is

not possible to build a distance preserving zigzag connecting all feasible sets of the same cardinality k = |A|+ 1.
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DISTANCE BETWEEN OBJECTS DESCRIBED BY PREDICATE FORMULAS 

Tatiana Kosovskaya 

Abstract: Functions defining a distance and a distinguish degree between objects described by predicate 
formulas are introduced. It is proved that the introduced function of distance satisfies all properties of a distance. 
The function of objects distinguish degree adequately reflects similarity of objects but does not define a distance 
because the triangle inequality is not fulfilled for it. The calculation of the introduced functions is based on the 
notion of partial deduction of a predicate formula. 

Keywords: artificial intelligence, pattern recognition, distance between objects, predicate calculus. 

ACM Classification Keywords: I.2.4 ARTIFICIAL INTELLIGENCE Knowledge Representation Formalisms and 
Methods – Predicate logic. 

Conference topic: Computer-related Distances.  

Introduction 

A solution of an Artificial Intelligence (and pattern recognition) problem is often based on the description of an 
investigated object by means of global features which characterize the whole object but not its parts. In such a 
case a space of features appears and the distance between  objects  may  be  introduced  in  some natural  way,  

for example,  by the formula ∑i  |xi – yi|
k   for some natural k. In the case k=1 we deal with a well-known 

Hamming metric which is widely used in the information theory for comparison of the same length strings of 
symbols. 

But how we can measure the distance between two objects described by some local features which characterize 
some parts of an object or relations between such parts? What is the distance between two identical images one 
of which is situated in the left upper corner of the screen and the second is in the right lower corner? Even if we 

use a monochrome screen with two degrees of lightness the distance calculated by the formula  ∑i |xi – yi|  will 
give the number of pixels in the image itself multiplied by two.  

If we analyze a market situation with two participants  A and  B  (the participants of the market are not ordered)  

with the feature values  (p1
1, p

1
2,…,p1

n)  and  (p2
1, p

2
2,…,p2

n)  then in the dependence of their order   

((p1
1, p

1
2,…,p1

n),  (p
2

1, p
2

2,…,p2
n))   or  ((p2

1, p
2
2,…,p2

n),  (p
1
1, p

1
2,…,p1

n))  we receive that these 
two situations are essentially different (the distance between  them may be up to 2n). 

To recognize objects from the done set    every element of which is a set t  a logic-objective 

approach was described in [Kosovskaya, 2007].  Such an approach consists in the following.  Let the set of 

predicates  p1, ... , pn  (every of which is defined on the elements of  characterizes properties of these 

elements and relations between them. Let the set    is a union of (may be intersected) classes   = k=1
K 

k.   

Logical description  S() of the object    is a collection of all true formulas of the form  pi()  or  pi()  (where  

  is an ordered subset of  ) describing  properties of  elements and relations between them. 
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Logical description of the class   k  is such a formula  Ak(x) that  if the formula Ak()  is true then   k.  

The class description always may be represented as a disjunction of elementary conjunctions of atomic formulas. 

Here and below the notation   x  is used for an ordered list of the set  x.  To denote that all values for variables 

from the list  x are different the notation  xAk(x)  will be used. 

The introduced descriptions allow solving many artificial intelligence problems [Kosovskaya, 2011]. These 

problems may be formulated as follows.  Identification problem: to check out such a part of the object    which 

belongs to the class  k.  Classification problem:  to find all such class numbers k  that  k.  Analysis 

problem:  to find and classify all parts   of the object  .  The solution of these problems is reduced to the proof 

of predicate calculus formulas  S(хAk(х),    S(k=1

Ak(х),    

S(k=1
хAk(х).   

The proof of every of these formulas is based on the proof of the sequent  

S(хA(х) , (1) 

where A(x)  is an elementary conjunction. 

The notion of partial deduction was introduced by the author in [Kosovskaya, 2009] to recognize objects with 
incomplete information. In the process of partial deduction instead of the proof of  (1)   we search such a maximal 

sub-formula   A'(x')   of the formula   A(x)  that S(х'A'(х')   and there is no information  that  

A(x)  is not satisfiable on  .  

Let  a and a'  be the numbers of atomic formulas  A(x) and  A'(x')  respectively,  m  and  m'  be  the numbers of 

objective variables in A(x) and  A'(x')  respectively.  Then partial deduction means that the object    is   an r-th  

part ( r = m'/m ) of an object satisfying the description A(x)  with the certainty  q = a'/a . 

More precisely, the formula  S(хA(х)   is partially (q,r)-deductive if there exists a maximal sub-

formula   A'(x')  of the formula   A(x)  such that   S(х'A'(х')    is deducible and      is the string 

of values for the list of variables  х' ,  but the formula   S(х[DA' (x)]x'  is  not deducible. Here  

[DA' (x)]x'  is  obtained from A(x)  by deleting from it all conjunctive members of   A'(x'), substituting values of 

 instead of the respective variables of  х'  and taking  the negation of the received formula. 

The defined below distance between objects takes into account the non-coincidence of their descriptions as the 
Hamming metric. It may be calculated not only for descriptions with the same number of atomic formulas which 
are ordered in some natural way, but for such ones which are sets (not ordered) of an arbitrary finite power.  

Distance and Distinguish Degree Between Objects 

Let    and    be two objects with logical descriptions  S()  and  S(  respectively and    A0(x0)  and  

A1(x1) be elementary conjunctions constructed according to these logical descriptions by changing different 

constants by different variables and putting the sign  &  between the atomic formulas. It is evident that   S(i 

хAi(хi)  i.e. i   satisfies the formula  Ai(хi)  (for i = 0, 1). Let  Ai(хi)  contains  ai  atomic formulas 

and  ti  variables.  

Let us construct a partial deduction of a sequent    S(i  хA1-i(х)  for  every  i = 0,1.  
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Let    A'i,1-i(x'i,1-i)   be the maximal  (under the number of variables)  sub-formula of  the formula  A1-i(x1-i)  for 

which such a  partial deduction exists.  

Let the formula  A'i,1-i(x'i,1-i)  contains  a'i,1-i  atomic formulas and   t'i,1-i  variables. Note that  A'01(x'01)  and  

A'01(x'10)   coincide  (up to the names  of variables)   and   hence  a'01 =  a'10. Let   a'i,1-i =  ai –  a'i,1-i .  

a'01   is the number of non-coincidences of atomic formulas (up to the names of constants)  in  S(0)  with 

respect to  S( . 

Definition.  The distance between objects    and    is the sum of the number of non-coincidences of atomic 

formulas (up to the names of constants)  

() =  a'0,1 + a'1,0 . 

Remember examples from the introduction.  If the image on the display screen is described by a predicate   

p(i,j,x)  “pixel with the number (i,j)  has the lightness x”  then  two identical images one of which is situated in the 
left upper corner of the screen and the second is in the right lower corner have the same (up to the names  of 
constants) logical descriptions. Therefore the distance between them equals 0.  

The logical description of two participants in the example with market participants is a set of atomic formulas   

{p1(A), p2(A),…,pn(A), p1(B), p2(B),…,pn(B)}  or  {p1(B), p2(B),…,pn(B),  p1(A), 

p2(A),…,pn(A)}  which are equal  and  the distance  equals 0.  

It is natural that in dependence of the chosen initial predicates the distance between objects may differ.  Let's 
give an example of distance calculation between two contour images described by two predicate systems. 

Example. Let we have two images  A  and  B   represented on the figures 1 and 2. 

Consider two systems of initial predicates. 

1. V(x,y,z)  yxz <  ,   

I(x,y,z,u,v)    “the vertex x is a point of intersection of segments [y,z] and [u,v]. 

In such a case every of the points  a1, a2, a5, a9, a10  is represented in  Aa(x1,...,x10)  by one formula.  For 

example, the point  a1  is represented in Aa(x1,...,x10)  by  V(x1,x6,x3). 

Every of the points  b1, b2, b5, b9, b10  is represented in  Ab(x1,...,x10)  by six formulas.  For example, the 

point  b1  is represented in Ab(x1,...,x10)  by  V(x1,x2,x3), V(x1,x3,x4), V(x1,x4,x5), V(x1,x2,x4), 
V(x1,x3,x5), V(x1,x2,x5).  

Every of the points  a3, a4, a6, a7, a8  (as well as  b3, b4, b6, b7, b8) is represented in  Aa(x1,...,x10) 
(and in  Ab(x1,...,x10)) by five formulas.  For example, the point  a3  is represented in Aa(x1,...,x10)  by  

V(x3,x4,x1), V(x3,x1,x2), V(x3,x2,x6), V(x3,x6,x4), I(x3,x1,x6,x2,x4). So,  the formula  

Aa(x1,...,x10)  has  30  atomic formulas and the formula  Ab(x1,...,x10)  has  55  atomic formulas. 

 



Mathematics of Distances and Applications 

 

156

                             Fig. 1. Image A.                                     Fig. 2. Image B. 

 

While construction partial deduction of  S(A)x Ab(xb)  all variables will receive some values but    

A'b(x'b)    (coinciding with  Aa(x) )  contains only  30  atomic formulas.     Hence  a'a,b= 55 – 30 = 25 .   

While construction partial deduction of  S(B)�x Aa(xa)  all variables receive some values and  all 

atomic formulas from  Aa(xa)  are included into  A'a(xa).  Hence  a'a,b= 0.   

In such a case (A,B)= 25 + 0 = 25. 

2. E(x,y)   “x  and  y  are adjacent”. 

This predicate describes not every point individually but  a binary relation between them. As a fact we have a set 

of edges of a planar graph. The formula  Aa(x1,...,x10)  has 15 atomic formulas and the formula 

Ab(x1,...,x10) has 20 atomic formulas. While construction partial deductions of S(A)x Ab(xb)  and 

S(B)�x Aa(xa)  it will be received that  a'a,b= 20 – 15 = 5,  a'b,a= 0 .  And  (A,B)= 15. 

These examples demonstrate that besides the fact that different initial predicates provide different distances 
between objects; the value of the calculated distance does not illustrate the degree of their similarity. To 
overcome such a lack we may normalize the defined distance in order that it is not greater than 1. It may be done, 

for example, by dividing the distance by  a0 + a1. 

Definition. The degree of distinction between the objects    and    is the sum of the number of non-

coincidences of atomic formulas (up to the names of constants)  divided by the sum of numbers of atomic 

formulas in elementary conjunctions  A0(x0)  and  A1(x1)  

d() =  (a'0,1 + a'1,0 ) /  (a0 + a1). 

The distinction degrees between the objects  A  and  B  in the previous example are   d(A,B) = 25/55  0.45  for 

the first set of predicates  and  d(A,B) = 15/20  0.75  for the second set of predicates. 

Properties of the introduced functions 

The introduced functions    and  d  have the following properties. 

Property 1. For every objects    and      ,  and  d,
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This property is an immediate consequence of definitions. 

Property 2. If    then  ,  and   d,   

The proof is based on the fact that in such a case the descriptions objects    and    contain the same (up to 

the names of constants)  formulas. 

Property 3.  If    is a proper subset of    then   ,  and   0<d,  
Proof.  As   is a proper subset of    so  the elementary conjunction  A0(x0)  is a corollary (but not 

equivalent) of the formula  A1(x1). Therefore  a1 > a0, a1 > a'0,1 > 0, a'1,0 = 0   and ,= a'0,1 + 

a'1,0 = a'0,1 > 0,  d() = (a'0,1 + a'1,0)/ (a0 + a1) = a'0,1/ a1< 1. 

Property 4.  If    and    have no common (up to the names of constants) formulas in their descriptions then   

,= (a0 + a1)  and   d,= 1 . 

Proof.  As   and    have no common (up to the names of constants) formulas in their descriptions so  

A0(x0)  and  A1(x1)  also  have no  common atomic formulas and   a'0,1=  a'1,0 = 0. Hence   ,= 

a'0,1 + a'1,0 = (a0  – a'0,1) + (a1 – a'1,0)= a0 + a1  and.  n ,= , (a0 + a1)=�(a0 + 
a1)/(a0 + a1) =1  . 

Property 5. If    and    have common (up to the names of constants) formulas in their descriptions but 

neither of them is a part of the other then , ,  0 <d,. 

This property is evident. 

Theorem 1.  

Function    defines  a distance between objects. I.e. it satisfies the properties of distance: 

1. for every objects    and      , ; 

2. for every objects    and      ,,  

3.     if and only if  , ; 

4. triangle inequality is fulfilled for the function  , i.e.  for every objects    and      

,,,. 

Proof. Points 1 and 2 are direct corollaries of the definition of . Point 3 follows from the properties  2 – 5. Let's 

prove the triangle inequality.  

Let     be objects which descriptions have  a1, a2, a3  atomic formulas respectively.    a'1,2, a'2,3, 
a'3,1 are the numbers of atomic formulas contained respectively in maximal sub-formulas   A'1(x'1),  A'2(x'2),  
A'3(x'3) obtained while partial deduction of the respective sequents. 

Let    be the number of atomic formulas coinciding (up to the names of variables) simultaneously in  A'1(x'1),  

A'2(x'2),  A'3(x'3) ;  a–i  be the number of atomic formulas which do not take part in partial derivations of   S(ωi) 

  x Aj(xj)   (j = 1, 2, 3, i  j);  a'1,2 = a''1,2 + ��a'2,3 = a''2,3 + �, a'3,1 = a''3,1 +�. 

Then  

a1 = a–1 + a''1,2 + a''1,3 + , 

a2 = a–2 + a''1,2 + a''2,3 + , 
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a1 = a–1 + a''1,2 + a''1,3 + , 

a2 = a–2 + a''1,2 + a''2,3 + , 

a3 = a–3 + a''1,3 + a''2,3 +  

,,= (a1 – a'1,2) + (a2 – a'1,2) + (a2 – a'2,3) + (a3 – a'2,3) = 

 =��a–1 + a''1,3 ) + (a–2 + a''2,3 ) + (a–2 + a''1,2 ) + (a–3 + a''1,3 ) . 

,= (a1 – a'1,3) + (a3 – a'1,3)  = (a–1 + a''1,2 ) + (a–3 + a''2,3 ) . 

The reminder after subtraction of these expressions is  ,, – ,�=  2a–2 + 

2a''1,3  0. 

The triangle inequality is proved. The theorem is proved. 

Theorem 2.  

Function d  does not define a distance. It does not satisfy the triangle inequality but satisfies the properties 

1. for every objects    and      d, ; 

2. for every objects    and      d,d,  

3.     if and only if  d, . 

Proof. Fulfillment of points 1 – 3 is a corollary of such properties for the function   .  

Let's give an example of such objects     and    that  d,d,d, .   

Let   be a proper part of     (hence  a'1,2 = a1)  and  (a2 – a'1,2) = 0.1 a1  (i.e.  a2 = 1.1 a1).  Then   

d(,= (a2 – a'1,2)/(a1 + a2) = 0.1 a1/ 1.1a1 = 0.1 / 1.1. 

Let  also   has no common elements with  .  Then    d(,) = 1.   

Let all elements of    which does not belong     are elements of     and   a3 – a'2,3 =  a1    (i.e.   a3 = a1 + 

a'2,3 =  1.1 a1).  Then   d,= (a3 – a'2,3)/(a2 + a3) =  a1 / 2.1 a1 = 1/ 2.1. 

d(,) + d(,) = 0.1/1.1 + 1/ 2.1  0.09 + 0.043 = 0.133 < 1 = d(,).

Conclusion 

The presence of a metric between objects involved in an Artificial Intelligence problem allows to state an earlier 
investigated object which is the mostly similar to the given for investigation one. Algorithms based on the principle 
“the nearest neighbor” are well-known in pattern recognition, particularly in the training of a neural network.  

But usual metrics used in Artificial Intelligence problems are metrics in the fixed-dimensional spaces. This 
dimension equals to the number of features which describe an object. Usually an object is considered as a single 
indivisible unit and such a feature is its global characteristic. 

If an object is considered as a set of its parts and the features describe properties of its elements and relations 
between them, then we can't map an object into a fixed-dimensional space. Such descriptions may be simulated 
by discrete features but the number of such features exponentially depends of the number of elements in the 
largest object under consideration [Russel, 2003].  
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Hence, the introduction of a metric for comparison of objects considered as a set of their elements is an important 
direction in the development of Artificial Intelligence. 
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ON THE DISCRETIZATION OF DISTANCE GEOMETRY PROBLEMS

Antonio Mucherino,Carlile Lavor,Leo Liberti,Nelson Maculan

Abstract: Distance geometry consists of finding an embedding of a weighted undirected graph in R
n. Since some

years, we are working on suitable discretizations for this problem. Because of the discretization, the search domain is

reduced froma continuous to a discrete set which has the structure of a tree. Based on this combinatorial structure,

we developed an efficient branch-and-prune (BP) algorithm for the solution of distance geometry problems. In

this paper, we focus on two important aspects of the discretization: the identification of suitable vertex discretizing

orderings and the analysis of the symmetries that can be found in BP trees.

Keywords: distance geometry, discretization, combinatorial optimization, discretizing orderings, symmetries.

ACMClassification Keywords: G.2.1 Combinatorics - Combinatorial algorithms; B.5.2 Design Aids - Optimization;

J.3 Life and Medical Sciences - Biology and genetics;

MSC: 05C85, 90C27, 51K99.

Introduction

The Distance Geometry Problem (DGP) is the problem of finding an embedding of a weighted undirected graph G

in R
n. Let G = (V,E, d) be a weighted undirected graph representing an instance of the DGP, where each vertex

v ∈ V corresponds to a point xv in R
n, and there is an edge between two vertices if and only if their relative

distance is known (the weight associated to the edge). That is, the DGP is the problem of finding a function

x : V −→ R
n

such that
∀(u, v) ∈ E ||xu − xv || = d(u, v), (1)

where xu = x(u) and xv = x(v). In its basic form, the DGP is a constraint satisfaction problem, because a
set of coordinates xv must be found that satisfies the constraints (1). In the problem definition, the symbol || · ||
represents the computed distance between xu and xv, whereas d(u, v) refers to the known distances. The DGP
is NP-hard Saxe [1979].

The DGP has various interesting applications. An example is given by the problem of identifying sensors in
telecommunication networks Biswas et al. [2006]; Krislock [2010]. The distances between pairs of sensors can
be estimated by the time needed for a two-way communication, and such distances can be exploited for identifying
the position in space of each sensor. In this application, some sensors are fixed (they are called anchors in this
domain) and the dimension of the space is usually n = 2.

A very interesting application arises in the field of biology. Experiences of Nuclear Magnetic Resonance (NMR) are
able to estimate distances between some pairs of atoms of a molecule. Such distances, therefore, can be used
for defining a DGP, whose solutions correspond to the set of conformations for the molecules that satisfy all given
distances. In this context, the DGP is referred to as Molecular DGP (MDGP) Crippen et al. [1988]; Havel [1995].
This problem is particularly interesting for molecules such as proteins, because the conformation of the protein can
provide clues about its function. MDGPs are DGPs in three-dimensional spaces (n = 3).

The basic approach to the DGP is to reformulate it as a continuous global optimization problem, where a penalty
function is employed in order to measure the satisfaction of the constraints based on the known distances. Many
methods and algorithms have been proposed for the solution of this optimization problem, and most of them are
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based on a search in a continuous space, and/or on heuristic approaches to optimization. Recent surveys on this
topic can be found in Liberti et al. [2010]and Lavor et al. [2012c].

We are working on suitable discretizations of the DGP, which are possible when some assumptions are satisfied.
We give in the following the definition of two classes of DGPs that can be discretized.

The Discretizable MDGP (DMDGP) Lavor et al. [2012b]

Supposing there is a total order relation on the vertices of V , the DMDGP consists of all the instances of the MDGP
satisfying the two assumptions:

A1 E contains all cliques on quadruplets of consecutive vertices;

A2 the triangular inequalities

∀v ∈ {1, . . . , |V | − 2} d(v, v + 2) < d(v, v + 1) + d(v + 1, v + 2)

must hold strictly.

The Discretizable DGP (DDGP) Mucherino et al. [2012]

Supposing there is a partial order relation on the vertices of V , the DDGP consists of all the instances of the DGP
satisfying the two assumptions:

B1 there exists a subset V0 of V such that

– |V0| = 4;

– the order relation on V0 is total;

– V0 is a clique;

– ∀v0 ∈ V0 ∀v ∈ V r V0, v0 < v.

B2 ∀v ∈ V r V0, ∃u1, u2, u3
∈ V such that:

– u1 < v, u2 < v, u3 < v;

– {(u1, v), (u2, v), (u3, v)} ∈ E;

– d(u1, u3) < d(u1, u2) + d(u2, u3).

Note that we removed the word Molecular in the definition of the DDGP, because this is a more general problemand
not necessarily related to protein molecules. We proved that DMDGP ⊂ DDGP.

The idea behind the discretization is that the intersection among three spheres in the three-dimensional space can
produce, with probability 1, at most two points in the hypothesis in which their centers are not aligned. Consider
four vertices u1, u2, u3 and v. If the coordinates for u1, u2 and u3 are known, as well as the distances d(u1, v),
d(u2, v) and d(u3, v), then the three spheres can be defined, and their intersection provides the two possible
positions in the space for the last vertex v. In the hypothesis of the DMDGP, the four vertices u1, u2, u3 and v are
consecutive in the ordering associated to V . In the DDGP, this condition is relaxed, so that the three vertices u1,
u2, u3 only have to precede v. In both cases, if the vertices u1, u2 and u3 are already placed somewhere, there
are only two possible positions for v.

This suggests a recursive search on a binary tree containing the potential coordinates for the vertices of G. The
Branch & Prune (BP) algorithm Liberti et al. [2008] is an exact algorithm which is based on a search on this tree.
The binary tree of possible solutions (to which we will also refer as “BP tree”) is explored starting fromits top, where
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the first vertex is positioned, and by placing one vertex per time. At each step, two possible positions for the current
vertex v are computed, and two new branches are added to the tree. As a consequence, the size of the binary
tree can get very large quite quickly, but the presence of additional distances (not employed in the construction of
the tree) can help in verifying the feasibility of the computed positions. To this aim, we consider pruning devices:
as soon as a position is found to be infeasible, the corresponding branch can be pruned and the search can be
backtracked. We noticed that protein-like instances contain a sufficient number of distances that can be used in
the BP pruning phase, so that the complete set of solutions can be found very efficiently Liberti et al. [2011a]. The
strong point of the BP algorithm is given by the possibility to enumerate all solutions to a given D(M)DGP.

Solutions to the DMDGP or to the DDGP can be represented as a complete path on the BP tree, from the root
(the node associated to the first vertex) to one of the leaf nodes (corresponding to the last vertex). Layer by layer,
this path shows all branches associated to the solution: in particular, it shows the selected branches on each layer
of the tree. Since only two branches (related to the two positions of the sphere intersection) can be chosen at
each layer based on the preceding branches that were already selected, this information can be coded as a binary
variable. A solution can therefore be also represented as a binary vector of length |V |. If we associate an ordering
to the branches having the same root on the previous layer, we can say that each binary variable indicates if the
“first”or the “second” branch is selected, or if the “left”or the “right”branch is selected (see Figure 3 for a graphical
representation).

In both DMDGP and DDGP, the ordering in which the vertices of G are considered is of fundamental importance. As
widely discussed in Mucherino et al. [2012], an instance may ormay not satisfy the assumptions for the discretization
depending on this ordering. Supposing we have an instance with a predefined ordering for its vertices for which the
discretization is not possible, a suitable rearrangement of these vertices may transformthe instance in a discretizable
instance. Since DMDGP ⊂ DDGP, this task is, in general, easier for the DDGP.

The problem of sorting the vertices of a graph in order to satisfy certain conditions can be seen as a combinatorial
optimization problem. We developed an efficient greedy algorithmfor the solution of this problemLavor et al. [2012a]
(for the DDGP), but in the easier case in which all distances are supposed to be exact. Especially in the field of
biology, distances are not precisely known, but rather approximations of such distances are available. Since the
discretization is still possible if only one of the three reference distances (for both DMDGP and DDGP) is represented
by an interval (which gives the uncertainty on the value of the distance), discretization orderings must take this
condition into consideration.

Another interesting feature of DMDGPs and DDGPs is given by the definition of BP trees that are symmetric. This
implies the possibility to reduce the search on a subset of branches of the tree. If one or more solutions are identified
in this subset of branches, other solutions can be reconstructed by applying symmetry rules. As a consequence, the
study of the symmetries present in BP trees is essential for improving the algorithm. This is particularly important
for instances containing uncertain data, where such an uncertainty makes the computational cost higher.

In this paper, we focus our attention on these two important aspects of the DGP discretization: the identification of
suitable vertex discretizing orderings, and the analysis of the symmetries that can be found in BP trees. We will
devote the next two session to these two topics. Conclusions will be drawn in the last session.

Discretization orderings

Let G = (V,E, d) be a weighted undirected graph representing an instance of the DGP. As mentioned in the
Introduction, the ordering given to the vertices in V plays a very important role in the discretization. There exist
indeed orderings for which neither the assumptions for the DMDGP nor the ones for the DDGP can be satisfied.
Moreover, there can be orderings for which G represents an instance of the DDGP which is not in the DMDGP
class. If the assumptions for the DMDGP are satisfied (A1 and A2), then the assumptions for the DDGP are also
satisfied (B1 and B2) Mucherino et al. [2012].

We noticed the importance of the ordering associated to the vertex set V since the beginning of our work. Later,
we studied the problem of finding suitable vertex orderings by solving a combinatorial optimization problem and we
found an efficient solution for the DDGP Lavor et al. [2012a]. In this work, however, we supposed that all available
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Figure 1: The hand-crafted artificial ordering rPB .

distances were exact, while real-life instances usually contain a percentage of distances whose values are subject
to uncertainty. In the field of biology, distances obtained by NMR are commonly represented by a lower bound and
an upper bound on the actual value for the distance.

As widely explained in Lavor et al. [2012e], the discretization is still possible in presence of uncertain distances, but,
in each sphere intersection, only one reference distance can be imprecise, i.e. at least two of them must be exact.
In this case, indeed, the problem of intersecting three spheres (related to 3 exact distances) is transformed in the
problem intersecting two spheres with one spherical shell (the uncertainty gives a certain thickness to one of the
three spheres). Once two spheres are intersected, the intersection between the obtained circle and the spherical
shell produces two disjoint curves in the three-dimensional space. At this point, a predetermined number of sample
points can be chosen on the two curves. Notice that, in this case, BP trees are not binary anymore, and that a
solution to the problem cannot be represented by a binary vector, but rather by a vector of integer numbers (there
are several left branches, and several right branches).

Suitable vertex orderings do not only have to satisfy the assumptions A1 and A2 (for the DMDGP)or the assumptions
B1 and B2 (for the DDGP), but, in addition, for each quadruplet of vertices u1, u2, u3, v, only one of the distances
d(u1, v), d(u2, v), d(u3, v) can be represented by an interval. We are currently working for finding a solution to
this problem.

Meanwhile, we are also working for identifying suitable orderings for particular classes of molecules. If the chemical
composition of a molecule is known, indeed, the distances that are needed for the discretization can be obtained
by analyzing its chemical structure. Proteins, for example, are chains of amino acids, and the chemical structure
of each amino acid is known. Exact distances can be obtained by observing the atomic bonds, while imprecise
distances can be found by analyzing the degrees of freedom of the structure. In this situation, NMR data are not
necessary for performing the discretization (they can be rather employed in the pruning phase of BP), and therefore
the ordering can be identified independently by the available information.

We carefully hand-crafted a special ordering for the protein backbones Lavor et al. [2012e](see Figure 1). We found
a particular ordering for the generic amino acid which composes a protein, and hence the ordering rPB related to
the whole protein backbone as the composition of the several orderings for its amino acids (without side chains):

rPB = {r1
PB , r2

PB , . . . , ri
PB , . . . , r

p
PB}.

The ordering ri
PB corresponds to the ith amino acid of the protein (superscripts indicate the amino acid to which

each atom belongs):
ri
PB = {N i, Ci−1, Ci

α,H i, N i, Ci
α,H i

α, Ci, Ci
α}.

In order to artificially add exact distances, atoms are considered more than once: the distance between two copies
of the same atom is 0. It is important to remark that this trick for allowing the discretization does not increase the
complexity of the problem, because the second copy of an atom can only be positioned as its first copy. In other
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words, there is no branching on the BP tree in correspondence with duplicated atoms. For example, in the ordering
for the generic amino acid ri

PB , the nitrogen N i is considered twice, the carbon Ci
α is considered 3 times, and the

carbon Ci−1 belonging to the previous amino acid is repeated among the atoms of this amino acid. In total, there
are four copies of atoms that already appeared earlier in the sequence. Hydrogen atoms are not duplicated.

The first and the last amino acids of the chain have a slightly different structure, and therefore we designed particular
orderings for such amino acids. At the beginning of the sequence, we consider the following ordering for the first
amino acid:

r1
PB = {N1,H1,H0, C1

α, N1,H1
α, C1

α, C1
}.

One of the hydrogens bound to N1 (in general, in ri
PB, there is only one hydrogen) is indicated by the symbol H0.

Between r1
PB and the generic amino acid ordering ri

PB, we consider the following ordering, which makes a sort of
bridge between the beginning of the sequence and the generic ordering:

r2
PB = {N2, C2

α,H2, N2, C2
α,H2

α, C2, C2
α}.

Finally, for the last amino acid of the sequence, we have the following ordering:

r
p
PB = {Np, Cp−1, Cp

α,Hp, Np, Cp
α,Hα, Cp, Cp

α, Op, Cp, Op+1
}.

Note that this is the only case in which oxygen atoms appear. The two oxygens Op and Op+1 which are present in
the last amino acid r

p
PB correspond to the two oxygens of the C-terminal carboxyl group COO− of the protein.

The special ordering rPB is constructed in order to satisfy the assumptions for the DMDGP. In particular, for each
atomv ∈ V , the three edges (v−3, v), (v−2, v) and (v−1, v) are always contained in E. The corresponding
distances are obtained from known bond lengths and bond angles, that only depend on the kind of bonded atoms.
The two edges (v−2, v) and (v−1, v) are always associated to exact distances, whereas only the edge (v−3, v)
may be associated to an interval distance. In particular, there are three different possibilities. If d(v − 3, v) = 0,
then v represents a duplicated atom, and therefore the only feasible coordinates for v are the same of its previous
copy. If d(v − 3, v) is an exact distance, the standard discretization process can be applied (intersection among
three spheres), and two possible positions for v can be computed. Finally, if d(v − 3, v) is represented by an
interval, we discretize the interval and take D sample distances from it. For each sample distance, we perform the
sphere intersection: 2 × D possible atomic positions can be computed for v.

In order to discretize instances related to entire protein conformations, it is necessary to identify an ordering for all
side chains for the 20 amino acids that can be involved in the protein synthesis. This is not trivial, because side
chains have more complex structures with respect to the part which is common to each amino acid. Figure 2 shows
a discretization ordering for the glycine, the smallest amino acid that can be found in proteins, whose side chain is
composed by a hydrogen atom only:

rGLY = {Ci
α, N i,H i

α, Ci
α,H i

β, Ci,H i
α, Ci

α, Ci
}.

Here, we denote with H i
β the hydrogen forming the glycine side chain. The ordering rGLY can be plugged in the

ordering rPB. If we consider the first amino acid, for example, the last two vertices C1
α and C1 need to be replaced

by rGLY in order to consider this side chain. In spite of the simplicity of glycine, this ordering is rather complex and
it considers various atoms of the protein backbone, which are duplicated in order to satisfy the needed assumptions.
Future works will be devoted to the development of suitable hand-crafted orderings for all other 19 amino acids. This
will allow us to solve real NMR instances by using our discrete approach to DGPs.

Symmetries

If a D(M)DGP instance admits solutions, then there is an even number of solutions Lavor et al. [2012b]. This
is a theoretical result proved for the DMDGP which is immediately extensible to the DDGP. Our computational
experiments confirmed this result. However, the sets of solutions found by the BP algorithm always satisfied a
stronger property: the cardinality of the set of solutions is always a power of 2.
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Figure 2: The artificial ordering rGLY for the glycine.

This theoretical result remained unproved for a long time. At a certain point, we found indeed a counterexample,
i.e. an instance, artificially generated in a particular way, for which the total number of solutions was not a power of 2.
But then we were able to prove that the Lebesgue measure of the subset of instances for which this property is not
satisfied is 0 Liberti et al. [2011b]. As a consequence, we can say that, in practice, real-life instances should always
have a power of 2 of solutions. This result has been formally proved for the DMDGP; we are currently working for
extending this result to the DDGP.

The “power of 2”property is due the presence of various symmetries in BP binary trees Lavor et al. [2012b]. First of
all, there is a symmetry at layer 4 of all BP trees, which makes even the total number of solutions. We usually refer
to this symmetry as the first symmetry. At layer 4, there are no distances for pruning, and the two branches rooted at
node 3 are perfectly symmetric. In other words, any solution found on the first branch is related to another solution
on the second one, which can be obtained by inverting, at each layer, left with right branches, and vice versa.

In the DMDGP, as for the first symmetry, each partial reflection symmetry appears every time there are no pruning
distances concerning some layer v. In such a case, the number of feasible branches on layer v is duplicated with
respect to the one of the previous layer v − 1, and pairs of branches rooted at the same node xv−1 are perfectly
symmetric. Figure 3 shows a BP tree containing 3 symmetries.

As mentioned in the Introduction, a solution to a DMDGP can be represented in different ways, such as a path on
the tree and a list of binary choices 0–1 (we suppose here that all distances are exact). Since solutions sharing
symmetric branches of the tree have symmetric local binary representations, we can derive a very easy strategy
for generating all solutions to a DMDGP from one found solution and the information on the symmetries in the

Figure 3: All symmetries of an instance with 9 vertices and B = {4, 6, 8}. Feasible branches are marked in light
yellow.
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corresponding tree Mucherino et al. [2011]. Let us consider for example the solution in Fig. 3 corresponding to the
second leaf node (from left to right). The binary vector corresponding to this solution is

s2 = (0, 0, 0, 0, 0, 0, 0, 1, 1),

where we suppose that 0 represents the choice left, and 1 represents right (the first three zeros are associated to
the first three fixed vertices of the graph). Since there is a symmetry at layer 6, another solution to the problem can
be easily computed by repeating all choices from the root node until the layer 5, and by inverting all other choices.
On the binary vector, repeating means copying, and inverting means flipping. So, another solution to the problem is

s3 = (0, 0, 0, 0, 0, 1, 1, 0, 0).

This solution corresponds to the third feasible leaf node in Fig. 3.

This property can be exploited for speeding up the solution to DMDGPs. The procedure we mentioned above can
indeed be used for reconstructing any solution to the problem. Thus, once one solution to the problem is known, all
the others can be obtained by exploiting information on the symmetries of BP trees. The set

B = {v ∈ V :6 ∃(u,w) s.t. u + 3 < v ≤ w}

contains all layers v of the tree where there is a symmetry Mucherino et al. [2011]. As a consequence, |B| is the
number of symmetries that are present in the tree. Naturally, since the first symmetry is present in all BP trees,
|B| ≥ 1. The total number of solutions is, with probability 1, equal to 2|B|.

If the current layer is related to the vertex v ∈ B, for each xv−1 on the previous layer, both the newly generated
positions for xv are feasible. If v 6∈ B, instead, only one of the two positions can be part of a branch leading to a
solution. The other position is either infeasible or it defines a branch that will be pruned later on at a further layer
v, in correspondence with a pruning distance whose graph edge {u,w} is such that u + 3 < v ≤ w. Therefore,
we can exploit such information for performing the selection of the branches that actually define a solution to the
problem. When v 6∈ B (only one position is feasible), it is not known a priori which of the two branches (left/right)
is the correct one. This is the reason why at least one solution must be computed before having the possibility of
exploiting the symmetries for computing all the others.

Computational experiments presented in Mucherino et al. [2011] showed that the BP algorithm can be enhanced
by exploiting this a priori knowledge on the symmetries, specially when instances having many solutions are
considered. Once one solution is obtained by BP, all the others can be quickly obtained by using this information.
Even if protein-like instances usually contain a few symmetries Liberti et al. [2011a], the extension of the BP
algorithm to interval data actually needs to be integrated with symmetry-based strategies in order to improve its
efficiency. Research in this direction will be performed in the future.

Conclusions

The discretization of DGPs allows us to solve these problems by employing the BP algorithm, which is based on a
search on the BP trees. This algorithm is the first exact algorithm which is potentially able to solve DGPs containing
interval data. Differently from other proposed algorithms for this problem, BP can enumerate all the solutions for a
given instance, allowing to obtain multiple solutions and to leave any other out with certainty.

These works on the DGP also open the doors for suitable discretizations of other important problems, specially in
the field of biology. The discretizing ordering for proteins that we detailed in this paper, for example, is completely
independent on NMR data, and therefore it could also be applied in the context of protein folding and protein docking.
The exploitation of the symmetries in BP trees can be essential for managing these more complex problems. These
are the main directions that we will take for our future research.
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GEOMETRICAL TOOLS FOR ALPHA-VORONOI PARTITIONS
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Abstract: We consider problems to classify data represented as discrete probability distributions. For the classification

we propose the Voronoi partition technique with respect to α-divergence, which is a statistically justified pseudo-

distance on the space of probability distributions. In order to improve computational efficiency and performance of

the classification, we introduce two nonlinear transformations respectively called the escort and projective transform,

and weighted α-centroids. Finally we demonstrate performances of the proposed tools via simple numerical

examples.

Keywords: α-divergence, α-Voronoi partition, Escort transformation, Projective transformation
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Introduction

The Voronoi partitions on the space of probability distributions with the Kullback-Leibler or Bregman divergences

have been recognized as significant approaches for various statistical modeling problems involving pattern classification,

clustering, likelihood ratio test and so on [1, 2, 3, 4].

Recently we have proposed [7] (See [8] for the proofs and derivations) a computationally efficient method to

construct Voronoi diagrams with respect to the α-divergence [5, 6] using conformal flattening technique. One of

mathematically natural requirements for divergence functions is an invariance property and it is proved that the α-

divergence is equipped with the property [5, 6]. Hence the α-divergence is an important candidate to be applied to

the above statistical problems.

In this note, we introduce several useful tools when we apply the α-Voronoi partitions on the space of discrete

probability distributions for the purpose of pattern classification problems.

Preliminaries

Let Sn denote the n-dimensional probability simplex, i.e.,

S
n :=

{

p = (pi)

∣

∣

∣

∣

∣

pi > 0,

n+1
∑

i=1

pi = 1

}

, (1)

and pi, i = 1, · · · , n+ 1 denote probabilities of n+ 1 states.

The α-divergence [5, 6] is a function on Sn
× S

n defined for α 6= ±1 by

D(α)(p, r) =
4

1 − α2

{

1 −

n+1
∑

i=1

(pi)
(1−α)/2(ri)

(1+α)/2

}

.

Note that it respectively converges to the Kullback-Leibler divergence or its dual when α goes to−1 or 1, andD(0)

is called the Hellinger distance.
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For q ∈ R escort transformation [9] is defined for p ∈ S
n by

Pi(p) :=
(pi)

q

∑n+1

j=1
(pj)q

, i = 1, · · · , n + 1, Zq(p) :=
n+1
∑

i=1

(pi)
q

q
, (2)

and we call Pi(p) an escort probability. Note that the escort distribution P (p) = (Pi(p)) converges to the
uniform distribution independently of p, when q → 0. On the other hand, when q → ±∞, it converges to a

distribution on the boundary of Sn depending on the maximum or minimum components of p. In the sequel we fix

the relation between α and q by q = (1 + α)/2, and assume q > 0.

The conformal divergence [7] forD(α) is defined by

ρ(p, r) :=
1

Zq(r)
D(α)(p, r) = −

n+1
∑

i=1

Pi(r) (lnq(pi) − lnq(ri))

= ψ(θ(p)) + ψ∗(η(r)) −
n

∑

i=1

θi(p)ηi(r), (3)

where

θi(p) := lnq(pi) − lnq(pn+1), ηi(p) := Pi(p), i = 1, · · · , n,

ψ(θ(p)) := − lnq(pn+1), ψ∗(η(p)) :=
1

κ

(

1

Zq(p)
− q

)

,

with κ := (1 − α2)/4 = q(1 − q), lnq(s) := (s1−q
− 1)/(1 − q) for s ≥ 0 and

ηi(p) =
∂ψ

∂θi
(p), θi(p) =

∂ψ∗

∂ηi
(p), i = 1, · · · , n. (4)

Alpha-Voronoi partitions and pattern classification problems

For givenm points p1, · · · ,pm on S
n we define α-Voronoi regions on Sn using the α-divergence as follows:

Vor(α)(pk) :=
⋂

l 6=k

{p ∈ S
n
|D(α)(pk,p) < D(α)(pl,p)}, k = 1, · · · ,m.

An α-Voronoi partition (diagram) on Sn is a collection of the α-Voronoi regions and their boundaries.

By the conformal relation betweenD(α) and ρ in (3) we immediately see that the Voronoi region defined by

Vor(conf)(pk) :=
⋂

l 6=k

{p ∈ S
n
|ρ(pk,p) < ρ(pl,p)}

coincides with Vor(α)(pk). Furthermore, we have proved [7] that if we regard the escort probabilities (Pi(p)) as
a new coordinate system for p, we can efficiently compute Vor(conf)(pk) by the standard algorithm [10] using the
polyhedron envelop for the convex potential function ψ. Hence, the boundary for each α-Voronoi region consists of

straight line segments (See the figure 1 and 2).

When we apply the Voronoi partitioning technique to pattern classification problems, flexible choice of the representing

point for each Voronoi region is significant. For this purpose we define a weighted α-centroid and a formula to

calculate it. Given m points p1, · · · ,pm on S
n and weights wk ≥ 0, k = 1, · · · ,m, the weighted α-centroid

c
(α)
w is defined by the minimizer of the following problem:

min
p∈Sn

m
∑

k=1

wkD
(α)(p,pk).
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By differentiating the above with θi and considering the optimality condition, we have the escort probabilities of c
(α)
w

as

Pi(c
(α)
w ) =

1
∑m

k=1
wkZq(pk)

m
∑

k=1

wkZq(pk)Pi(pk), i = 1, · · · , n+ 1.

Thus, the weighted α-centroid is represented as the usual weighted average in the escort probabilities.

While the α-Voronoi partition has a one-dimensional freedom in adjusting the parameter α (or equivalently q), the

adjustment tends not to work well for large α (or q ≈ +∞) for distributions that have the largest probabilities

for the same event. This can be understood by considering the corresponding escort distributions, i.e., they are

concentrated in the same corner of the simplex in such a situation. Similarly, the classification tends not to work

when α ≈ −1 (or q ≈ 0) because all the corresponding escort distributions are concentrated near the uniform
distribution.

To resolve this problem, we introduce the following projective transformation:

Πt : Sn
∋ (pi) 7→ (p̃i) ∈ S

n, where p̃i(p) :=
t−1

i pi
∑n+1

j=1
t−1

j pj

for t = (t1, · · · , tn+1) in the positive orthant.

Note that the inverse projective transformation isΠt−1 where t−1 := (t−1

1
, · · · , t−1

n+1
), and Πt for t ∈ S

n maps

t to the uniform distribution. Hence, if we use Πt as a preconditioner for given data of discrete distributions before

the α-Vononoi partitioning, we can expect the inprovement of classification performance.

Illustrative numerical examples

As an illustrative example we consider α-Voronoi partition of the the given four kinds of discrete distributions (the

left one of Figure 1) into four classes. In spite of adjusting α (equivalently q) one of data denoted by the symbol

• is classified into the region of data denoted by △. The right one of Figure 1 is representation of the α-Voronoi

partition in escort probabilities.

Executing projective transformation before the partitioning given data are classified successfully (Figure 2). In both

figures the symbol ∗ denotes unweighted (w1 = · · · = w4) α-centroids for the corresponding classes, and t for

the projective transformation is the unweighted α-centroid of those of four data classes.

Concluding remarks

As is summarized in the preliminary section, introduction of the escort probabilities and the conformal divergence

enables us to construct α-Voronoi partitions via the efficient standard algorithm involving a convex potential function.

We apply this algorithm to pattern classification problems for data expressed by discrete probability distributions.

While the Voronoi partition technique might not be more efficient than the other naive methods in higher dimensional

case, the underlying geometrical idea could be applied to other application such as likelihood ratio test.
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METRIC TENSOR AS DEGREE OF COHERENCE IN THE DYNAMICAL

ORGANIZATION OF THE CENTRAL NERVOUS SYSTEM

Sisir Roy, Rodolfo Llinás

Abstract: The mechanism by which neuronal networks dynamically organize and differentiate during development

is a salient issue concerning neurogenesis. This central event reflects a topological order and its metrizability.

One important parameter in this process concerns the role of tremor and intrinsic electrical properties of neurons

[Llinàs 1988] from a different in the developmental organization of Central Nervous System (CNS), which we now

would like to develop more formally. While tremor is usually considered an undesirable parameter in the generation of

coordinated movement it is actually essential in efficient motor execution and reflects fundamental intrinsic neuronal

electrophysiological oscillation. In addition, we propose, such intrinsic properties contribute to organize the neuronal

connectivity that results in the development of internal coordinate reference systems. Thus the degree of coherence

in the oscillatory activities of neuron can be interpreted as embodying a metric tensor of non-Euclidean space that

produce topological order associated to CNS development.

Keywords: Degree of coherence, Metric tensor, Nervous System, Intrinsic Oscillation, Functional Geometry

Introduction

Central Nervous System (CNS) activity has evolved to represent the external world into internal parameters that

ultimately organize and modulate its interactivity with the surrounding environment. Such evolution forged neuronal

ensembles, as interconnected groups (areas) capable of internally defining specific intrinsic parameters reflecting

significant properties of the world addressable by motor commands. Intrinsic characters and internal trends funda-

mentally modulate the activity in such areas. Thus the parameters which internalize the world are fundamentally self

reliant and internally consistent, and represent a secondary emission imbedded reality, but only on their own terms

and parameters. Such intrinsically driven set of compartments internalize the specific sensory representations that

support movement interaction with the external reality. Thus, sensors by acting in unison (co-variants) represented

external properties to be transformed into guided action on the world (contra-variants), implementing appropriate

motor specification. It was originally proposed [Pellionisz and Llinas 1982; Pellionisz and Llinas 1985] that such

correspondences between covariant vectors (for sensory effects) and contravariant quantities (for motor preparation

and effectuation) constituted structures of metric spaces, which provide the brain with internal models of the world.

The dimension of time was added[Roy and Llinás 1988] to these metrics: in that work stochastic metrics represented

chaos at local levels that stabilize smooth oscillations at greater scale [Leznik et al 2002] giving quanta of information

at 40Hz. However, in this paper the main issue is what aspects of cell function serve as the linkage between single

cell properties and the development of neuronal nets as it relates to the interaction with the external world.

The prevailing view at this time is that such organized structure is basically a product of genetic information

unfolded in time and of epigenetic variables relating to (i) position, (ii) axonal growth, (iii) target location. Edelman

[Edelman 1984] added one more step towards understanding the process of organization i.e. the specific regulation

of cellular movement through gated adhesiveness followed by selective stabilization of synaptic convertibility

[Changeux and Danchin 1976]. One of us [ Llinàs 1984a] critically analyzed the situation and raised questions

concerning (1) what further parameters other than biochemical are selective and (2) what mechanisms implement

this selection. It was proposed, at that time a new hypothesis, relating these two aspects of network genesis to

intrinsic neuronal auto-rhythmicity that could be considered as playing a central role in early organization of nerve

nets [ Llinàs 1984b]. Autorhythmicity and cell to cell communication, through electronic coupling, could in addition

generate synchronicity of firing by entrainment of co-existing intrinsic oscillatory properties. These properties along
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with the chemical synaptic transmission present in early embryos, were thus proposed as an essential electrical

substrate of the organization of brain circuits [ Llinàs 1984a]. From a different perspective it is known that controlled

tremor can be considered the basis for motricity [ Llinàs 1991]. The essential feature of tremor is a kind of activity

that is sustained and regular. Tremor is usually considered as undesirable property in the organization of coordinated

movement but, in fact, it is essential in the organization of the internal coordinate reference systems.

It is well-known that during development embryos go through distinct stages of tremor and rhythmic twitching.

In Parkinson’s disease mechanical oscillatory simulation of a finger by external device may induce tremor that

irradiates progressively upwards along the limb. The tremor march phenomenon indicates that the different portions

of CNS which control limb movement are coupled to each other by the ability to be phase-locked and to resonate

with tremor occurring in one of its parts. The mechanism responsible for generating tremor may be considered

to be associated to the oscillatory rhythm as coherent properties of CNS neurons. We propose that the degree

of coherence depending on intrinsic neuronal oscillation produce topological order to the neuronal networks. This

degree of coherence can be identified as Non-Euclidean metric tensor of this topological space associated to CNS.

At first the role of tremor in the development of organization of nervous system will be briefly discussed in section II

and then the topological order and the metric tensor for the topological space associated to the functional states of

CNS will be constructed in section III. Possible implications will be discussed in section IV.

Tremor and Dynamic Organization of Central Nervous System

Coghill in his well known book Anatomy and the Problem of Behavior addressed the neuro-embryological basis

of behavior for diverse vertebrates. He tried to find basic principles that would be valid for vertebrates in general.

The development of behavior in vertebrates as proposed by Coghill [Coghill 1920] has been opposed by Windle1

[Windle 1940]which emphasizes that the local reflexes are the basic units of behavior. Hamburger [Hamburger 1963]

in his comprehensive review critically analyzed the two approaches and the Spontaneous and reflexogenic motility

are considered to be as two independent basic ingredients of embryonic behavior. It is also mentioned that the

direct observations of motility in case of higher vertebrates the behavior is uncoordinated in the early stage. Bakeoff

et al [Bekoff et al 1975] studied 7 − 7.5-day chick embryo using electromyography since this stage of chick embryo
is close to the inception of overt motility in immature leg. This effort was motivated to find whether or not the

motor system is organized at this stage. Their study indicated sensory input is not required for the development

of coordinated motor output. Their investigation also showed that embryos go through distinct stages of tremor

and rhythmic twitching during development. The essential feature of tremor is that of an activity that is sustained

and oscillatory motion of a body part. The early studies show that physiological tremor is related to the rhythmic

neural activity of CNS where as pathological tremor be a distortion or amplifications of this rhythmic oscillations.

Indeed, neuronal oscillation and resonance determine much of the active movement dynamics of limbs and thus

provide, by feedback through the afferent systems, information about the dynamics of the body reference frames

[ Llinàs 1984a]. For example, in cases of Parkinson’s disease, mechanical oscillatory stimulation of a finger by an

external device may induce tremor that irradiates progressively upwards, along the limb, in a manner similar to the

Jackson’s march of motor seizures. It follows that the different portions of the CNS which control limb movement are

coupled to each other by the ability to the phase-locked and to resonate with tremors occurring in one of its portions.

This indicated the serious possibility that during development CNS may utilize the tremor in establishing an internal

geometry of the coordination between the peripheral structures such as muscles and their sensory return to the

CNS to establish the dynamics of movement control.

Indeed, since the tremor ultimately returns to the CNS by different afferent receptor connectivity, it may be used,

during development, to establish some of the n-dimensional vectorial transformation (in frequency hyperspace)

which underlie the implementation of sensory input into coordinated motor output. Thus, the tremor and twitching

of a given muscle group and the ability it has to generate sensory feedback by the production of actual movement,

by the direct activation of the sensory feedback or by corollary discharge, would ultimately serve to establish the

physiologically meaningful connectivity between afferent input and motor output. The importance of this interaction

becomes clearer when considering that it occurs very early in development prior to the generation of truly organized
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movement and could thus serve as an epigenetic organizing influence in determining selective stabilization of

neuronal networks [Changeux et al 1973]. This mechanism of central oscillation-giving rise to tremor- in turn genera-

ting a sensory stimulus which is feedback to the central oscillator, would ultimately result in the internal modulation

of the sensorimotor transformation.

Functional Significance of Tremor

The functional significance of physiological tremor is one of the fascinating issues in neuroscience. Since the

physiological tremor is a low amplitude and low frequency [ Llinàs 1984a; Llinàs 1991; Coghill 1920; Windle 1940;

Hamburger 1963] Hz range oscillation during the maintenance of steady body postures, it is considered a source of

unwanted noise in the system, something to be controlled rather than exploited. Such a view was prevalent for a long

period. Simultaneously with the development of the ideas described above concerning intrinsic neuronal oscillations

and tremor, 1983 Goodman and Kelso [Goodman and Kelso 1983] also explored tremor critically and suggested it

could have important functions rather than being just unwanted source of variability. Here, CNS in the process of

minimizing this variability (tremor) by neuronal mechanisms capable of plasticity, especially during development,

uses adaptive changes that establish the internal geometry required for the transformation of sensory input into a

motor output which would be, de facto, in resonance with the bodyï£¡s coordinated dynamics. In addition to tremor

organizing sensori-motor transform, oscillatory interaction between other portions of the neurons system must also

be at work during development. During development, neurons are known to have auto-rhythmicity. This intrinsic

auto-rhymicity is considered to be one of the central mechanism in the early organization of neuronal networks.

Auto-rhymicity and cell-to-cell communication through electronic coupling, which characterizes embryonic tissue,

can generate synchronicity of firings by entrainment of coexisting intrinsic oscillatory properties. In fact, the degree

of coherence of the oscillations or rhythms associated to field potentials or spike trains is shown to be related to

degree of communication between structures. These structures are nothing but large-scale network property. The

degree of coherence determines the geometrical organization of nervous system.

Degree of Coherence and Metric Tensor

Theory of coherence of electromagnetic filed has been widely discussed both in case of classical and quantum

paradigm. The diffraction and interference effects of electromagnetic waves are observed depending on the nature

of coherent disturbances. The fully coherent disturbance is a mathematical idealization and in reality the disturbance

is intermediate between fully coherent and incoherent to the extent that we can address them as partial coherence.

The theory of partial coherence in classical theory has been developed based on Maxwell wave theory and is

usually considered a component of the more general information theory concerning statistical dynamics a means to

understand information transfer. The theory of coherence is closely connected with classical noise theory and with

the theory of quantum fluctuations in the quantum mechanics field. At first we discuss some of the basic concepts

useful in understanding the degree of coherence.

Mutual Coherence and Degree of Coherence

The mutual coherence function Γ12(τ) can be defined as

Γ12(τ) =< V (~x1, t)V ∗ (~x2, t + τ) >

where~x1&~x2 denotes the position vector, the asterisk a complex conjugate and the bracket be the time average i.e.

< F >= limT→∞
1

2T

∫ T

T

Fdt
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Above mutual coherence function the following crossing symmetry condition holds :

Γ∗
12(τ) = Γ(−τ)

due to the stationarity property of the disturbances. Considering the normalized mutual coherence, we define the

degree of coherence as

γ12(τ) =
Γ12(τ)

√

Γ11(0)
√

Γ22(0)

where

0 ≤ |γ12(τ)| ≤ 1

. γ12 = 1 characterizes the complete coherence and for zero value the complete incoherence. Like the mutual
coherence function, the degree of coherence is a function of seven variables : six position coordinates and the

time delay coordinate τ . The theory of partial coherence is used to describe the phenomena in real world.

Perina [Perina 1969; Perina 1969] investigated the matrix formulation of partial coherence using the Hilbert-Schmidt

theory of linear integral equation and its functional theory of coherence. This is similar to Heisenberg matrix and

Schrodinger wave formulations of quantum mechanics.The two formulations are shown to be equivalent due to

the isomorphism of L2 spaces( the space of square integrable functions in Lebesgue sense) and I2 spaces (

space of Fourier coefficients of functions from L2 to a complete orthogonal system of functions). In the similar

spirit a covariant formulation of partial coherence has been done using the quantization of the object and its image

[Gabor 1956] to interpret the degree of coherence as metric tensor in non-Euclidian space called the optical space.

This allows to study the partial coherence as a property of the optical space.The intensity can be written in quadratic

form as

I =
∑

i,j

γiju
iuj

where ui
≡ u(ξi), ξi are the points of quantization. Here, γij ≡ γ(ui, uj). Now one defines a non-Euclidian

metric in the usual way19 using the quadratic form

(ds)2 =

n
∑

i,j

γijduiduj

. As I ≥ 0 this quadratic form is semi positive definite. It is to be noted that the mutual coherence function and
the degree of coherence are measurable quantities in contrast to the non-measurable vectors of Maxwell theory. In

case of incoherent field, the metric tensor simply reduces to the Euclidian one i.e. γij = δij .

Propagating waves in the cortex and internal geometry

Travelling waves of oscillatory behavior of the nervous system play crucial role in computation and communication

between the various subsystems of the brain [Petrov 1961; Ermentrout 2001] including the olfactory system of

vertebrates and invertebrates. These waves may take various spatio-temporal forms for example: the membrane

voltage profile of neurons at different locations is essentially one-dimensional plane wave. Rubino et al

[Rubino et al 2006] studied the information transfer in the motor cortex mediated by propagating waves for high

frequency oscillations. They suggested that this information transfer is understood with respect to the spatiotemporal

characteristics of the neuronal ensemble oscillatory behavior. The stimulus induced oscillations of the ensemble

of neurons and resonances are widely studied in many sensory systems. The synchronization of the oscillatory

networks have drawn large attention in various contexts especially the real world neuronal networks. Recently,

Motter et al [Motter et al 2005] investigated the synchronization of those complex networks that are considered to

have strong heterogeneity in the degree (connectivity) distribution. They have shown that the synchronization of

such complex networks depend on the degree and the maximum synchronization is achieved when network is

weighted and the overall cost involved in the coupling is minimum. Again here in the oscillatory networks the total
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strengths of all in-links k(1−β) with degree ki at a node i can be interpreted as a property of the input function of

the oscillators rather than the property of the links. We, thus suggest that the tremor in the input makes the overall

cost in the coupling minimum so as to achieve maximum synchronicity. In fact, the emerging physical properties

from in vitro network are the propagation speeds, synaptic transmission, information creation and capacity. The

information speed is estimated based on the wave like associated to the oscillatory neuronal networks. Pathological

brain states such as epilepsy are considered to be associated to activity waves. Generally, the neuronal waves are

divided into three broad classes [Ermentrout and Pinto 2007]:

• Stationary waves

• Active waves

• Oscillation generated or Phase waves

The phase wave is generated via the intrinsically oscillatory properties where the local het- erogeneity, anisotropy or

dynamic instabilities induce phase difference varying over space. The degree of coherence of the waves associated

to oscillatory network of neurons is a physically measurable quantity. This degree of coherence can be interpreted

as non- Euclidian metric tensor in a space called internal space similar to that described for optical space for

electromagnetic waves. This internal space is similar to that proposed some years ago3 associated to CNS. It is to

be noted that the optical space in case of electromagnetic waves help us to study the coherence properties of waves

themselves in the spirit of Einsteinï£¡s geometric description of the gravitational field. Here, we like to emphasize

that the coherence behavior of the oscillatory activity of ensemble of neurons can be studied as a property of the

internal geometry as previously mentioned [Roy and Llinás 2011].

Discussions

Oscillations and tremor are generally considered as unwanted variability or noise, present in brains as an unwanted

property. Moreover, the limitation put by physical laws in Thermodynamics and Quantum Theory forces us to think

of noise as trouble when we try design electronic devices. On the other hand, in living systems, starting from

unicellular object like Diatom -Bacteria to more complex ensembles such as neuronal networks noise, as defined

in physics is a required component for its functionality. In fact it has been recently pointed out that the Central

Nervous System (CNS) depends on noise, which carries no signal information, to enhance signal detection thus

emphasizing the fundamental role of noise in information processing of brain. The emphasis of this paper, thus, is

geared to underline the significance that intrinsic oscillation and its counterpart, tremor, plays in the development

and basic functional organization of the central nervous system. Indeed those two variables play a fundamental role

in the development of the actual topological structure associated functioning neuronal networks. Indeed, the degree

of coherence associated with the oscillatory networks is centrally determined by the tremor and hence the metric

tensor of this topological space. This justifies, in our eyes, our heuristic arguments regarding the role of oscillation

in the organization of the nervous system.
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HARDWARE IMPLEMENTATION OF RANK CODEC

Igor Sysoev,Ernst Gabidulin

Abstract: The authors present a hardware implementation of the codec for rank codes. Parameters of rank code

are (8,4,5). Algorithm was implemented on FPGA Spartan 3. Code rate is 1/2. The codec operates with elements

from Galois field GF (28). The device can process informational data stream up to 77 MiB/s. Proposed results

should help understanding rank code structure and simplify the problem of its application.

Keywords: rank codes, codec, error correction code, weak self-orthogonal bases, rank metric, FPGA, key equation,

Euclidean algorithm, fast computing.
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Introduction

Rank codes were developed in 1985 [Gabidulin, 1985]. They are an analogue of Reed-Solomon codes. The key

difference between them lies in the definition of the metric. Unlike Reed-Solomon codes, which use Hamming

metric, rank codes use rank metric. A new technique of data transmission, called "Network coding" was proposed

in 2000 [Ahlswede, 2000]. According to this technique several packets can be combined together by a node for

transmission and the rank codes are the most suitable method of correcting errors in such systems. There are many

theoretical papers dedicated to rank coding. However none of them consider hardware implementation.

In this work we will concentrate on our algorithms for rank codes and describe how we implemented them. Next part

of the paper is organized as follows. At first it will be discussed coding procedure and its complexity. Secondly we

are going to discuss our implementation of decoder block, talk about calculating the syndrome, solving key equation,

computing error occured and correcting an informational vector. Thirdly we will give the information about resource

requirements of the coder. And finally we are going to emphasize and discuss the main results.

Coding scheme

Coding scheme is implemented through multiplication informational vector u by generating matrix G. Coding

scheme is similar to rank code syndrome calculating procedure. Entries of the matrix are the elements of the

extended field GF (qN ). Let rank code has such parameters – (n, k, d). Then we can write an informational

vector

u = (u1, u1, . . . .uk), ui ∈ GF (qN ). (1)

We assume n = N and n = 2k unless otherwise stated. So current code rate equals 1/2. Generating matrix G

of rank code are

G(k×n) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (2)

where [i] means Frobenius power or qi. Calculated code vector is equal to the product

g = u · G = (g1, g2, . . . , gn), gi ∈ GF (qN ). (3)
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Papers [Gabidulin, 2010]and [Sysoev, 2011]are describe howto performsimilaroperation using weak self-orthogonal

bases [Gabidulin, 2006]. In this case asymptotic complexity of the operation can be evaluated as (N = n)

Ccode = O

(

(log N)2N
)

+ O(N log2 3). (4)

Decoding scheme

Code vector g can be distorted during data transmission. So write

y = g + e, (5)

where

e = (e1, e2, . . . , en), ei ∈ GF (qN ). (6)

If there are no more information apart from received vector y then decoder will be able to correct this word if and

only if

rank(e) ≤
d − 1

2
. (7)

Syndrome computing

There are some ways to decode rank codes. Decoding using syndrome (i.e. syndrome decoding) are best

investigated. Syndrome is the product of received vector y and check matrix H

s = y · H. (8)

If all entries of the syndrome (8) are equal to zero elements then rank decoder makes a decision that there are no

errors. It associates the received vector c = y with an appropriated informational vector. The check matrix,

H(d−1×n) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

h1 h2 · · · hn

h
[1]
1 h

[1]
2 · · · h

[1]
n

...
...

. . .
...

h
[k−1]
1 h

[k−1]
2 · · · h

[k−1]
n

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (9)

is connected to the generating matrix (2) and must fulfil next condition

GHT = 0. (10)

The complexity of the operation (8) may be estimated in similar way as the complexity of coding scheme. So we can

use the evaluation (4).

Key equation solving

An important decoding step is the key equation solving. We shall denote the basis of an error space by bE , that is

bE = (E1, E2, . . . , Em), (11)

where m – rank of the error occurred with Ei ∈ GF (qN ). For next discussion we will need the definition

Definition 1: Polynomial L(z) over GF (qN ) called linearized if L(z) =
∑

i Liz
pi

.
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Let ∆(z) denotes a linearized polynomial which roots are superposition of the vectors from (11), so called error

span polynomial,

∆(z) =

m
∑

p=0

∆pz
[p]. (12)

Then

∆(E) = 0, (13)

and E is any linear superposition of the basis vectors from (11)

E =
m
∑

i=1

βiEi, Ei ∈ bE,∀βi ∈ GF (q). (14)

Then let us write the key equation for rank code

F (z) = ∆(z) · S(z) mod z[d−1]. (15)

In (15) F (z) are defined as

F (z) =
m−1
∑

i=0

Fiz
[i], (16)

where

Fi =

i
∑

p=0

∆ps
[p]
i−p, i = 0, 1, . . . ,m − 1 (17)

and S(z) denotes linearized syndrome polynomial

S(z) =
d−2
∑

j=0

sjz
[j]. (18)

In paper [Gabidulin, 1985] the author showed that for solving the key equation it is sufficiently to divide z[d−1] by

syndrome polynomial (18). One of the way is using the method of successive divisions (i.e. Euclidean algorithm). In

papers [Sysoev, 2011]and [Gabidulin, 2011]itwas proposed optimized Euclidean algorithmfor linearized polynomials.

This algorithmallowus to use recurrence scheme and are most suitable for hardware implementation. Its asymptotic

complexity are evaluated as

Ceuclid = O(N3.585). (19)

Finding roots of error span polynomial

After the last operation the decoder should find roots of key equation ∆(z) = 0

∆(z) =
m
∑

p=0

∆pz
[p]. (20)

Remember that this solution should satisfy (14). To solve key equation we can use the method, described in

[Berlekamp, 1968]. For this, we will need the following theorem

Theorem 1: Let L(z) – linearized polynomial and z =
∑

k Zkα
k, where Zk ∈ GF (q), then L(z) =

∑

k ZkL(αk)
Proof. See [Berlekamp, 1968]. �

From Theorem 1 it follows that for finding roots of error span polinomial 12, it is necessary to calculate value of this

polynomial in certain points and express the results in standard basis

bstd = (α0, α1, α2, . . . , αN ), α ∈ GF (qN ). (21)
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That is

∆(αk) =

m
∑

i=0

λki · α
i, k = 0, 1, . . . ,m, λki ∈ GF (2N ). (22)

After this calculation we can construct a matrix (m + 1) × (m + 1), which entries are fromGF (q)

Ω =

∥

∥

∥

∥

∥

∥

∥

∥

λ00 λ01 · · · λ0m

λ10 λ11 · · · λ1m

· · · · · · · · · · · ·

λm0 λm1 · · · λmm

∥

∥

∥

∥

∥

∥

∥

∥

. (23)

Then the problem of finding roots of error span polynomial is equivalent to the finding a solution for the next matrix

equation:

Z · Ω =
∣

∣Z0 Z1 . . . Zm

∣

∣

·

∥

∥

∥

∥

∥

∥

∥

∥

λ00 λ01 · · · λ0m

λ10 λ11 · · · λ1m

· · · · · · · · · · · ·

λm0 λm1 · · · λmm

∥

∥

∥

∥

∥

∥

∥

∥

=
∣

∣0 0 · · · 0
∣

∣ . (24)

The null vector is placed at the right side of the equation (24). This equation may be solved by the means of

transformation of the matrix from current form into idempotent one (see example 2.57 in [Berlekamp, 1968]). Then

the roots of error span polynomial, or (11), may be derived from matrix rows. Thus we will calculate error values

(11).

Find error locator

After calculating (11) it is necessary to calculate error locator. At first step we need to solve a shortened set of

equations [Gabidulin, 1985]:
m
∑

j=1

Ejx
[p]
j = sp, p = 0, 1, . . . ,m − 1. (25)

All the equations transform in such way that at the end of operations we will got unknown variables of equal power,

that is
m
∑

j=1

E
[m−p]
j x

[m−1]
j = s[m−p]

p , p = 0, 1, . . . ,m − 1. (26)

Complexity of the operation (25) are evaluated as

Cconv = Cmult

(

(m − 1)2 +
(m − 1)m

2

)

, (27)

where Cmult is the multiplication complexity for the pair of elements from the extended finite field GF (qN ) in the

current basis. In paper [Gabidulin, 2010] and [Sysoev, 2011] It was shown how we may optimize a set of base

operations (multiplication, powering, inversion) using weak self-orthogonal bases. The set of equations (26) is the

system of linear equations. It can be rewrited into the product of matrix by vector
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

E
[m−1]
1 E

[m−1]
2 · · · E

[m−1]
m

E
[m−2]
1 E

[m−2]
2 · · · E

[m−2]
m

...
...

. . .
...

E
[0]
1 E

[0]
2 · · · E

[0]
m

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

x
[m−1]
1

x
[m−1]
2

...

x
[m−1]
m−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

s
[m−1]
0

s
[m−2]
1

...

s
[0]
m−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (28)

To solve a system of equations (26) expressed in (28), we will use Gaussian elimination. So
∥

∥

∥

∥

∥

∥

∥

∥

∥

1 Ẽ12 · · · Ẽ1m

0 1 · · · Ẽ2m

...
...

. . .
...

0 0 · · · 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

x
[m−1]
1

x
[m−1]
2

...

x
[m−1]
m−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

s̃0

s̃1
...

s̃m−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (29)
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Complexity of solving such the system (29) using Gaussian Elimination evaluated as

CGauss = Cinv · m + Cmult

(

m
∑

k=1

k2

)

+ Cadd

(

m
∑

l=1

l(l − 1)

)

, (30)

where Cadd and Cinv are appropriated estimations of complexity for the sum of two elements from extended field

and inversion of the element in current basis.

Complexity of the solution (reduction to Gaussian form) equals to

CsolveX = (Cmult + Cadd)
m(m − 1)

2
. (31)

After this operation we will got a set of independent equations

m
∑

i=1

x[m−1]
p = ŝp, p = 0, 1, . . . ,m − 1. (32)

Each equation from (32) is solving by means of raising to power [n − (m − 1)]. Complexity of the powering may

be evaluated as

CxPow = Cmult · m(n − (m − 1)). (33)

After the calculating xp we may forma system of equation which solution is a set of error locators [Gabidulin, 1985]

xp =
n
∑

j=1

Ypjhj , p = 1, 2, . . . ,m. (34)

In equation (34) hj are the entries of the first row in check matrix (9) with hj ∈ GF (qN ). Ypj are elements of the

error locators matrix (m × n), Ypj ∈ GF (q). It is worth noting that all the equations (34) are independent and

have unique solution. The element hj ∈ GF (qN ) can be expressed in the form of vector which entries are the

elements hji fromGF (q). Thus each equation (34) can be represented in the next form

Xp = Ĥ · Yp =

∥

∥

∥

∥

∥

∥

∥

∥

∥

xp1

xp2
...

xpn

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

h11 h21 · · · hn1

h12 h22 · · · hn2
...

...
. . .

...

h1n · · · · · · hnn

∥

∥

∥

∥

∥

∥

∥

∥

∥

·

∥

∥

∥

∥

∥

∥

∥

∥

∥

Yp1

Yp2
...

Ypn

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (35)

To find Yp it is necessary to multiply Xp by the matrix Ĥ−1. This matrix is independent from input information

and may be evaluated at the step of device development. Complexity of the operation should be not more than

(upper-bound estimate)

CY = Cadd · (n − 1)m. (36)

Error finding and vector correction

Using known error locators matrix Ypj (from (34)), and the obtained error span matrix Ei (11), it will be simple to

got error values ek for each entry from received corrupted code vector y

e = EY =
∥

∥E1 E2 · · · Em

∥

∥

·

∥

∥

∥

∥

∥

∥

∥

∥

∥

Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Ym1 Ym2 · · · Ymn

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (37)
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Error correction operation is a simple subtraction

g = y − e. (38)

A common complexity of the error calculation and code vector correction are evaluated as

Ce = Cadd · (nm). (39)

After the correction of received vector we need to find informational vector

ũ = g · D = u · G · D. (40)

For equality ũ and u it is necessary to satisfy the condition

G(k×n) · D(n×k) = I(k×k), (41)

where I denotes the unity matrix with identity components from GF (qN ) at the diagonal. Matrix D is defined

unambiguously and calculates a priori. Complexity of multiplication vector g by matrix D may be estimated as

Cu = Cmult · mn + Cadd · (n − 1)m. (42)

Resource demanding

The authors have implemented described algorithm using hardware description language VHDL. Our goal was the

developing a codec for rank code with the following parameters (8, 4, 5). A base field was GF (2). An extended

field was GF (28), i.e. N = 8. Decoder has no information about row and column erasures.

Codec was designed as IP-block with simple inputs and outputs. The rest of the world can use signal “LOAD” and

“Y[7:0]” for data input. For outputs other blocks should use corrected vector “I[7:0]" with “VALID” and “FAIL" flags.

Such way does not constrain data channel. So the codec can be used with any transmitter such as copper (i.e.

RS-485/Ethernet), memory (i.e. NAND Flash) or radio (i.e. ZigBee/WiFi) channels.

For more objective results this rank codec does not depend on specialized FPGA blocks (such as multipliers, block

ram, I/O blocks). The device may be used not only in FPGA but also in applications specific integrated circuit (ASIC).

Block scheme of full decoder you can see at figures 1 and 2.

Figure 1 shows blocks for searching error basis and interconnection between them. One can see two state

machines, for “Euclid” and “Error Span” stages (denoted as “SM”). Structure is purposefully pipelined. So next

decoding operation starts can begin before previous operation finish. Syndrome block consist of four independent

calculators for each transposed check matrix row. Euclid stage block performs operations on linearized polynomials.

“Euclid main” block are more complex and more frequently used. It decreases current power at each step of

Euclidian algorithm. “Euclid final” are used once per decoding. “Error Span” block is simpler. It performs calculate

values of ∆ linearized polynomial and outputs its roots.

Figure 2 shows block diagram of algorithm for calculating error locator. One can see state machines chain. These

state machines share memory and computational resources between each other. The system also have pipelined

structure. Final stage “Data correction" check syndrome value and can decode received vector if there are no errors

occured. Otherwise, it performs errors searching and, after that, calculations for finding informational vector. The

obtained structure and results may be optimized better. But they are initial point and will help us to more precise

evaluate complex systems based upon rank codes.

We used Active-HDL 7.2 Student Edition fromAldec [Aldec inc., 2012] for simulation. Our project was developed for

commercial FPGAs XC3S700AN-4FGG484C [Xilinx inc., 2008][Xilinx inc., 2012]and XC6SLX16-3CSG225 [Xilinx inc., 2012].

Forgenerating the configuration bit file for FPGA we use software ISE WebPack by Xilinx inc. 13.1 [Xilinx inc., 2011].
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Figure 1: Searching error basis block diagram

Figure 2: Block diagram searching error locator and decoding received vector

Synthesis, translation, mapping and routing were performed with default settings. One can see authors’s results in

table 1. The codec can be run at 155 MHz Spartan-6 and 86 MHz for Spartan-3. So if current code rate is 1/2 then

codec can perform data processing with 77 MiB/s and 43 MiB/s speed accordingly. When this work started, the

best chip for commertial devices was Spartan-3AN. Today FPGA Spartan-6 preferred for new budget designs. It is

recent and more popular FPGA [Xilinx inc., 2012]. The key difference between two FPGAs is the using technology

and architecture. The Spartan-3 (denotes as “S3”) technology is 90 nm, while Spartan-6 (denoted as “S6”) one is

45 nm. Such difference in technology impacts on achievable speed. Indeed, table 1 shows speed increasing.

Spartan 3A contain 4-input Look-Up table (LUT). Each LUT implements logic plus storage elements used as flip-

flops or latches [Xilinx inc., 2012]. Each configurable logic block in Spartan-6 consists of two slices. Each slice in

Spartan-6 contains four 6-input LUTs, eight flip-flops and miscellaneous logic. As one can see in table of results,

in new architecture number of used slices has been dramatically decreased. Obtained results show this difference

between two FPGAs.

So table describes not only resource demanding for the new device, but also for legacy one. One can see and

how new architecture suits for the codec. The main conclusion from the results lies in idea that rank codes may be

implemented for industrial and experimental purposes, even in small series-produced devices.
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Table 1: Simulation and synthesize results

Operation Delay, Slices, Flip-Flops, 4-input LUTs, Max. freq,

cycles number (%) number (%) number (%) MHz

S3 S6 S3 S6 S3 S6 S3 S6

Full coder 14
850

(14)

209

(9)

921

(8)

630

(3)

1247

(11)

859

(9)
163 282

Syndrome stage 25
728

(12)

196

(9)

897

(8)

620

(3)

933

(8)

614

(7)
176 313

KES (Euclid) stage 2040
1837

(31)

826

(36)

1980

(17)

1956

(11)

2945

(25)

2045

(22)
87 156

Error span stage 977
489

(8)

156

(7)

321

(3)

302

(2)

859

(7)

422

(5)
130 174

Error locator stage 401
877

(15)

262

(12)

927

(8)

784

(4)

1214

(10)

545

(6)
143 202

Data correction stage 15
96

(2)

32

(1)

92

(1)

82

(0)

164

(1)

72

(1)
212 344

Full decoder 3458
3979

(68)

1380

(61)

4420

(38)

4027

(22)

6106

(54)

3564

(40)
86 155

Full codec 3472
4829

(82)

1583

(70)

5341

(45)

4657

(26)

7353

(62)

4423

(49)
86 155

Conclusion

Achieved results are important for further scientific research. They will help to estimate more carefully parameters

of the systems based upon rank codes. Understanding the internal structure of the hardware codec should direct

research efforts to the most important problems. Likewise, the results may be used to compare rank codes with

Reed-Solomon codes from applied aspect.

In what follows one should consider more complex codecs, examine dependence of hardware implementation

complexity on the main parameters and develope new algorithms for more efficient decoding.
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