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a b s t r a c t

An information-geometrical foundation is established for the deformed exponential
families of probability distributions. Two different types of geometrical structures, an
invariant geometry and a flat geometry, are given to a manifold of a deformed exponential
family. The two different geometries provide respective quantities such as deformed
free energies, entropies and divergences. The class belonging to both the invariant and
flat geometries at the same time consists of exponential and mixture families. The
q-families are characterized from the viewpoint of the invariant and flat geometries.
The q-exponential family is a unique class that has the invariant and flat geometries in
the extended class of positive measures. Furthermore, it is the only class of which the
Riemannian metric is conformally connected with the invariant Fisher metric.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the introduction of q-entropy by Tsallis [1] (see also an extensive monograph [2]), much attention has been paid
to non-extensive statistical mechanics. It is related to various ‘non-standard phenomena’ subject to the power law not only
in statistical physics but in economics and disaster statistics. Here, families of probability distributions of the q-exponential
family and more general deformed exponential families play a major role. In the present paper, a geometrical foundation is
given to these families of distributions from the point of view of information geometry [3].

The deformed exponential family was introduced and studied extensively by Naudts [4,5] (see also a monograph [6]).
Kaniadakis et al. [7] studied the κ-exponential family which belongs to the deformed exponential family. Its mathematical
structure was studied by Pistone [8] and Vigelis and Cavalcante [9]. See other examples with interesting discussions [10,11].
In statistics, a similar notion of a generalized exponential family [12] or the U-model [13,14] is discussed on the bases of
respective motives.

Many useful concepts such as generalized entropy, divergence and escort probability distribution have been proposed.
However, their relationships have not necessarily beenwell understood theoretically and arewaiting for further geometrical
and statistical elucidation. It is also useful to characterize the q-families in the class of general deformed exponential families.

In the present study, information geometry [3] is used to give a foundation to the deformed exponential families. Two
types of geometry can be introduced in themanifold of a deformed exponential family: One is the invariant geometry, where
the Fisher information is the uniqueRiemannianmetric (Chentsov [15]; also seeRef. [3]) togetherwith a dual pair of invariant
affine connections (α-connections). The other is the dually flat geometry [3] (also see Ref. [16]), which is not necessarily
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invariant but accompanies the Legendre structure. The escort probability distribution belongs to the latter geometry. The
two geometries give different free-energies, entropies and divergences in general.

The exponential and mixture families are characterized by the property that they sit at the intersection of the classes of
the invariant and flat geometries. The q-exponential family is then characterized from two viewpoints: One is invariance
and flatness in the class of positive measures and the other is conformal geometry [17,18]. It is shown that the q-family is a
unique class of flat geometry that is connected conformally to the invariant geometry.

2. Deformed exponential family

We follow Naudts [6,19] for the formulation of the deformed exponential family. Given a positive increasing function
χ(s) on (0,∞) ∈ R, a deformed logarithm, called the χ-logarithm, is defined by

lnχ (s) =

 s

1

1
χ(t)

dt. (1)

This is a concave monotonically increasing function. When χ is a power function,

χ(s) = sq, q > 0, (2)

(1) gives the q-logarithm

lnq(s) =
1

1 − q


s1−q

− 1

. (3)

The ordinary logarithm is obtained by taking the limit of q = 1.
The inverse of the χ-logarithm is the χ-exponential, given by

expχ (t) = 1 +

 t

0
λ(s)ds, (4)

where λ(s) is defined by the relation

λ

lnχ (s)


= χ(s). (5)

The q-exponential is given by

expq(t) = {1 + (1 − q)t}
1

1−q , (6)

where the limit q = 1 gives the ordinary exponential.
A family S = {p(x, θ)} parameterized by θ =


θ1, . . . , θn


of probability distributions of a vector random variable

x = (x1, . . . , xn) is called a χ-exponential family, when its density function is given by

p(x, θ) = expχ


i

θ ixi − ψ(θ)


(7)

with respect to a dominating measure µ(x). Here, ψ(θ) is determined from the normalization condition
p(x, θ)dµ(x) = 1 (8)

and is called the χ-free energy. Family S is regarded as an n-dimensional manifold, where θ plays the role of a coordinate
system. We call θ the χ-coordinate system of the χ-exponential family. Any linear subspace in the θ-coordinates is also a
χ-exponential family. The q-exponential family is χ-exponential family given by

p(x, θ) = expq


θ ixi − ψ(θ)


. (9)

Let us consider discrete random variable x, taking values on X = {0, 1, . . . , n}. Let Sn = {p(x)} be the family consisting
of all such probability distributions. It is called the probability n-simplex. By introducing a new vector random variable
x = {δi(x)},

δi(x) =


1, x = i
0, otherwise, (10)

we have

p(x) =

n
i=0

piδi(x), (11)

where pi = Prob {x = i} with constraint


pi = 1. Hence, Sn is an n-dimensional manifold, where p = (p1, . . . , pn) plays
the role of a coordinate system.
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Theorem 1. Sn is a χ-exponential family for any χ .
Proof. Since δi(x) takes values 0 and 1, we easily have

lnχ


n

i=0

piδi(x)


=

n
i=1


lnχ pi − lnχ p0


δi(x)+ lnχ p0. (12)

By putting

θ i = lnχ pi − lnχ p0, (13)

xi = δi(x), (14)

ψ(θ) = − lnχ


1 −

n
i=1

pi


(15)

we have

p(x) = expχ


θ ixi − ψ(θ)

, (16)

where ψ is a function of θ determined from


p(x) = 1. The θ determined by (13) is the χ-coordinate system of Sn. �

In the case of a continuous random variable x, a mathematically exact formulation is given by Pistone and Sempi [20],
Cena and Pistone [21], Vigelis and Cavalcante [9] and Grasselli [22]. Here, we give intuitive but non-rigorous observation.
We put the family of all the density functions, absolutely continuous with respect to the Lebesgue measure, as

F =


p(x)

 p(x) > 0,


p(x)dx = 1

. (17)

Instead of pi and δi(x) in the discrete case, by using the delta function δ(t), we have

p(x) =


p(t)δ(t − x)dt (18)

and
x(t) = δ(t − x). (19)

Then, by putting
θ(t) = lnχ p(t), (20)

we have

lnχ p(x) =


θ(t)δ(t − x)dt − ψ, (21)

where the term ψ is added as a normalizing factor. It thus follows that

p(x) = expχ


θ(t)δ(t − x)dt − ψ


(22)

is represented in the form of a χ-exponential family, where ψ is a functional of θ(t) satisfying
expχ {θ(x)− ψ} dx = 1. (23)

We have shown that both Sn and F are regarded as a χ-exponential family (χ-family for short) for any χ . When two
functions χ(t) and χ̃(t) are linearly connected as

χ(t) = c1χ̃ (c2t) (24)
for constants c1 and c2, we say that χ and χ̃ are equivalent. It is easy to see that, when χ and χ̃ are equivalent, a χ-family
is also a χ̃-family. We have the following result which is a generalization of Theorem 4 of [5].

Theorem 2. When χ and χ̃ are not equivalent, χ-family is not a χ̃-family, except for Sn and F which are χ-families for any χ .
Proof. Weprove the theorem in the discrete case. Any familyM of discrete distributions is a submanifold of Sn. Let us assume
thatM belongs to χ- and χ̃-family for non-equivalent χ and χ̃ . Let θχ and θχ̃ be the χ- and χ̃-coordinates of Sn, where

θ iχ = expχ

lnχ̃


θ iχ̃


, i = 1, . . . , n (25)

holds.M is given by a linear subspace of θχ and also of θ̃χ . However, any linear constraints on θχ are not linear in θ̃χ̃ , provided
χ and χ̃ are not equivalent. �
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3. Invariant geometry of χ-family

3.1. α-geometry

Aχ-family (7) is considered as amanifoldwith a (local) coordinate system θ.We use the invariance principle to introduce
a unique geometrical structure (see Refs. [3,15]).

Invariance principle: The geometry is invariant under the transformation of random variable x to y, provided y is a sufficient
statistics.

The invariant geometry is characterized by the two tensors,

gij(θ) = E

∂i log p(x, θ)∂j log p(x, θ)


, (26)

Tijk(θ) = E

∂i log p(x, θ)∂j log p(x, θ)∂k log p(x, θ)


(27)

where ∂i = ∂/∂θ i and E denotes expectation. The first tensor, gij, is the Fisher information matrix, playing the role of a
Riemannian metric. Tijk is a third-order symmetric tensor that defines a pair of dual affine connections, Γ (α)

ijk and Γ (−α)
ijk , for

any real number α,

Γ
(α)
ijk = [i, j; k] −

α

2
Tijk, (28)

called the α-connection. Here, [i, j; k] is the Christoffel symbol defining the Riemannian (Levi–Civita) connection,

Γ
(0)
ijk = [i, j; k] =

1
2


∂igjk + ∂jgik − ∂kgij


. (29)

The (α = 1)-connection is called the e-connection (exponential connection) and α = −1 is called the m-connection
(mixture connection).

3.2. Invariant divergence

Let us consider a divergence function D [p(x) : q(x)] between two probability distributions. Here, D should satisfy

D [p(x) : q(x)] ≥ 0, the equality holds iff p(x) = q(x). (30)

A divergence is said to be decomposable when it is written as

D [p : q] =


d (pi, qi) (31)

for function d. The invariance can be stated in terms of the divergence. Let us divide the set X = {0, 1, . . . , n} into m
subclasses (m ≤ n), G = {G1, . . . ,Gm},

∪ Gi = X, Gi ∩ Gj = φ. (32)

This is coarse graining of X . It induces a coarse-grained probability distribution over G. Given p, the derived probability of
p̄i = Prob {x ∈ Gi} is

p̄i =


j∈Gi

pj. (33)

A divergence is said to be information-monotonic when it does not increase by coarse graining,

D [p : q] ≥ D [p̄ : q̄] , (34)

and the equality holds when and only when, for each class Gk,

qi
pi

= const i ∈ Gk. (35)

The following theorem is known [23,24].

Theorem 3. A decomposable invariant (information-monotonic) divergence is given by the following f -divergence [23,24]

D [p : q] =


pif


qi
pi


(36)

where f is a convex function satisfying f (1) = 0.
Invariant divergence D [p : q] and its dual, D[q : p], give a Riemannian metric together with dual affine connections. The

following theorem is known [3].
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Theorem 4. The geometry derived from an invariant divergence consists of the Fisher information metric together with a pair of
±α-connections, where α is given by

α = 2f ′′′(1)+ 3, (37)

when f is normalized to satisfy f ′′(1) = 1.

3.3. Dually flat manifold

A Riemannian manifold with dual affine connections is dually flat when the curvature vanishes with respect to the dual
affine connections. Such amanifold plays a fundamental role in information geometry. The following theorem is established
in information geometry [3].

Theorem 5. When a manifold M has dually flat structure, the following propositions hold:
(1) There are two affine coordinate systems, θ and η, with which the coefficients (Christoffel symbols) Γijk and Γ ∗

ijk of affine and
dual affine connections vanish, respectively.
(2) There are two convex functions, ψ(θ) and ϕ(η), with which the affine coordinates θ and η are mutually connected by the
Legendre transformation,

ηi =
∂

∂θ i
ψ(θ), θ i =

∂

∂ηi
ϕ(η), (38)

ψ(θ)+ ϕ(η)− θ · η = 0. (39)

(3) Given two points P and Q in M, a canonical divergence exists and is given by

D[P : Q ] = ψ (θP)+ ϕ

ηQ


− θP · ηQ , (40)

where θP and θQ are the affine coordinates, and ηP and ηQ are the dual affine coordinates, of P and Q , respectively.

We call ψ(θ) the free energy and ϕ(η) the negative entropy for a dually flat manifold. We study the invariant geometry
given to a χ-family. When a χ-family is dually flat, it naturally has a χ-free energy, χ-entropy and χ-divergence based on
the invariant geometry.

We first search for a special class of χ-families of which invariant geometries are dually flat. The discrete case is studied
for simplicity’s sake. There are two well-known families, namely the exponential family written as

p(x, θ) = exp {θ · x − ψ(θ)} (41)
and the mixture family represented by

p(x, θ) = θ · k(x),


θ i = 1, (42)

where ki(x) > 0 is a probability distribution on x ∈ X . They are special χ-families defined by
expχ (t) = exp(t), (43)

expχ (t) = t, (44)
respectively.

Theorem 6. The exponential and mixture families are the only two families that have an invariant dually flat geometry, provided
the dimension number m of M is larger than 1. They are dually flat with respect to the e-connection (α = 1) and m-connection
(α = −1). The invariant canonical divergence is the Kullback–Leibler divergence

D[P : Q ] =


p (x, θP) log

p (x, θP)

p

x, θQ

 . (45)

Remark 1. The case withm = 1 is trivial, sinceM is a curve and hence its Riemann–Christoffel curvature always vanishes.

The geometrical entropy is

− ϕ(η) = −


p(x, η) log p(x, η) (46)

in both cases, coinciding with the Shannon entropy. The geometrical free energy ψ(θ) is a cumulant generating function.

3.4. Characterization of q-family from the invariance viewpoint

In order to characterize the q-families, we extend the probability simplex, Sn, to a set of positive measures over X ,

Rn+1
+

=

ξ
ξ i > 0


, (47)
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where ξ i is the measure of x = i, and the normalization constraint

ξ i = 1 is removed. It is known that Rn+1

+ has an
invariant and dually flat structure with respect to the α-connection for any α [24], while Sn is flat only with respect to
α = ±1 connections.

We have used parameter α from the information geometry point of view, where α and−α are dually coupled. In physics,
it is traditional to use parameter qwhich is related to α by

q =
1 + α

2
, 1 − q =

1 − α

2
. (48)

Therefore, we hereafter use q instead of α frequently, such that q-connection implies α = 2q − 1 connection.
Since Rn+1

+ is flat with respect to the q-connection, the corresponding affine coordinate system, the q-coordinate system,
is given by

θ i = ξ
1−q
2

i (49)

and its dual, the (1 − q)-coordinates, is given by

ηi = ξ
q
i . (50)

Rescaling and adjusting constants, we have the q- and (1 − q)-expression of affine coordinates

θ i = lnq (ξi) =
1

1 − q


ξ
1−q
i − 1


, (51)

ηi = ln1−q (ξi) =
1
q


ξ
q
i − 1


. (52)

The q-potential (q-free energy) is given by

ψq

θq


= (1 − q)

 
θ iq

1−q
(53)

and its dual is the (1 − q)-potential (negative of q-entropy) given by

ϕ1−q

η1−q


= q

 
η
q
i

 1
q
. (54)

Hence, the Riemannian metric is

gij =
q

1 − q


θ iq

 2q−1
1−q δij. (55)

The q-entropy is also obtained from the invariant divergence. A dually-flat manifold has a canonical divergence. The
canonical divergence with respect to the q-connection is

Dq

p̃ : q̃


= (1 − q)


p̃i + q


q̃i −


p̃(1−q)
i q̃qi , (56)

where p̃, q̃ ∈ Rn+1
+ . Hence, the q-divergence in its subspace Sn is naturally given by

Dq[p : q] = 1 −


p(1−q)
i qqi , (57)

where


pi =


qi = 1 holds. The q-entropy of p is defined from the q-divergence by

Hq(p) = −Dq[1 : p], (58)

where 1 is the uniform distribution. It reduces to the Tsallis entropy, except for a scale and constant,

Hq(p) =
1

1 − q


pqi − 1


. (59)

We define a q-family of probability distribution by

p(x, θ)1−q
= θ · x − ψ(θ), (60)

of which q = 0 is the mixture family. The limiting case of q = 1 is the exponential family. In general, a q-family is

p(x, θ)1−q
=


θici(x)− ψ(θ) (61)

where ci(x) are positive measures.
Since Rn+1

+ is dually flat with respect to the q-connection, we have naturally the Max–Ent theorem, which characterizes
the q-family.
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Theorem 7. Given k constraints for constants ai,

n
x=0

p
1−α
2 (x)ci(x) = ai, i = 1, . . . , k, (62)

the family of positive measures that maximizes the q-entropy is the q-family

{p(x; θ)}q =

k
i=1

θici(x). (63)

In regard to information geometry, the α-geometry has been well studied [3,25]. Its relation with the Tsallis entropy and
physical applications are studied in Refs. [26,27].

4. Flat geometry of χ-family

4.1. Flat χ-geometry

Apart from the invariancy principle, we give a new dually flat structure to the χ-family, different from the invariant
geometry. This is called the χ-geometry. When χ(s) = sq, q > 0, we particularly call it the q-geometry. The χ-free-
energy ψ(θ) of a χ-family is known to be a convex function [6]. We give its simple proof for later use. We have, by putting
u(x) = expχ (x) for simplicity,

∂ip(x, θ) = u′ (θ · x − ψ) (xi − ∂iψ) , (64)

∂i∂jp(x, θ) = u′′ (θ · x − ψ)

(xi − ∂iψ)


xj − ∂jψ


− u′ (θ · x − ψ) ∂i∂jψ. (65)

Since 
∂ip(x, θ)dx =


∂i∂jp(x, θ)dx = 0, (66)

we have

∂i∂jψ(θ) =


u′′(θ · x − ψ) (xi − ∂iψ)


xj − ∂jψ


dx

hχ (θ)
, (67)

where

hχ (θ) =


u′ (θ · x − ψ) dx =


χ {p(x, θ)} dx. (68)

Since
hχ (θ) > 0, u′′(θ · x − ψ) > 0, (69)

it is clear from (67) that

gχij = ∂i∂jψ(θ) (70)
is positive-definite and defines a Riemannian metric.

The χ-free-energy ψ is a convex function of θ so that it gives a dually-flat structure, which is not invariant except for
the cases of the exponential and mixture families. The χ-Fisher metric is given by (70), and is different from the invariant
Fisher information matrix in general. The third-order tensor is given by

Tχijk = ∂i∂j∂kψ, (71)
from which a pair of affine connections

Γ
χ

ijk(θ) = [i, j, k]χ −
1
2
Tijk (72)

Γ
∗χ

ijk (θ) = [i, j; k]χ +
1
2
Tijk (73)

are derived, where [i, j; k]χ is the coefficient of the Levi–Civita connection with respect to the Riemannian metric gχij . The
connections are flat and dually coupled. (We consider only α = ±1 connections here.) The affine coordinate system of the
χ-geometry is θ itself, so

Γ
χ

ijk(θ) = 0. (74)

Hence, the geodesic connecting two distributions p(x, θ1) and p (x, θ2) in a χ-family is written as

p(x, t) = u {tθ1 · x + (1 − t)θ2 · x − ψ(t)} . (75)
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4.2. Escort distribution as dual χ-affine system

Since the χ-geometry is dually flat, we have a dual affine coordinate system η in which Γ ∗χ

ijk (η) = 0 holds. This is given
by the Legendre transformation of ψ(θ),

η = ∇ψ(θ). (76)

From (64), we have

ηi =


u′(θ · x − ψ)xidx

hχ (θ)
, (77)

where we put

hχ (θ) =


u′(θ · x − ψ)dx. (78)

In the case of Sn,

θ · x − ψ =


θ iδi(x)− ψ(θ) (79)

so

ηi =
u′


θ i − ψ(θ)


hχ (θ)

, (80)

hχ (θ) =

n
i=0

u′
{v (pi)} , (81)

where

v(t) = lnχ (t). (82)

From the dual coordinates (80), a new family of probability distributions of x specified by θ is defined as

p̂(x, θ) =
1

hχ (θ)
u′

{θ · x − ψ} , (83)

which is called a χ-escort distribution. Since the following equation holds:

d
dt

expχ (t) = χ

expχ (t)


, (84)

we have

hχ (θ) =


u′ (θ · x − ψ) dx =


χ {p(x)} dx. (85)

Hence, the escort distribution is written as

p̂(x, θ) =
χ {p(x, θ)}

hχ (θ)
. (86)

The dual coordinates η are hence the expectation of x with respect to p̂(x, θ),
η = Ep̂[x], (87)

which is the η-coordinates of p̂(x, θ). In particular, for a q-family, the following simple relations are obtained,

hq(θ) =


p(x, θ)qdx, (88)

p̂(x, θ) =
1

hq(θ)
p(x, θ)q. (89)

In Sn, the following is easily obtained

ηi = p̂(i, θ). (90)

Hence, the escort distribution gives the dual coordinate system.
A dual geodesic is linear in η so that the dual geodesic connecting two distributions is given in terms of the escort

distributions by

p̂(x, t) =
t

h (θ1)
χ {p (x, θ1)} +

(1 − t)
h (θ2)

χ {p (x, θ2)} . (91)
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4.3. χ-entropy

The dual of χ-free-energy, which we call negative χ-entropy, is

ϕ(η) = θ · η − ψ(θ) (92)

where θ is considered as a function of η. Obviously,

∇ϕ(η) = θ. (93)

Theorem 8. The χ-entropy is given by

ϕ(p) =
1
hχ

n
i=0

v (pi)
v′ (pi)

. (94)

Proof. From

ϕ(η) = θ · η − ψ(θ) (95)

= Ep̂ [θ · x − ψ(θ)] (96)

= Ep̂ [v {p(x)}] , (97)

holds

ϕ(η) =
1
hχ


u′

{v (pi)} v (pi) . � (98)

In the case of the q-family in Sn,

ϕq(η) =
1

1 − q


1
hq

− 1

. (99)

This shows that the q-entropy in the flat geometry is defined, except for a scale and a constant, by

Hq =
1
hq

(100)

instead of the Tsallis entropy,

HTsallis = −hq, (101)

which is the entropy due to the invariant geometry.

4.4. χ-divergence

The canonical divergence of the χ-family is the χ-divergence. It is obtained by Vigelis and Cavalcante [9] in the function
space of probability distributions. It is, for p = p


x, θp


and r = p (x, θr), given as

Dχ [p : r] = ψ

θp


+ ϕ


ηr


− θp · ηr . (102)

Theorem 9. The χ-divergence is given by

Dχ [r : p] = Ep̂

lnχ


p

x, θp


− lnχ {p (x, θr)}


. (103)

Proof. The right-hand side of (103) is calculated as

1
hχ (p)

n
i=0


u′

{v (pi)} v (pi)− u′
{v (pi)} v (ri)


(104)

= ϕ

ηp


−

1
hχ (p)

n
i=1

u′
{v (pi)}


θ ir + v (r0)


(105)

= ϕ

ηp


− v (r0)−


θr · ηp (106)

= ψ (θr)+ ϕ

ηp


− θr · ηp (107)

= Dχ [r : p] . � (108)
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Corollary 10. The χ-entropy is related to the χ-divergence by

Hχ (p) = −D [1 : p] = −ϕχ

ηp


+ ψ(1). (109)

The Pythagorean theorem holds with respect to the χ-divergence.

Theorem 11. For three points p, q, r in the χ-family,

Dχ [p : q] + Dχ [q : r] = Dχ [p : r] (110)

holds, when the dual χ-geodesic connecting p and q is orthogonal to the χ-geodesic connecting q and r with respect to the
χ-metric.

4.5. χ-version of Max–Ent theorem

The Max–Ent theorem is a direct consequence of the generalized Pythagorean theorem in a dually flat manifold. Let us
consider the following constraints imposed on the probability distributions

Ep̂ [ci(x)] = ai, i = 1, . . . , k. (111)

The constraints are linear in the escort distributions, that is, linear with respect to the dual affine coordinates η. Hence,
submanifoldM(a)with a = (a1, . . . , ak), consisting of distributions satisfying the constraints (111), are dually flat.

Given M(a), we search for the distribution q(x, a) that maximizes the χ-entropy Hχ for given a = (a1, . . . , ak):

q(x, a) = argmax

Hχ (q) | q ∈ M(a)


. (112)

The χ-entropy is the negative of the χ-divergence from q to the uniform distribution 1,

Hχ (q) = c − Dχ [1 : q(x)] . (113)

Hence, the maximizer is given by the geodesic projection of 1 to M(a). Let us denote it by p(x). Indeed, the Pythagorean
theorem

Dχ [1 : q(x)] = Dχ [1 : p(x)] + Dχ [p(x) : q(x)] (114)

shows that Dχ [1 : p] is minimized when q(x) = p(x).
Such p(x)’s form a geodesically flat submanifold intersectingM(a)’s orthogonally. Hence, they form a χ-family,

p(x, θ) = u


k

i=1

θici(x)− ψ(θ)


. (115)

5. Conformal transformation connecting invariant and flat geometries

Two geometries, invariant and flat, induced in theχ-structure of Sn were studied in the previous sections. It is interesting
to know how they are related. In order to answer this question, we calculate the χ-Fisher metric by using the χ-divergence.

Theorem 12. The χ-Fisher metric of Sn is given by

gχij = −
1

2hχ


v′′ (pi) u′ (v (pi)) δij + v′′ (p0) u′ (v (p0))


, i, j = 1, . . . , n. (116)

Proof. The Taylor expansion of the χ-divergence is calculated as

Dχ [p : p + dp] =
1
hχ

n
i=0

u′
{v (pi)} {v (pi)− v (pi + dpi)} (117)

= −
1

2hχ


u′

{v (pi)} v′′ (pi) dp2i . (118)

Hence, the χ-Fisher metric on Rn+1
+ is diagonal,

gχij = γ (pi) δij, i, j = 0, . . . , n, (119)
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having diagonal terms

γ (pi) = −
1

2hχ
u′

{v (pi)} v′′ (pi) . (120)

Here, the homogeneous coordinates (p0, p1, . . . , pn) are used for Sn so that dp satisfies

dp0 = −

n
i=1

dpi. (121)

The χ-Fisher information in terms of p1, . . . , pn is calculated from this by eliminating dp0. Then we have (116). �
The invariant Fisher metric g is given by

n
i,j=1

gijdpidpj =

n
i,j=0

1
pi
δijdpidpj (122)

with equality constraint (121).
A transformation of the metric g in a Riemannian manifold is said to be conformal, when the new metric g̃ is given by

g̃ij(p) = σ(p)gij(p) (123)
for a positive scalar function σ(p). We search for the condition that theχ-geometry is a conformal transform of the invariant
geometry.

Theorem 13. The q-geometry is unique in the class of χ-geometries that is derived by a conformal transformation from the
invariant geometry.
Proof. Since

− 2hχ (p)γ (pi) =
v′′ (pi)
v′ (pi)

=
d
dpi

log v′ (pi) , (124)

a conformal change is derived when

d
dpi

log v′ (pi) =
c
pi
, (125)

where c is a constant not depending on i. This gives

log v′ (pi) = c log pi + d (126)

and hence

v′ (pi) = d′pci , (127)

for constants d and d′. This holds only for the q-logarithm with q = −c. �
The conformal geometry of a dual Riemannian manifold is given by

g̃ij = σgij (128)

T̃ijk = σTijk + (∂iσ) gjk +

∂jσ


gik + (∂kσ) gij. (129)

(See Refs. [28–32]). The above transformations are derived from the conformal change of divergence

D̃ [p : q] = σ(p)D [p : q] . (130)
The q-geometry is the case of

σ(p) =
1

hq(p)
. (131)

It should be remarked that
− log σ(p) = HRenyi(p) (132)

gives the Renyi entropy except for a scale factor and constant. In other words, the Renyi entropy is the negative of the power
exponent of the conformal transformation.

6. Conclusions

The geometrical structures of the manifold of a general deformed exponential family were studied. The two geometrical
structures were introduced, one from the viewpoint of invariance and the other from the viewpoint of flatness. They
give different definitions of generalized free energy, entropy and divergence. The exponential and mixture families are
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characterized uniquely by the fact that the two geometries coincide. The q-exponential families are characterized by the
fact that the two geometries coincide in the extended manifold of positive measures. It is also the unique family for which
the Riemannian metrics of the two geometries are connected by the conformal transformation, where the Renyi entropy
plays the role of expansion exponent.
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