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Escort probability is a certain modification of ordinary probability and a conformally
transformed structure can be introduced on the space of its distributions. In this con-
tribution applications of escort probabilities and such a structure are focused on. We
demonstrate that they naturally appear and play important roles for computationally
efficient method to construct α-Voronoi partitions and analysis of related dynamical
systems on the simplex.
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1. Introduction

In the research areas of multifractals and nonextensive statistical mechanics, escort

probability1–3 appears in many aspects and is widely recognized as an important

concept. It has been known4,5 that nonextensive entropies are closely connected

with the α-geometry.6,7 Further, we have geometrically studied the space of escort

distributions and reported8–10 that the well-established and abundant structure

(called the dually flat structure) can be introduced by a conformal transformation

of the α-geometry.

The purpose of this contribution is to show that escort probability and the as-

sociated conformal structure are also natural and useful to the other applications.
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First, we discuss the Voronoi partition with respect to the α-divergence (or Rényi

divergence). The Voronoi partitions on the space of probability distributions with

the Kullback–Leibler,11,12 or Bregman divergences13 are useful tools for various

statistical modeling problems involving pattern classification, clustering, likelihood

ratio test and so on. See also the literature14–16 for related problems. The largest ad-

vantage to take account of α-divergences is their invariance under transformations

by sufficient statistics,7,17 which is a significant requirement for those statistical

applications. In computational aspect, the conformal flattening of the α-geometry

enables us to invoke the standard algorithm18,19 using a potential function and an

upper envelop of hyperplanes with the escort probabilities as coordinates. As an-

other application, we explore properties of dynamical systems defined by the escort

transformation and the gradient with respect to the conformal metric. These flows

are fundamental from geometrical viewpoints20 and found to possess interesting

properties.

The paper is organized as follows: Sec. 2 is a short review of properties of infor-

mation geometric structure induced on the family of escort distributions obtained

by the authors.8 Section 3 describes the first application of escort probability and

the conformal geometric structure to α-Voronoi partitions on the simplex. The prop-

erties including computational efficiency of a construction algorithm are discussed.

Further, a formula for α-centroid is touched upon. In Sec. 4, we discuss properties

of dynamical systems related with escort transformation and gradient flows in view

of the conformal geometry.

In the sequel, we use two equivalent parameters q and α following to conventions

of several research areas, but their relation is fixed as q = (1 + α)/2. Additionally,

we assume that q > 0.

2. Preliminary Results

In this section, we review and summarize results in Ref. 8.

Let Sn denote the n-dimensional probability simplex, i.e.

Sn :=

{

p = (pi)

∣

∣

∣

∣

∣

pi > 0,

n+1
∑

i=1

pi = 1

}

, (1)

and pi, i = 1, . . . , n + 1 denote probabilities of n + 1 states. We introduce the α-

geometric structure6,7 on Sn. Let {∂i}, i = 1, . . . , n be natural basis tangent vector

fields on Sn defined by

∂i :=
∂

∂pi
−

∂

∂pn+1
, i = 1, . . . , n , (2)

where pn+1 = 1−
∑n

i=1 pi. Now we define a Riemannian metric g on Sn called the
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Fisher metric:

gij(p) := g(∂i, ∂j) =
1

pi
δij +

1

pn+1

=

n+1
∑

k=1

pk(∂i log pk)(∂j log pk), i, j = 1, . . . , n . (3)

Further, define a torsion-free affine connection ∇(α) called the α-connection, which

is represented in its coefficients with a real parameter α by

Γ
(α)k
ij (p) =

1 + α

2

(

−
1

pk
δkij + pkgij

)

, i, j, k = 1, . . . , n , (4)

where δkij is equal to one if i = j = k and zero otherwise. Then we have the

α-covariant derivative ∇(α), which gives

∇
(α)
∂i
∂j =

n
∑

k=1

Γ
(α)k
ij ∂k ,

when it is applied to the vector fields ∂i and ∂j . We can define a distance-like

function on Sn × Sn for α 6= ±1 by

D(α)(p, r) =
4

1− α2

{

1−

n+1
∑

i=1

(pi)
(1−α)/2(ri)

(1+α)/2

}

,

which we call the α-divergence. The Fisher metric g and the α-connection ∇(α) can

be derived from the α-divergence.7,21

Since ∇(α) and ∇(−α) geometrically play dualistic roles6,7 with respect to g, we

consider the triple (g,∇(α),∇(−α)), which is called the α-geometric structure on

Sn. The properties of the Tsallis entropy are studied through the α-geometry.4,5

While the α-geometric structure for α 6= ±1 is not flat, we reported8 that it can

be flattened via a certain conformal transformation22–25 to a nonstandard dually flat

structure6,7 denoted by (h,∇,∇∗). The theoretical advantage or interesting aspect

of such a conformally flattening is that we can obtain the Legendre structure on Sn

preserving several properties of the α-geometric structure. We summarize the result

in the following proposition by preparing some notation: the escort probability1 Pi

and a function Zq are respectively defined for q ∈ R by

Pi(p) :=
(pi)

q

∑n+1
j=1 (pj)

q
, i = 1, . . . , n+ 1, Zq(p) :=

n+1
∑

i=1

(pi)
q

q
. (5)

For 0 < q with q 6= 1, we define two functions by

lnq(s) :=
s1−q − 1

1− q
, s ≥ 0, expq(t) := [1 + (1 − q)t]

1/(1−q)
+ , t ∈ R ,

where [t]+ := max{0, t}, and the so-called Tsallis entropy26 by

Sq(p) :=

∑n+1
i=1 (pi)

q − 1

1− q
.

1250063-3



March 16, 2012 16:19 WSPC/147-MPLB S0217984912500637 4–14

A. Ohara, H. Matsuzoe & S.-I. Amari

Note that s = expq(lnq(s)) holds and they respectively recover the usual

logarithmic, exponential function and the Boltzmann–Gibbs–Shannon entropy

−
∑n+1

i=1 pi ln pi when q → 1. For q > 0, lnq(s) is concave on s > 0.

Proposition 1. The dually flat structure (h,∇,∇∗) on Sn is induced via a con-

formal transformation from the α-structure (g,∇(α),∇(−α)) on Sn. The induced

potential functions ψ, ψ∗, and dually flat affine coordinate systems (θ1, . . . , θn) and

(η1, . . . , ηn) are represented as follows :

θi(p) = lnq(pi)− lnq(pn+1), i = 1, . . . , n ,

ηi(p) = Pi(p), i = 1, . . . , n ,

ψ(θ(p)) = − lnq(pn+1) ,

ψ∗(η(p)) =
1

κ
(λ(p)− q) ,

where κ = (1−α2)/4 = q(1−q) is the scalar curvature of the α-structure, θn+1 ≡ 0,

ηn+1 := Pn+1(p) = 1−
∑n

i=1 Pi(p) and λ = 1/Zq is a conformal factor, i.e. h = λg.

Further, the coordinate systems (θ1, . . . , θn) and (η1, . . . , ηn) are ∇- and ∇∗-

affine, respectively.

For the proofs of Proposition 1 and necessary lemmas, see Ref. 27. The result

is extended to the q-exponential family with continuous random variables.9,10

Note that by defining what we call the conformal divergence ρ,

ρ(p, r) := λ(r)D(α)(p, r) =
n+1
∑

i=1

−Pi(r) (lnq(pi)− lnq(ri))

= ψ(θ(p)) + ψ∗(η(r)) −

n
∑

i=1

θi(p)ηi(r), (6)

we can confirm the Legendre structure, i.e. relations ρ(p,p) = 0, ∀ p ∈ Sn and

ηi =
∂ψ

∂θi
, θi =

∂ψ∗

∂ηi
, i = 1, . . . , n . (7)

The dual potential ψ∗ can be alternatively represented8 in p by

ψ∗ = lnq

(

1

expq(Sq(p))

)

,

which is known as the negative of the normalized Tsallis entropy.28–30 Thus, when

q → 1, we have the standard dually flat structure on Sn as follows:

ψ → − ln pn+1, ψ∗ →

n+1
∑

i=1

pi ln pi θi → ln(pi/pn+1), ηi → pi, i = 1, . . . , n .
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Finally, it should be remarked that the both structures (h,∇,∇∗) and

(g,∇(α),∇(−α)) are related in terms of not only the conformality of the metrics

h = λg but also the projective equivalence31 between the connections ∇∗ and

∇(−α),a which implies that a curve on Sn is ∇∗-geodesic if and only if it is ∇(−α)-

geodesic.b More generally, a submanifold in Sn is ∇∗-autoparallel if and only if it

is ∇(−α)-autoparallel. For (h,∇,∇∗), in particular, a submanifold is ∇- (resp. ∇∗-)

autoparallel when the affine coordinates θi (resp. ηi) are affinely parametrized by

βj , j = 1, . . . ,m ≤ n as θi =
∑m

j=1 a
i
jβ

j + ci, for i = 1, . . . , n+ 1 (similarly for ηi).

For example, the q-exponential family

pi = expq{θ
i − ψ̃(β)}, i = 1, . . . , n+ 1 , (8)

where ψ̃ is a normalizing term defined by ψ̃ = θn+1 + ψ, is ∇-autoparallel in a

proper domain of β. These properties are crucially used in the following sections.

Proposition 1 with (7) implies that

Pi =
∂ψ

∂θi
, i = 1, . . . , n (9)

for pi = expq(θ
i − ψ), i = 1, . . . , n and pn+1 = expq(−ψ). This relation can be

regarded as a special case of a known one3,32 for the q-exponential family (8), using

the escort expectation,2

〈〈aj〉〉q :=

n+1
∑

i=1

Pia
i
j =

1

qZq

n+1
∑

i=1

(pi)
q ∂

∂βj
(lnq(pi) + ψ̃ − ci) =

∂ψ̃

∂βj
,

because (9) is derived when aij = δij , j = 1, . . . , n and ain+1 = ci = 0.

3. Applications to Construction of Alpha-Voronoi Partitions and

Alpha-Centroids

For given m points p1, . . . ,pm on Sn we define α-Voronoi regions on Sn using the

α-divergence as follows:

Vor(α)(pk) :=
⋂

l 6=k

{p ∈ Sn|D(α)(pk,p) < D(α)(pl,p)}, k = 1, . . . ,m .

An α-Voronoi partition (diagram) on Sn is a collection of the α-Voronoi regions and

their boundaries. Note that D(α) approaches the Kullback–Leibler (KL) divergence

if α → −1, andD(0) is called the Hellinger distance. If we use the Rényi divergence33

of order α 6= 1 defined by

Dα(p, r) :=
1

α− 1
ln

n+1
∑

i=1

(pi)
α(ri)

1−α

aNote that ∇∗ is projectively equivalent with ∇(α) in Ref. 8 because there we adopted a different
correspondence of parameters: q = (1 − α)/2.
bPrecisely speaking, the term “geodesic” should be replaced by “pre-geodesic”.
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instead of the α-divergence, Vor(1−2α)(pk) gives the corresponding Voronoi region

because of their one-to-one functional relationship.

The standard algorithm using projection of a polyhedron18,19 commonly works

well to construct Voronoi partitions for the Euclidean distance,19 the KL diver-

gence.12 The algorithm is generally applicable if a divergence function is of Bregman

type,13 which is represented by the remainder of the first order Taylor expansion of

a convex potential function in a suitable coordinate system. Geometrically speak-

ing, this implies that i) the divergence is of the form (6) in a dually flat structure

and ii) its affine coordinate system is chosen to realize the corresponding Voronoi

partitions. In this coordinate system with one extra complementary coordinate the

polyhedron is expressed as the upper envelop of m hyperplanes tangent to the

potential function.

A problem for the case of the α-Voronoi partition is that the α-divergence on

Sn cannot be represented as a remainder of any convex potentials. The following

theorem, however, claims that the problem is resolved by Proposition 1, i.e. con-

formally transforming the α-geometry to the dually flat structure (h,∇,∇∗) and

using the conformal divergence ρ and escort probabilities as a coordinate system.

Here, we denote the space of escort distributions by En and represent the point

on En by P = (P1, . . . , Pn) because Pn+1 = 1−
∑n

i=1 Pi.

Theorem 1.

(i) The bisector of pk and pl defined by {p|D(α)(pk,p) = D(α)(pl,p)} is a simul-

taneously ∇(−α)- and ∇∗-autoparallel hypersurface on Sn.

(ii) Let Hk, k = 1, . . . ,m be the hyperplane in En ×R which is respectively tangent

at (P k, ψ
∗(P k)) to the hypersurface {(P , y)|y = ψ∗(P )}, where P k = P (pk).

The α-Voronoi diagram can be constructed on En as the projection of the upper

envelope of Hk’s along the y-axis.

Proof. (i) Consider the ∇(α)-geodesic γ(α) connecting pk and pl, and let p̄ be

the midpoint on γ(α) satisfying D(α)(pk, p̄) = D(α)(pl, p̄). Denote by B the ∇(−α)-

autoparallel hypersurface that is orthogonal to γ(α) and passes p̄. Then, for all

r ∈ B, the modified Pythagorean theorem4,23 implies the following equality:

D(α)(pk, r) = D(α)(pk, p̄) +D(α)(p̄, r)− κD(α)(pk, p̄)D
(α)(p̄, r)

= D(α)(pl, p̄) +D(α)(p̄, r)− κD(α)(pl, p̄)D
(α)(p̄, r) = D(α)(pl, r) .

Hence, B is a bisector of pk and pl. The projective equivalence ensures that B is

also ∇∗-autoparallel.

(ii) Recall the conformal relation (6) between D(α) and ρ, then we see that

Vor(α)(pk) = Vor(conf)(pk) holds on Sn, where

Vor(conf)(pk) :=
⋂

l 6=k

{p ∈ Sn|ρ(pk,p) < ρ(pl,p)} .

1250063-6
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Proposition 1 and the Legendre relations (6) and (7) imply that ρ(pk,p) is repre-

sented with the coordinates (Pi) by

ρ(pk,p) = ψ∗(P )−

(

ψ∗(P k) +

n
∑

i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk))

)

,

where P = P (p). Note that a point (P , yk(P )) in Hk is expressed by

yk(P ) := ψ∗(P k) +

n
∑

i=1

∂ψ∗

∂Pi
(P k)(Pi(p)− Pi(pk)).

Hence, we have ρ(pk,p) = ψ∗(P ) − yk(P ). We see, for example, that the bisector

on En for pk and pl is represented as a projection of Hk ∩Hl. Thus, the statement

follows.

Figures 1 and 2 taken from Ref. 27 show examples of α-Voronoi partitions for

four common probability distributions on S2: (0.2, 0.7, 0.1), (0.3, 0.3, 0.4), (0.4, 0.4,

0.2), (0.6, 0.1, 0.3) with α = −0.6 and 2. While the left ones are represented with

usual probabilities on S2 (the axis p3 is omitted), right ones are the corresponding

partitions represented with escort probabilities on E2. In right ones of the both fig-

ures, the bisectors are straight line segments on E2 because they are simultaneously

∇(−α)- and ∇∗-geodesics as is proved in (i) of Theorem 1.

Remark 1. Voronoi partitions for broader class of divergences that are not neces-

sarily associated with any convex potentials are theoretically studied34 from more

general affine differential geometric points of views.

On the other hand, the α-divergence can be expressed as a Bregman divergence

if the domain is extended from Sn to the positive orthant Rn+1
+ .5–7 Hence, the

α-geometry on Rn+1
+ is dually flat. Using this property, α-Voronoi partitions on

Rn+1
+ is discussed by Nielsen and Nock.35

However, while both of the above mentioned methods require constructions of

the polyhedrons in the space of dimension d = n + 2, the new one proposed in

this paper does in the space of dimension d = n + 1. Since it is known36 that

the optimal computational time of polyhedrons depends on the dimension d by

O(m logm+m⌊d/2⌋), the new one is better when n is even and m is large.

The next proposition is a simple and relevant application of escort probabilities.

Define the α-centroid c(α) for given m points p1, . . . ,pm on Sn by the minimizer

of the following problem:

min
p∈Sn

m
∑

k=1

D(α)(p,pk) .

Proposition 2. The α-centroid c(α) for given m points p1, . . . ,pm on Sn is

represented in escort probabilities by the weighted average of conformal factors

1250063-7
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Fig. 1. An example of α-Voronoi partition on S2 (left) for α = −0.6 (or q = 0.2) and the
corresponding one on E2 (right).
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Fig. 2. An example of α-Voronoi partition on S2 (left) for α = 2 (or q = 1.5) and the corre-
sponding one on E2 (right).

λ(pk) = 1/Zq(pk), i.e.

Pi(c
(α)) =

1
∑m

k=1 Zq(pk)

m
∑

k=1

Zq(pk)Pi(pk), i = 1, . . . , n+ 1 .

Proof. Let θi = θi(p). Using (6), we have

m
∑

k=1

D(α)(p,pk) =

m
∑

k=1

Zq(pk)ρ(p,pk) =

m
∑

k=1

Zq(pk)

{

ψ(θ)+ψ∗(η(pk))−

n
∑

i=1

θiηi(pk)

}

.
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Then the optimality condition is

∂

∂θi

m
∑

k=1

D(α)(p,pk) =
m
∑

k=1

Zq(pk)(ηi − ηi(pk)) = 0, i = 1, . . . , n ,

where ηi = ηi(p). Thus, the statements for i = 1, . . . , n follow from Proposition 1.

For i = n+ 1, it holds since the sum of the weights is equal to one.

4. Related Dynamical Systems on the Simplex

In this section, we study properties of several dynamical systems naturally asso-

ciated with the escort transformation, the conformal flattening and the resultant

geometric structure.

4.1. Conformal replicator equation

Recall the replicator system on the simplex Sn for given functions fi(p) defined by

ṗi = pi(fi(p)− f̄(p)), i = 1, . . . , n+ 1, f̄(p) :=

n+1
∑

i=1

pifi(p) , (10)

which is extensively studied in evolutionary game theory. It is known37 that

(i) the solution of (10) is the gradient flow of a function V (p) satisfying

fi =
∂V

∂pi
, i = 1, . . . , n+ 1 ,

with respect to the Shahshahani metric,38

(ii) the KL divergence is a local Lyapunov function for an equilibrium called the

evolutionary stable state (ESS).

The Shahshahani metric is defined on the positive orthant Rn+1
+ by

g̃ij =

∑n+1
k=1 pk
pi

δij , i, j = 1, . . . , n+ 1 .

Note that a vector X =
∑n

i=1X
i∂i tangent to Sn is represented by a tangent

vector X̃ on Rn+1
+ by X̃ =

∑n+1
k=1 X̃

k∂/∂pk, where X̃
i = X i, i = 1, . . . , n and

X̃n+1 = −
∑n

i=1X
i. Then we see that the Shahshahani metric induces the Fisher

metric g in (3) on Sn because
∑n

i,j gijX
iXj =

∑n+1
k,l g̃klX̃

kX̃ l holds. Further,

the KL divergence is a canonical divergence7 of (g,∇(1),∇(−1)). Thus, the repli-

cator dynamics (10) are closely related with the standard dually flat structure

(g,∇(1),∇(−1)), which associates with exponential and mixture families of proba-

bility distributions.39

In this subsection, motivated by the above two features (i) and (ii), we define

a modified replicator system compatible to the dually flat structure (h,∇,∇∗) and

discuss their properties. See Harper40 for another modification of the replicator

system.

1250063-9
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Consider a metric on Rn+1
+ defined by h̃ := λg̃ and the following modified

replicator system:

ṗi = Zq(p)pi(fi(p)− f̄(p)), i = 1, . . . , n+ 1 . (11)

It is easy to see the above right-hand sides define the vector that is tangent to Sn

and the gradient of a function V with respect to h̃, since
∑n+1

i=1 ṗi = 0 and

h̃(X̃, ṗ) =

n+1
∑

i,j=1

h̃ijX̃
iṗj =

n+1
∑

i=1

fiX̃
i − f̄

n+1
∑

i=1

X̃ i =

n+1
∑

i=1

∂V

∂pi
X̃ i ,

respectively, hold for any tangent vector X̃ on Sn. Thus, comparing (10) and (11),

we can conclude as follows:

Proposition 3. The gradient flow of a function V on Sn with respect to the con-

formal metric h is given by (11). Its trajectories coincide with those of (10) while

velocities of time-evolutions are different by the factor Zq(p).

We investigate properties of (11) in the case that V (p) = −ρ(r,p) for a fixed

distribution r. Applying the result for gradient flows of divergences on dually flat

spaces,20 we see that the flow is explicitly given in the ∇-affine coordinates by

θi(p(t)) = exp(−t){θi(p(0))− θi(r)}+ θi(r), i = 1, . . . , n , (12)

i.e. it converges to r along the ∇-geodesic (pregeodesic) curve.

On the other hand, consider the optimization problem maximizing V (p) =

−ρ(r,p) with m constraints of the escort expectations:

〈〈Aj〉〉q =

n+1
∑

i=1

Pi(p)A
i
j

=
n
∑

i=1

ηi(p)A
i
j +

(

1−
n
∑

i=1

ηi(p)

)

An+1
j = Āj , j = 1, . . . ,m , (13)

where Ai
j and Āj are prescribed values. Since the constraints (13) form a ∇∗-

autoparallel submanifold in Sn, the problem has the unique maximizer owing to

the Pythagorean theorem6,7 in a dually flat space. Defining the Lagrangian

L(p) := ρ(r,p) +

m
∑

j=1

βj(Āj − 〈〈Aj〉〉q) ,

we have the following optimality condition from (6) and (7):

∂L

∂ηi
= θi − θi

r
−

m
∑

j=1

βj(Ai
j −An+1

j )

= lnq pi + ψ(θ)− θi
r
−

m
∑

j=1

βj(Ai
j −An+1

j ) = 0, i = 1, . . . , n ,

1250063-10
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where θi and ηi are, respectively, the ∇- and the ∇∗-affine coordinates of p intro-

duced in Theorem 1, and θi
r
:= θi(r). Hence, θi is affine with respect to βj and the

maximizer p is in the q-exponential family represented in (8). These facts imply

that the set of maximizers forms a ∇-autoparallel submanifold parametrized by βj ,

which are determined by the prescribed values Āj .

Combining this consideration with (12), we see that the following holds:

Corollary 1. Let r be any distribution, and suppose that p0 and p∞ are in the

q-exponential family (8) parametrized by βj as θi =
∑m

j=1(A
i
j −An+1

j )βj + θi
r
, i =

1, . . . , n and θn+1 ≡ 0. The gradient flow (11) with V (p) = −ρ(p∞,p) starting from

p0 converges to p∞ staying on the q-exponential family.

In the above, p0 and p∞ are respectively interpreted as maximizers of −ρ(r,p)

under the constraints (13) with different values of Āj ’s. The corollary claims that

the q-exponential family is an invariant manifold for the transition of distribution

from p0 to p∞ caused by the change of Āj ’s, if the transition dynamics are governed

by the gradient flow.

4.2. Flows of escort transformation

Consider a dynamical system induced by the escort transformation from p to P

defined by (5). When we identify the set of escort distributions En with Sn, the

transformation is regarded to define a flow P (t) on Sn parametrized by t ∈ R:

P
(t)
i =

(pi)
t

∑n+1
j=1 (pj)

t
, i = 1, . . . , n+ 1, P (1) = p ∈ Sn , (14)

where p is a fixed probability distribution.

Recalling the standard dually flat structure, which is obtained by limiting q → 1

(or α→ 1) in Proposition 1, we have the corresponding coordinatesc θi
p
:= θi(p) =

ln(pi) − ln(pn+1), i = 1, . . . , n. In this case, if a curve (θi(t)) on Sn is affinely

parametrized by t ∈ R, we call it e-geodesic.7

Since it follows that

θi(t) := θi(P (t)) = lnP
(t)
i − lnP

(t)
n+1 = t(ln pi − ln pn+1) = tθi

p
, i = 1, . . . , n ,

we conclude from a viewpoint of information geometry that the flow of the escort

transformation (14) evolves along the e-geodesic curve that passes p at t = 1.

Note that the arbitrary flows (14) converge to the uniform distribution inde-

pendently of p, when t → 0. On the other hand, when t → ±∞, it converges to a

distribution on the boundary of Sn depending on the maximum or minimum com-

ponents of p. See Ref. 41 as a relevant work. In several literature,42,43 examples of

physical models with a time-evolution of the power index of distribution functions

are reported.

cThese coordinates are called the canonical parameters in statistics literature.
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The above result can be slightly generalized with a projective transformation

Πr : Sn → Sn defined by

p = (pi) 7→ Πr(p) :=

(

ripi
∑n+1

i=1 ripi

)

, i = 1, . . . , n+ 1 ,

for a given vector r = (ri) ∈ Rn+1
+ , and the relation with the replicator equation is

elucidated.

Proposition 4. For arbitrary r the projective transformation of the escort flow

given in (14) evolves along the e-geodesic curve that passes r̃ = r/‖r‖1 at t = 0

and Πr(p) at t = 1. This flow evolves along the trajectory of the replicator equation

(10) with constants fi = ln(pi), i = 1, . . . , n+ 1.

Proof. The first statement follows from direct calculation of coordinates θi for the

standard dually flat structure when q → 1 (α → 1):

θi(Πr(P
(t))) = ln(riP

(t)
i )− ln(rn+1P

(t)
n+1) = tθi

p
+ ln(ri/rn+1), i = 1, . . . , n .

To prove the second statement note that that the flow Πr(P
(t)) is a normalization

of a vector y(t), each component of which is yi(t) = ri(pi)
t. Hence, y(t) satisfies

the following linear differential equation:

ẏi = ln(pi)yi, yi(0) = ri, i = 1, . . . , n+ 1 .

By setting xi = yi/‖y‖1, we have

d

dt
ln(xi) = ln(pi)−

1

‖y‖1

n+1
∑

j=1

ẏj = ln(pi)−
n+1
∑

j=1

xj ln(pj), i = 1, . . . , n+ 1 .

Thus, Πr(P
(t)) is the solution of

ẋi = xi



ln(pi)−
n+1
∑

j=1

ln(pj)xj



 , xi(0) =
ri

‖r‖1
, i = 1, . . . , n+ 1 .

This proves the second statement.

5. Concluding Remarks

We have discussed two applications of escort probabilities and the dually flat struc-

ture (h,∇,∇∗) on Sn induced by conformal transformations of the α-geometry.

They are used to new directions except the studies of multifractal or nonextensive

statistical physics.

We first demonstrate a direct application of the conformal flattening to com-

putation of α-Voronoi partitions and α-centroids. Escort probabilities are found to

work as a suitable coordinate system for the purpose. Further, conformal divergence

and projective equivalence of affine connections also play important roles.

1250063-12
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In behavioral analysis of dynamical systems we present the properties of gradient

flows with respect to the conformal metric and discuss a relation with the replicator

equation. Next, we show that the projective transformation of the escort flow is e-

geodesic. This flow describes a time-evolution of the power index of distributions.

Physical interpretation of the obtained conformal structure is another future

research direction.
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