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Abstract The present article gives an introduction to
information geometry and surveys its applications in
the area of machine learning, optimization and statis-
tical inference. Information geometry is explained in-
tuitively by using divergence functions introduced in a
manifold of probability distributions and other general
manifolds. They give a Riemannian structure together
with a pair of dual flatness criteria. Many manifolds are
dually flat. When a manifold is dually flat, a general-
ized Pythagorean theorem and related projection the-
orem are introduced. They provide useful means for
various approximation and optimization problems. We
apply them to alternative minimization problems, Ying-
Yang machines and belief propagation algorithm in ma-
chine learning.

Keywords information geometry, machine learning,
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1 Introduction

Information geometry [1] deals with a manifold of proba-
bility distributions from the geometrical point of view. It
studies the invariant structure by using the Riemannian
geometry equipped with a dual pair of affine connec-
tions. Since probability distributions are used in many
problems in optimization, machine learning, vision, sta-
tistical inference, neural networks and others, informa-
tion geometry provides a useful and strong tool to many
areas of information sciences and engineering.

Many researchers in these fields, however, are not fa-
miliar with modern differential geometry. The present
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article intends to give an understandable introduction
to information geometry without modern differential ge-
ometry. Since underlying manifolds in most applications
are dually flat, the dually flat structure plays a funda-
mental role. We explain the fundamental dual structure
and related dual geodesics without using the concept of
affine connections and covariant derivatives.

We begin with a divergence function between two
points in a manifold. When it satisfies an invariance cri-
terion of information monotonicity, it gives a family of f -
divergences [2]. When a divergence is derived from a con-
vex function in the form of Bregman divergence [3], this
gives another type of divergence, where the Kullback-
Leibler divergence belongs to both of them. We derive
a geometrical structure from a divergence function [4].
The Fisher information Riemannian structure is derived
from an invariant divergence (f -divergence) (see Refs.
[1,5]), while the dually flat structure is derived from the
Bregman divergence (convex function).

The manifold of all discrete probability distributions is
dually flat, where the Kullback-Leibler divergence plays
a key role. We give the generalized Pythagorean theo-
rem and projection theorem in a dually flat manifold,
which plays a fundamental role in applications. Such
a structure is not limited to a manifold of probability
distributions, but can be extended to the manifolds of
positive arrays, matrices and visual signals, and will be
used in neural networks and optimization problems.

After introducing basic properties, we show three ar-
eas of applications. One is application to the alterna-
tive minimization procedures such as the expectation-
maximization (EM) algorithm in statistics [6–8]. The
second is an application to the Ying-Yang machine in-
troduced and extensively studied by Xu [9–14]. The
third one is application to belief propagation algorithm
of stochastic reasoning in machine learning or artificial
intelligence [15–17]. There are many other applications
in analysis of spiking patterns of the brain, neural net-
works, boosting algorithm of machine learning, as well
as wide range of statistical inference, which we do not
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mention here.

2 Divergence function and information
geometry

2.1 Manifold of probability distributions and positive
arrays

We introduce divergence functions in various spaces
or manifolds. To begin with, we show typical exam-
ples of manifolds of probability distributions. A one-
dimensional Gaussian distribution with mean μ and vari-
ance σ2 is represented by its probability density function

p(x;μ, σ) =
1√
2πσ

exp
{
− (x− μ)2

2σ2

}
. (1)

It is parameterized by a two-dimensional parameter
ξ = (μ, σ). Hence, when we treat all such Gaussian
distributions, not a particular one, we need to consider
the set SG of all the Gaussian distributions. It forms a
two-dimensional manifold

SG = {p(x; ξ)} , (2)

where ξ = (μ, σ) is a coordinate system of SG. This
is not the only coordinate system. It is possible to use
other parameterizations or coordinate systems when we
study SG.

We show another example. Let x be a discrete random
variable taking values on a finite set X = {0, 1, . . . , n}.
Then, a probability distribution is specified by a vector
p = (p0, p1, . . . , pn), where

pi = Prob {x = i} . (3)

We may write

p(x; p) =
∑

piδi(x), (4)

where

δi(x) =

{
1, x = i,

0, x �= i.
(5)

Since p is a probability vector, we have∑
pi = 1, (6)

and we assume
pi > 0. (7)

The set of all the probability distributions is denoted by

Sn = {p} , (8)

which is an n-dimensional simplex because of (6) and
(7). When n = 2, Sn is a triangle (Fig. 1). Sn is an n-
dimensional manifold, and ξ = (p1, . . . , pn) is a coordi-
nate system. There are many other coordinate systems.
For example,

θi = log
pi
p0
, i = 1, . . . , n, (9)

is an important coordinate system of Sn, as we will see
later.

Fig. 1 Manifold S2 of discrete probability distributions

The third example deals with positive measures, not
probability measures. When we disregard the constraint∑
pi = 1 of (6) in Sn, keeping pi > 0, p is regarded

as an (n + 1)-dimensional positive arrays, or a positive
measure where x = i has measure pi. We denote the set
of positive measures or arrays by

Mn+1 = {z, zi > 0 ; i = 0, 1, . . . , n} . (10)

This is an (n + 1)-dimensional manifold with a coordi-
nate system z. Sn is its submanifold derived by a linear
constraint

∑
zi = 1.

In general, we can regard any regular statistical model

S = {p(x, ξ)} (11)

parameterized by ξ as a manifold with a (local) coor-
dinate system ξ. It is a space M of positive measures,
when the constraint

∫
p(x, ξ)dx = 1 is discarded. We

may treat any other types of manifolds and introduce
dual structures in them. For example, we will consider
a manifold consisting of positive-definite matrices.

2.2 Divergence function and geometry

We consider a manifold S having a local coordinate sys-
tem z = (zi). A function D[z : w] between two points
z and w of S is called a divergence function when it
satisfies the following two properties:

1) D[z : w] � 0, with equality when and only when
z = w.

2) When the difference between w and z is infinitesi-
mally small, we may write w = z + dz and Taylor
expansion gives

D [z : z + dz] =
∑

gij(z)dzidzj , (12)

where

gij(z) =
∂2

∂zi∂zj
D[z : w]|w=z (13)

is a positive-definite matrix.
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A divergence does not need to be symmetric, and

D [z : w] �= D [w : z] (14)

in general, nor does it satisfy the triangular inequality.
Hence, it is not a distance. It rather has a dimension of
square of distance as is seen from (12). So (12) is consid-
ered to define the square of the local distance ds between
two nearby points Z = (z) and Z + dZ = (z + dz),

ds2 =
∑

gij(z)dzidzj . (15)

More precisely, dz is regarded as a small line element
connecting two points Z and Z + dZ. This is a tan-
gent vector at point Z (Fig. 2). When a manifold has
a positive-definite matrix gij(z) at each point z, it is
called a Riemannian manifold, and (gij) is a Rieman-
nian metric tensor.

Fig. 2 Manifold, tangent space and tangent vector

An affine connection defines a correspondence between
two nearby tangent spaces. By using it, a geodesic is de-
fined: A geodesic is a curve of which the tangent direc-
tions do not change along the curve by this correspon-
dence (Fig. 3). It is given mathematically by a covari-
ant derivative, and technically by the Christoffel symbol,
Γijk(z), which has three indices.

Fig. 3 Geodesic, keeping the same tangent direction

One may skip the following two paragraphs, since
technical details are not used in the following. Eguchi
[4] proposed the following two connections:

Γijk(z) = − ∂3

∂zi∂zj∂wk
D[z : w]|w=z, (16)

Γ∗
ijk(z) = − ∂3

∂wi∂wj∂zk
D[z : w]|w=z, (17)

derived from a divergence D[z : w]. These two are du-
ally coupled with respect to the Riemannian metric gij
[1]. The meaning of dually coupled affine connections is
not explained here, but will become clear in later sec-
tions, by using specific examples.

The Euclidean divergence, defined by

DE[z : w] =
1
2

∑
(zi − wi)

2
, (18)

is a special case of divergence. We have

gij = δij , (19)

Γijk = Γ∗
ijk = 0, (20)

where δij is the Kronecker delta. Therefore, the derived
geometry is Euclidean. Since it is self-dual (Γijk = Γ∗

ijk),
the duality does not play a role.

2.3 Invariant divergence: f -divergence

2.3.1 Information monotonicity

Let us consider a function t(x) of random variable x,
where t and x are vector-valued. We can derive proba-
bility distribution p̄(t, ξ) of t from p(x, ξ) by

p̄(t, ξ)dt =
∫

t=t(x)

p(x, ξ)dx. (21)

When t(x) is not reversible, that is, t(x) is a many-to-
one mapping, there is loss of information by summariz-
ing observed data x into reduced t = t(x). Hence, for
two divergences between two distributions specified by
ξ1 and ξ2,

D = D [p (x, ξ1) : p (x, ξ2)] , (22)

D̄ = D [p̄ (t, ξ1) : p̄ (t, ξ2)] , (23)

it is natural to require

D̄ � D. (24)

The equality holds, when and only when t(x) is a suf-
ficient statistics. A divergence function is said to be
invariant, when this requirement is satisfied. The invari-
ance is a key concept to construct information geometry
of probability distributions [1,5].

Here, we use a simplified version of invariance due
to Csiszár [18,19]. We consider the space Sn of
all probability distributions over n + 1 atoms X =
{x0, x1, . . . , xn}. A probability distributions is given by
p = (p0, p1, . . . , pn), pi = Prob{x = xi}.
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Let us divide X into m subsets, T1, T2, . . . , Tm (m <

n+ 1), say

T1 = {x1, x2, x5} , T2 = {x3, x8, . . .} , . . . (25)

This is a partition of X ,

X = ∪Ti, (26)

Ti ∩ Tj = φ. (27)

Let t be a mapping from X to {T1, . . . , Tm}. Assume
that we do not know the outcome x directly. Instead
we can observe t(x) = Tj , knowing the subset Tj to
which x belongs. This is called coarse-graining of X
into T = {T1, . . . , Tm}.

The coarse-graining generates a new probability dis-
tributions p̄ = (p̄1, . . . , p̄m) over T1, . . . , Tm,

p̄j = Prob {Tj} =
∑
x∈Tj

Prob {x} . (28)

Let D̄ [p̄ : q̄] be an induced divergence between p̄ and q̄.
Since coarse-graining summarizes a number of elements
into one subset, detailed information of the outcome is
lost. Therefore, it is natural to require

D̄ [p̄ : q̄] � D [p : q] . (29)

When does the equality hold? Assume that the out-
come x is known to belong to Tj. This gives some in-
formation to distinguish two distributions p and q. If
we know further detail of x inside subset Tj , we obtain
more information to distinguish the two probability dis-
tributions p and q. Since x belongs to Tj, we consider
the two conditional probability distributions

p (xi |xi ∈ Tj ) , q (xi |xi ∈ Tj ) (30)

under the condition that x is in subset Tj. If the two
distributions are equal, we cannot obtain further infor-
mation to distinguish p from q by observing x inside Tj.
Hence,

D̄ [p̄ : q̄] = D [p : q] (31)

holds, when and only when

p (xi |Tj ) = q (xi |Tj ) (32)

for all Tj and all xi ∈ Tj, or

pi
qi

= λj (33)

for all xi ∈ Tj for some constant λj .
A divergence satisfying the above requirements is

called an invariant divergence, and such a property is
termed as information monotonicity.

2.3.2 f -divergence

The f -divergence was introduced by Csiszár [2] and also

by Ali and Silvey [20]. It is defined by

Df [p : q] =
∑

pif

(
qi
pi

)
, (34)

where f is a convex function satisfying

f(1) = 0. (35)

For a function cf with a constant c, we have

Dcf [p : q] = cDf [p : q] . (36)

Hence, f and cf give the same divergence except for
the scale factor c. In order to standardize the scale of
divergence, we may assume that

f ′′(1) = 1, (37)

provided f is differentiable. Further, for fc(u) = f(u)−
c(u− 1) where c is any constant, we have

Dfc [p : q] = Df [p : q] . (38)

Hence, we may use such an f that satisfies

f ′(1) = 0 (39)

without loss of generality. A convex function satisfying
the above three conditions (35), (37), (39) is called a
standard f function.

A divergence is said to be decomposable, when it is a
sum of functions of components

D[p : q] =
∑
i

D [pi : qi] . (40)

The f -divergence (34) is a decomposable divergence.
Csiszár [18] found that any f -divergence satisfies

information monotonicity. Moreover, the class of f -
divergences is unique in the sense that any decompos-
able divergence satisfying information monotonicity is
an f -divergence.
Theorem 1 Any f -divergence satisfies the informa-
tion monotonicity. Conversely, any decomposable infor-
mation monotonic divergence is written in the form of
f -divergence.

A proof is found, e.g., in Ref. [21].
The Riemannian metric and affine connections derived

from an f -divergence has a common invariant structure
[1]. They are given by the Fisher information metric and
±α-connections, which are shown in a later section.

An extensive list of f -divergences is given in Cichocki
et al. [22]. Some of them are listed below.

1) The Kullback-Leibler (KL-) divergence: f(u) =
u logu− (u− 1):

DKL[p : q] =
∑

pi log
qi
pi
. (41)
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2) Squared Hellinger distance: f(u) = (
√
u− 1)2:

DHel[p : q] =
∑

(
√
pi −√

qi)
2
. (42)

3) The α-divergence:

fα(u) =
4

1 − α2

(
1 − u

1+α
2

)
− 2

1 − α
(u− 1), (43)

Dα[p : q] =
4

1 − α2

∑ (
1 − p

1+α
2

i q
1−α

2
i

)
. (44)

The α-divergence was introduced by Havrda and
Charvát [23], and has been studied extensively by
Amari and Nagaoka [1]. Its applications were
described earlier in Chernoff [24], and later in
Matsuyama [25], Amari [26], etc. to mention a few.
It is the squared Hellinger distance for α = 0. The
KL-divergence and its reciprocal are obtained in the
limit of α → ±1. See Refs. [21,22,26] for the α-
structure.

2.3.3 f -divergence of positive measures

We now extend the f -divergence to the space of positive
measures Mn over X = {x1, . . . , xn}, whose points are
given by the coordinates z = (z1, . . . , zn), zi > 0. Here,
zi is the mass (measure) of xi where the total mass

∑
zi

is positive and arbitrary. In many applications, z is
a non-negative array, and we can extend it to a non-
negative double array z = (zij), etc., that is, matrices
and tensors. We first derive an f -divergence in Mn: For

two positive measures z and y, an f -divergence is given
by

Df [z : y] =
∑

zif

(
yi
zi

)
, (45)

where f is a standard convex function. It should be
noted that an f -divergence is no more invariant under
the transformation from f(u) to

fc(u) = f(u) − c(u− 1). (46)

Hence, it is absolutely necessary to use a standard f in
the case of Mn, because the conditions of divergence are
violated otherwise.

Among all f -divergences, the α divergence [1,21,22] is
given by

Dα[z : y] =
∑

zifα

(
yi
zi

)
, (47)

where

fα(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
1 − α2

(
1 − u

1+α
2

)
− 2

1 − α
(u− 1), α �= ±1,

u logu− (u − 1), α = 1,

− logu+ (u − 1), α = −1,
(48)

and plays a special role in Mn. Here, we use a simple
power function u(1+α)/2, changing it by adding a lin-
ear and a constant term to become the standard convex
function fα(u). It includes the logarithm as a limiting
case.

The α-divergence is explicitly given in the following
form [1,21,22]:

Dα[z : y] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
1 − α2

∑ (
1 − α

2
zi +

1 + α

2
yi − z

1+α
2

i y
1−α

2
i

)
, α �= ±1,

∑(
zi − yi + yi log

yi
zi

)
, α = 1,

∑(
yi − zi + zi log

zi
yi

)
, α = −1.

(49)

2.4 Flat divergence: Bregman divergence

A divergence D[z : w] gives a Riemannian metric gij by
(13), and a pair of affine connections by (16), (17). When
(20) holds, the manifold is flat. We study divergence
functions which give flat structure in this subsection. In
this case, coordinate system z is flat, that is affine, al-
though the metric gij(z) is not Euclidean. When z is
affine, all the coordinate curves are regarded as straight
lines, that is, geodesics. Here, we separate two concepts,
flatness and metric. Mathematically speaking, we use
an affine connection Γijk to define flatness, which is not
necessarily derived from the metric gij . Note that the
Levi-Civita affine connection is derived from the met-

ric in Riemannian geometry, but our approach is more
general.

2.4.1 Convex function

We show in this subsection that a dually flat geometry
is derived from a divergence due to a convex function in
terms of the Bregman divergence [3]. Conversely a du-
ally flat manifold always has a convex function to define
its geometry. The divergence derived from it is called
the canonical divergence of a dually flat manifold [1].

Let ψ(z) be a strictly convex differentiable function.
Then, the linear hyperplane tangent to the graph

y = ψ(z) (50)
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at z0 is

y = ∇ψ (z0) · (z − z0) + ψ (z0) , (51)

and is always below the graph y = ψ(z) (Fig. 4). Here,
∇ψ is the gradient,

∇ψ =
(

∂

∂z1
ψ(z), . . . ,

∂

∂zn
ψ(z)

)
. (52)

The difference of ψ(z) and the tangent hyperplane is

Dψ [z : z0] = ψ(z) − ψ (z0) −∇ψ (z0) · (z − z0) � 0.
(53)

See Fig. 4. This is called the Bregman divergence in-
duced by ψ(z).

Fig. 4 Bregman divergence due to convex function

This satisfies the conditions of a divergence. The in-
duced Riemannian metric is

gij(z) =
∂2

∂zi∂zj
ψ(z), (54)

and the coefficients of the affine connection vanish luck-
ily,

Γijk(z) = 0. (55)

Therefore, z is an affine coordinate system, and a
geodesic is always written as the linear form

z(t) = at+ b (56)

with parameter t and constant vectors a and b (see Ref.
[27]).

2.4.2 Dual structure

In order to give a dual description related to a convex
function ψ(z), let us define its gradient,

z∗ = ∇ψ(z). (57)

This is the Legendre transformation, and the correspon-
dence between z and z∗ is one-to-one. Hence, z∗ is
regarded as another (nonlinear) coordinate system of S.
In order to describe the geometry of S in terms of the
dual coordinate system z∗, we search for a dual convex

function ψ∗ (z∗). We can obtain a dual potential func-
tion by

ψ∗ (z∗) = max
z

{z · z∗ − ψ(z)} , (58)

which is convex in z∗. The two coordinate systems are
dual, since the pair z and z∗ satisfies the following rela-
tion:

ψ(z) + ψ∗ (z∗) − z · z∗ = 0. (59)

The inverse transformation is given by

z = ∇ψ∗ (z∗) . (60)

We can define the Bregman divergence Dψ∗ [z∗ : w∗]
by using ψ∗ (z∗). However, it is easy to prove

Dψ∗ [z∗ : w∗] = Dψ [w : z] . (61)

Hence, they are essentially the same, that is the same
when w and z are interchanged. It is enough to use
only one common divergence.

By simple calculations, we see that the Bregman di-
vergence can be rewritten in the dual form as

D[z : w] = ψ(z) + ψ∗ (w∗) − z · w∗. (62)

We have thus two coordinate systems z and z∗ of S.
They define two flat structures such that a curve with
parameter t,

z(t) = ta + b, (63)

is a ψ-geodesic, and

z∗(t) = tc∗ + d∗ (64)

is a ψ∗-geodesic, where a, b, c∗ and d∗ are constants.
A Riemannian metric is defined by two metric tensors

G = (gij) and G∗ =
(
g∗ij

)
,

gij =
∂2

∂zi∂zj
ψ(z), (65)

g∗ij =
∂2

∂z∗i ∂z
∗
j

ψ∗ (z∗) , (66)

in the two coordinate systems, and they are mutual in-
verses, G∗ = G−1 [1,27]. Because the squared local dis-
tance of two nearby points z and z + dz is given by

D [z : z + dz] =
1
2

∑
gij(z)dzidzj, (67)

=
1
2

∑
g∗ij (z∗) dz∗i dz

∗
j , (68)

they give the same Riemannian distance. However, the
two geodesics are different, which are also different from
the Riemannian geodesic derived from the Riemannian
metric. Hence, the minimality of the curve length does
not hold for ψ- and ψ∗-geodesics.

Two geodesic curves (63) and (64) intersect at t = 0,
when b = d∗. In such a case, they are orthogonal if
their tangent vectors are orthogonal in the sense of the
Riemannian metric. The orthogonality condition can be
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represented in a simple form in terms of the two dual
coordinates as

〈a, b∗〉 =
∑

aib
∗
i = 0. (69)

2.4.3 Pythagorean theorem and projection theorem

A generalized Pythagorean theorem and projection the-
orem hold for a dually flat space [1]. They are highlights
of a dually flat manifold.

Generalized Pythagorean Theorem. Let r, s, q

be three points in S such that the ψ∗-geodesic connect-
ing r and s is orthogonal to the ψ-geodesic connecting
s and q (Fig. 5). Then,

Dψ[r : s] +Dψ[s : q] = Dψ[r : q]. (70)

Fig. 5 Pythagorean theorem

When S is a Euclidean space with

D[r : s] =
1
2

∑
(ri − si)

2 , (71)

(70) is the Pythagorean theorem itself.
Now, we state the projection theorem. Let M be a

submanifold of S (Fig. 6). Given p ∈ S, a point q ∈ M

is said to be the ψ-projection (ψ∗-projection) of p to M
when the ψ-geodesic (ψ∗-geodesic) connecting p and q is
orthogonal to M with respect to the Riemannian metric
gij .

Fig. 6 Projection of p to M

Projection Theorem. Given p ∈ S, the minimizer
r∗ of Dψ(p, r), r ∈ M , is the ψ∗-projection of p to
M , and the minimizer r∗∗ of Dψ(r,p), r ∈ M , is the
ψ-projection of p to M .

The theorem is useful in various optimization prob-
lems searching for the closest point r ∈ M to a given
p.

2.4.4 Decomposable convex function and
generalization

Let U(z) be a convex function of a scalar z. Then, we
have a simple convex function of z,

ψ(z) =
∑

U (zi) . (72)

The dual of U is given by

U∗ (z∗) = max
z

{zz∗ − U(z)} , (73)

and the dual coordinates are

z∗i = U ′ (zi) . (74)

The dual convex function is

ψ∗ (z∗) =
∑

U∗ (z∗i ) . (75)

The ψ-divergence due to U between z and w is decom-
posable and given by the sum of components [28–30],

Dψ[z : w] =
∑

{U (zi) + U∗ (w∗
i ) − ziw

∗
i } . (76)

We have discussed the flat structure given by a convex
function due to U(z). We now consider a more general
case by using a nonlinear rescaling. Let us define by
r = k(z) a nonlinear scale r in the z-axis, where k is a
monotone function. If we have a convex function U(r) of
the induced variable r, there emerges a new dually flat
structure with a new convex function U(r). Given two
functions k(z) and U(r), we can introduce a new dually
flat Riemannian structure in S, where the flat coordi-
nates are not z but r = k(z). There are infinitely many
such structures depending on the choice of k and U . We
show two typical examples, which give the α-divergence
and β-divergence [22] in later sections. Both of them
use a power function of the type uq including the log
and exponential function as the limiting cases.

2.5 Invariant flat structure of S

This section focuses on the manifolds which are equipped
with both invariant and flat geometrical structure.

2.5.1 Exponential family of probability distributions

The following type of probability distributions of ran-
dom variable y parameterized by θ,

p(y,θ) = exp
{∑

θisi(y) − ψ(θ)
}
, (77)
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under a certain measure μ(y) on the space Y = {y} is
called an exponential family. We denote it now by S.
We introduce random variables x = (xi),

xi = si(y), (78)

and rewrite (77) in the standard form

p(x,θ) = exp
{∑

θixi − ψ(θ)
}
, (79)

where exp {−ψ(θ)} is the normalization factor satisfying

ψ(θ) = log
∫

exp
{∑

θixi

}
dμ(x). (80)

This is called the free energy in the physics community
and is a convex function.

We first give a few examples of exponential families.
1. Gaussian distributions SG

A Gaussian distribution is given by

p (y;μ, σ) =
1√
2πσ

exp
{
− (y − μ)2

2σ2

}
. (81)

Hence, all Gaussian distributions form a two-
dimensional manifold SG, where (μ, σ) plays the role of
a coordinate system. Let us introduce new variables

x1 = y, (82)

x2 = y2, (83)

θ1 =
μ

2σ2
, (84)

θ2 = − 1
2σ2

. (85)

Then, (81) can be rewritten in the standard form

p(x,θ) = exp {θ1x1 + θ2x2 − ψ(θ)} , (86)

where

ψ(θ) =
μ2

2σ2
− log

(√
2πσ

)
. (87)

Here, θ = (θ1, θ2) is a new coordinate system of SG,
called the natural or canonical coordinate system.

2. Discrete distributions Sn
Let y be a random variable taking values on

{0, 1, . . . , n}. By defining

xi = δi(y), i = 1, 2, . . . , n, (88)

and
θi = log

pi
p0
, (89)

(4) is rewritten in the standard form

p(x,θ) = exp
{∑

θixi − ψ(θ)
}
, (90)

where
ψ(θ) = − log p0. (91)

From
p0 = 1 −

∑
pi = 1 − p0

∑
eθi, (92)

we have
ψ(θ) = log

(
1 +

∑
eθi

)
. (93)

2.5.2 Geometry of exponential family

The Fisher information matrix is defined in a manifold
of probability distributions by

gij(θ) = E
[
∂

∂θi
log p(x,θ)

∂

∂θj
p(x,θ)

]
, (94)

where E is expectation with respect to p(x,θ). When S
is an exponential family (79), it is calculated as

gij(θ) =
∂2

∂θi∂θj
ψ(θ). (95)

This is a positive-definite matrix and ψ(θ) is a convex
function. Hence, this is the Riemannian metric induced
from a convex function ψ.

We can also prove that the invariant Riemannian met-
ric derived from an f -divergence is exactly the same as
the Fisher metric for any standard convex function f . It
is an invariant metric.

A geometry is induced to S = {p(x,θ)} through the
convex function ψ(θ). Here, θ is an affine coordinate
system, which we call e-affine or e-flat coordinates, “e”
representing the exponential structure of (79). By the
Legendre transformation of ψ, we have the dual coordi-
nates (we denote them by η instead of θ∗),

η = ∇ψ(θ). (96)

By calculating the expectation of xi, we have

E [xi] = ηi =
∂

∂θi
ψ(θ). (97)

By this reason, the dual parameters η = (ηi) are called
the expectation parameters of an exponential family. We
call η the m-affine or m-flat coordinates, where “m” im-
plying the mixture structure [1].

The dual convex function is given by the negative of
entropy

ψ∗(η) =
∫
p (x,θ(η)) log p (x,θ(η)) dx, (98)

where p(x,θ(η)) is considered as a function of η. Then,
the Bregman divergence is

D [θ1 : θ2] = ψ (θ1) + ψ∗ (η2) − θ1 · η2, (99)

where ηi is the dual coordinates of θi, i = 1, 2.
We show that manifolds of exponential families have

both invariant and flat geometrical structure. However,
they are not unique and it is possible to introduce both
invariant flat structure to a mixture family of probability
distributions.
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Theorem 2 The Bregman divergence is the
Kullback-Leibler divergence given by

KL [p (x,θ1) : p (x,θ2)] =
∫
p (x,θ1) log

p (x,θ1)
p (x,θ2)

dx.

(100)
This shows that the KL-divergence is the canonical

divergence derived from the dual flat structure of ψ(θ).
Moreover, it is proved that the KL-divergence is the
unique divergence belonging to both the f -divergence
and Bregman divergence classes for manifolds of proba-
bility distributions.

For a manifold of positive measures, there are diver-
gences other than the KL-divergence, which are invari-
ant and dually flat, that is, belonging to the classes f -
divergences and Bregman divergences at the same time.
See the next subsection.

2.5.3 Invariant and flat structure in manifold of
positive measures

We consider a manifold M of positive arrays z, zi > 0,
where

∑
zi can be arbitrary. We define an invariant and

flat structure in M . Here, z is a coordinate system, and
consider the f -divergence given by

Df [z : w] =
n∑
i=1

zif

(
wi
zi

)
. (101)

We now introduce a new coordinate system defined by

r
(α)
i = kα (zi) , (102)

where the α-representation of zi is given by

kα(u) =

⎧⎨
⎩

2
1 − α

(
u

1−α
2 − 1

)
, α �= 1,

log u, α = 1.
(103)

Then, the α-coordinates rα of M are defined by

r
(α)
i = kα (zi) . (104)

We use a convex function Uα(r) of r defined by

Uα(r) =
2

1 + α
k−1
α (r). (105)

In terms of z, this is a linear function,

Uα {r(z)} =
2

1 + α
z, (106)

which is not a (strictly) convex function of z but is con-
vex with respect to r. The α-potential function defined
by

ψα(r) =
2

1 + α

∑
k−1
α (ri)

=
2

1 + α

∑ (
1 +

1 − α

2
ri

) 2
1−α

(107)

is a convex function of r.
The dual potential is simply given by

ψ∗
α (r∗) = ψ−α (r∗) , (108)

and the dual affine coordinates are

r∗(α) = r(−α) = k−α(z). (109)

We can then prove the following theorem.
Theorem 3 The α-divergence of M is the Bregman
divergence derived from the α-representation kα and the
linear function Uα of z.

Proof We have the Bregman divergence between
r = k(z) and s = k(y) based on ψα as

Dα[r : s] = ψα(r) + ψ−α (s∗) − r · s∗, (110)

where s∗ is the dual of s. By substituting (107), (108)
and (109) in (110), we see that Dα[r(z) : s(y)] is equal
to the α-divergence defined in (49).

This proves that the α-divergence for any α belongs to
the intersection of the classes of f -divergences and Breg-
man divergences in M . Hence, it possesses information
monotonicity and the induced geometry is dually flat at
the same time. However, the constraint

∑
zi = 1 is not

linear in the flat coordinates rα or r−α except for the
case α = ±1. Hence, although M is flat for any α, the
manifold P of probability distributions is not dually flat
except for α = ±1, and it is a curved submanifold in M .
Hence, the α-divergences (α �= ±1) do not belong to the
class of Bregman divergences in P . This proves that the
KL-divergence belongs to both classes of divergences in
P and is unique.

The α-divergences are used in many applications, e.g.,
Refs. [21,25,26].
Theorem 4 The α-divergence is the unique class of
divergences sitting at the intersection of the f -divergence
and Bregman divergence classes.

Proof The f -divergence is of the form (45) and the
decomposable Bregman divergence is of the form

D[z : y] =
∑

Ũ (zi) +
∑

Ũ∗ (yi) −
∑

ri (zi) r∗i (yi) ,
(111)

where
Ũ(z) = U(k(z)), (112)

and so on. When they are equal, we have f , r, and r∗

that satisfy

zf
(y
z

)
= r(z)r∗(y) (113)

except for additive terms depending only on z or y. Dif-
ferentiating the above by y, we get

f ′
(y
z

)
= r(z)r∗

′
(y). (114)
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By putting x = y, y = 1/z, we get

f ′(xy) = r

(
1
y

)
r∗

′
(x). (115)

Hence, by putting h(u) = log f ′(u), we have

h(xy) = s(x) + t(y), (116)

where s(x) = log r∗
′
(x), t(y) = r(1/y). By differenti-

ating the above equation with respect to x and putting
x = 1, we get

h′(y) =
c

y
. (117)

This proves that f is of the form

f(u) =

⎧⎪⎪⎨
⎪⎪⎩
cu

1+α
2 , α �= ±1,

cu logu, α = 1,

c log u, α = −1.

(118)

By changing the above into the standard form, we arrive
at the α-divergence.

2.6 β-divergence

It is useful to introduce a family of β-divergences, which
are not invariant but dually flat, having the structure of
Bregman divergences. This is used in the field of ma-
chine learning and statistics [28,29].

Use z itself as a coordinate system of M ; that is, the
representation function is k(z) = z. The β-divergence
[30] is induced by the potential function

Uβ(z) =

⎧⎨
⎩

1
β + 1

(1 + βz)
β+1

β , β > 0,

exp z, β = 0.
(119)

The β-divergence is thus written as

Dβ[z : y] =

⎧⎪⎪⎨
⎪⎪⎩

1
β + 1

∑(
yβ+1
i − zβ+1

i

)
− 1
β

∑
zβi (yi − zi) , β > 0,

∑ (
zi log

zi
yi

+ yi − zi

)
, β = 0.

(120)

It is the KL-divergence when β = 0, but it is different
from the α-divergence when β > 0.

Minami and Eguchi [30] demonstrated that statisti-
cal inference based on the β-divergence (β > 0) is ro-
bust. Such idea has been applied to machine learning in
Murata et al. [29]. The β-divergence induces a dually
flat structure in M . Since its flat coordinates are z, the
restriction ∑

zi = 1 (121)

is a linear constraint. Hence, the manifold P of the
probability distributions is also dually flat, where z,∑
zi = 1, is its flat coordinates. The dual flat coor-

dinates are

z∗i =

{
(1 + βzi)

1
β , β �= 0,

exp zi, β = 0,
(122)

depending on β.

3 Information geometry of alternative
minimization

Given a divergence function D[z : w] on a space S, we
encounter the problem of minimizing D[z : w] under the
constraints that z belongs to a submanifold M ⊂ S and
w belongs to another submanifold E ⊂ S. A typical
example is the EM algorithm [6], where M represents
a manifold of partially observed data and E represents

a statistical model to which the true distribution is as-
sumed to belong [8]. The EM algorithm is popular in
statistics, machine learning and others [7,31,32].

3.1 Geometry of alternative minimization

When a divergence function D[z : w] is given in a man-
ifold S, we consider two submanifolds M and E, where
we assume z ∈ M and w ∈ E. The divergence of two
submanifolds M and E is given by

D[M : E] = min
z∈M,w∈E

D[z : w] = D [z∗ : w∗] , (123)

where z∗ ∈ M and w∗ ∈ E are a pair of the points
that attain the minimum. When M and E intersect,
D[M : E] = 0, and z∗ = w∗ lies at the intersection.

An alternative minimization is a procedure to calcu-
late (z∗,w∗) iteratively (see Fig. 7):
1) Take an initial point z0 ∈M for t = 0. Repeat steps

2 and 3 for t = 0, 1, 2, . . . until convergence.
2) Calculate

wt = argmin
w∈E

D
[
zt : w

]
. (124)

3) Calculate

zt+1 = arg min
z∈M

D
[
z : wt+1

]
. (125)

When the direct minimization with respect to one
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Fig. 7 Alternative minimization

variable is computationally difficult, we may use a decre-
mental procedure:

wt+1 = wt − ηt∇wD
[
zt : wt

]
, (126)

zt+1 = zt − ηt∇zD
[
zt+1 : wt

]
, (127)

where ηt is a learning constant and ∇w and ∇z are gra-
dients with respect to w and z, respectively.

It should also be noted that the natural gradient (Rie-
mannian gradient of D) [33] is given by

∇̃zD[z : w] = G−1(z)
∂

∂z
D[z : w], (128)

where

G =
∂2

∂z∂z
D[z : w]|w=z. (129)

Hence, this becomes the Newton-type method.

3.2 Alternative projections

When D[z : w] is a Bregman divergence derived from a
convex function ψ, the space S is equipped with a dually
flat structure. Given w, the minimization of D[z : w]
with respect to z ∈M is given by the ψ-projection of w

to M ,

arg min
z

D[z : w] =
∏(ψ)

M
w. (130)

This is unique when M is ψ∗-flat. On the other hand,
given z, the minimization with respect to w is given by
the ψ∗-projection,

arg min
w

D[z : w] =
∏(ψ∗)

M
z. (131)

This is unique when M is ψ-flat.

3.3 EM algorithm

Let us consider a statistical model p(z; ξ) with random
variables z, parameterized by ξ. The set of all such dis-
tributions E = {p(z; ξ)} forms a submanifold included
in the entire manifold of probability distributions

S = {p(z)} . (132)

Assume that vector random variable z is divided into
two parts z = (h,x) and the values of x are observed
but h are not. Non-observed random variables h = (hi)
are called missing data or hidden variables. It is possible
to eliminate unobservable h by summing up p(h,x) over
all h, and we have a new statistical model,

p̃(x, ξ) =
∑
h

p(h,x, ξ), (133)

Ẽ = {p̃(x; ξ)} . (134)

This p̃(x, ξ) is the marginal distribution of p(h,x; ξ).
Based on observed x, we can estimate ξ̂, for example,
by maximizing the likelihood,

ξ̂ = arg max
ξ

p̃(x, ξ). (135)

However, in many problems p(z; ξ) has a simple form
while p̃(x; ξ) does not. The marginal distribution p̃(x, ξ)
has a complicated form and it is computationally diffi-
cult to estimate ξ from x. It is much easier to calculate
ξ̂ when z is observed. The EM algorithm is a powerful
method used in such a case [6].

The EM algorithm consists of iterative procedures to
use values of the hidden variables h guessed from ob-
served x and the current estimator ξ̂. Let us assume
that n iid data zt = (ht,xt), t = 1, . . . , n, are generated
from a distribution p(z, ξ). If data ht are not missing,
we have the following empirical distribution:

p̄(h,x
∣∣h̄, x̄ ) =

1
n

∑
t

δ (x − xt) δ (h − ht) , (136)

where h̄ and x̄ represent the sets of data (h1,h2, . . .)
and (x1,x2, . . .) and δ is the delta function. When S

is an exponential family, p̄(h,x
∣∣h̄, x̄ ) is the distribution

given by the sufficient statistics composed of
(
h̄, x̄

)
.

The hidden variables are not observed in reality, and
the observed part x̄ cannot determine the empirical dis-
tribution p̄(x,y) (136). To overcome this difficulty, let
us use a conditional probability q(h|x) of h when x is
observed. We then have

p(h,x) = q(h|x)p(x). (137)

In the present case, the observed part x̄ determines the
empirical distribution p̄(x),

p̄(x) =
1
n

∑
t

δ (x − xt) , (138)

but the conditional part q(h|x) remains unknown. Tak-
ing this into account, we define a submanifold based on
the observed data x̄,

M (x̄) = {p(h,x) |p(h,x) = q(h|x)p̄(x)} , (139)
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where q(h|x) is arbitrary.
In the observable case, we have an empirical distribu-

tion p̄(h,x) ∈ S from the observation, which does not
usually belong to our model E. The maximum likeli-
hood estimator ξ̂ is the point in E that minimizes the
KL-divergence from p̄ to E,

ξ̂ = argmin KL [p̄(h,x) : p(x, ξ)] . (140)

In the present case, we do not know p̄ but know M (x̄)
which includes the unknown p̄ (h,x). Hence, we search
for ξ̂ ∈ E and q̂(h|x) ∈M (x̄) that minimizes

KL[M : E]. (141)

The pair of minimizers gives the points which define the
divergence of two submanifolds M (x̄) and E. The max-
imum likelihood estimator is a minimizer of (141).

Given partial observations x̄, the EM algorithm con-
sists of the following interactive procedures, t = 0, 1, . . ..
We begin with an arbitrary initial guess ξ0 and q0(h|x),
and construct a candidate pt (h,x) = qt(h|x)p̄ (x) ∈
M = M (x̄) for t = 0, 1, 2, . . .. We search for the next
guess ξt+1 that minimizes KL [pt (h,x) : p (h,x, ξ)].
This is the same as maximizing the pseudo-log-likelihood

Lt(ξ) =
∑
h,xi

pt (h,xi) log p (h,xi; ξ) . (142)

This is called the M -step, that is the m-projection of
pt (h,x) ∈ M to E. Let the maximum value be ξt+1,
which is the estimator at t+ 1.

We then search for the next candidate pt (h,x) ∈ M

that minimizes KL
[
p (h,x) : p

(
h,x, ξt+1

)]
. The min-

imizer is denoted by pt+1 (h,x). This distribution is
used to calculate the expectation of the new log likeli-
hood function Lt+1(ξ). Hence, this is called the E-step.
The following theorem [8] plays a fundamental role in
calculating the expectation with respect to pt(h,x).
Theorem 5 Along the e-geodesic of projecting
p (h,x; ξt) to M (x̄), the conditional probability dis-
tribution qt(h|x) is kept invariant. Hence, by the e-
projection of p (h,x; ξt) to M , the resultant conditional
distribution is given by

qt (h |xi ) = p (h |xi; ξt ) . (143)

This shows that the e-projection is given by

qt(h,x) = p (h |x; ξt ) δ (x − x̄) . (144)

Hence, the theorem implies that the next expected log
likelihood is calculated by

Lt+1(ξ) =
∑
h,xi

p
(
h

∣∣xi; ξt+1

)
log p (h,xi, ξ) , (145)

which is to be maximized.
The EM algorithm is formally described as follows.

1) Begin with an arbitrary initial guess ξ0 at t = 0, and
repeat the E-step and M -step for t = 0, 1, 2, . . ., until
convergence.

2) E-step: Use the e-projection of p (h,x; ξt) to M (x̄)
to obtain

qt(h|x) = p (h |x; ξt ) , (146)

and calculate the conditional expectation

Lt(ξ) =
∑
h,xi

p (h |xi; ξt ) log p (h,xi; ξ) . (147)

3) M -step: Calculate the maximizer of Lt(ξ), that is
the m-projection of pt(h,x) to E,

ξt+1 = arg maxLt(ξ). (148)

4 Information geometry of Ying-Yang
machine

4.1 Recognition model and generating model

We study the Ying-Yang mechanism proposed by Xu [9–
14] from the information geometry point of view. Let us
consider a hierarchical stochastic system, which consists
of two vector random variables x and y. Let x be a lower
level random variable representing a primitive descrip-
tion of the world, while let y be a higher level random
variable representing a more conceptual or elaborated
description. Obviously, x and y are closely correlated.
One may consider them as information representations
in the brain. Sensory information activates neurons in
a primitive sensory area of the brain, and its firing pat-
tern is represented by x. Components xi of x can be
binary variables taking values 0 and 1, or analog val-
ues representing firing rates of neurons. The conceptual
information activates a higher-order area of the brain,
with a firing pattern y.

A probability distribution p(x) of x reflects the in-
formation structure of the outer world. When x is ob-
served, the brain processes this primitive information
and activates a higher-order area to recognize its higher-
order representation y. Its mechanism is represented
by a conditional probability distribution p(y|x). This
is possibly specified by a parameter ξ, in the form of
p(y|x; ξ). Then, the joint distribution is given by

p(y,x; ξ) = p(y|x; ξ)p(x). (149)

The parameters ξ would be synaptic weights of neurons
to generate pattern y. When we receive information x,
it is transformed to higher-order conceptual information
y. This is the bottom-up process and we call this a
recognition model.

Our brain can work in the reverse way. From concep-
tual information pattern y, a primitive pattern x will
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be generated by the top-down neural mechanism. It is
represented by a conditional probability q(x|y), which
will be parameterized by ζ, as q(x|y; ζ). Here, ζ will
represent the top-down neural mechanism. When the
probability distribution of y is q(y; ζ), the entire process
is represented by another joint probability distribution

q(y,x; ζ) = q(y; ζ)q(x|y; ζ). (150)

We have thus two stochastic mechanisms p(y,x; ξ)
and q(y,x; ζ). Let us denoted by S the set of all the
joint probability distributions of x and y. The recogni-
tion model

MR = {p(y,x; ξ)} (151)

forms its submanifold, and the generative model

MG = {q(y,x; ζ)} (152)

forms another submanifold.
This type of information mechanism is proposed by Xu

[9,14], and named the Ying-Yang machine. The Yang
machine (male machine) is responsible for the recog-
nition model {p(y,x; ξ)} and the Ying machine (fe-
male machine) is responsible for the generative model
{q(y,x; ζ)}. These two models are different, but should
be put in harmony (Ying-Yang harmony).

4.2 Ying-Yang harmony

When a divergence function D [p(x,y) : q(x,y)] is de-
fined in S, we have the divergence between the two mod-
els MR and MG,

D [MR : MG] = min
ξ,ζ

D [p(y,x; ξ) : q(y,x; ζ)] . (153)

When MR and MG intersect,

D [MR : MG] = 0 (154)

at the intersecting points. However, they do not inter-
sect in general,

MR ∩MG = φ. (155)

It is desirable that the recognition and generating mod-
els are closely related. The minimizer of D gives such a
harmonized pair called the Ying-Yang harmony [14].

A typical divergence is the Kullback-Leibler diver-
gence KL[p : q], which has merits of being invariant
and generating dually flat geometrical structure. In this
case, we can define the two projections, e-projection and
m-projection. Let p∗(y,x) and q∗(y,x) be the pair of
minimizers of D[p : q]. Then, the m-projection of q∗ to
MR is p∗, ∏(m)

MR

q∗ = p∗, (156)

and the e-projection of p∗ to MG is q∗,∏(e)

MG

p∗ = q∗. (157)

These relations hold for any dually flat divergence, gen-
erated by a convex function ψ over S.

An iterative algorithm to realize the Ying-Yang har-
mony is, for t = 0, 1, 2, . . .,

pt+1 =
∏(m)

MR

qt, (158)

qt+1 =
∏(e)

MG

pt+1. (159)

This is a typical alternative minimization algorithm.

4.3 Various models of Ying-Yang structure

A Yang machine receives signal x from the outside, and
processes it by generating a higher-order signal y, which
is stochastically generated by using the conditional prob-
ability p(y|x, ξ). The performance of the machine is
improved by learning, where the parameter ξ is mod-
ified step-by-step. We give two typical examples of
information processing; pattern classification and self-
organization.

Learning of a pattern classifier is a supervised learning
process, where teacher signal z is given.

1. pattern classifier
Let C = {C1, . . . , Cm} denotes the set of categories,

and each x belongs to one of them. Given an x, a ma-
chine processes it and gives an answer yκ, where yκ,
κ = 1, . . . ,m, correspond to one of the categories. In
other words, yκ is a pattern representing Cκ. The out-
put y is generated from x:

y = f (x, ξ) + n, (160)

where n is a zero-mean Gaussian noise with covariance
matrix σ2I, I being the identity matrix. Then, the con-
ditional distribution is given by

p(y|x; ξ) = c exp
{
− 1

2σ2
|y − f(x, ξ)|2

}
, (161)

where c is the normalization constant.
The function f (x, ξ) is specified by a number of pa-

rameters ξ. In the case of multilayer perceptron, it is
given by

yi =
∑
j

vijϕ

{∑
k

wjkxk − hj

}
. (162)

Here, wjk is the synaptic weight from input xk to the
jth hidden unit, hj is its threshold, and ϕ is a sigmoidal
function. The output of the jth hidden unit is hence
ϕ (

∑
wjkxk − hj) and is connected linearly to the ith

output unit with synaptic weight vij .
In the case of supervised learning, a teacher signal yκ

representing the category Cκ is given, when the input
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pattern is x ∈ Cκ. Since the current output of the Yang
machine is f (x, ξ), the error of the machine is

l (ξ,x,yκ) =
1
2
|yκ − f(x, ξ)|2 . (163)

Therefore, the stochastic gradient learning rule modifies
the current ξ to ξ + Δξ by

Δξ = −ε ∂l
∂ξ
, (164)

where ε is the learning constant and ∇l =(
∂l

∂ξ1
, . . . ,

∂l

∂ξm

)
is the gradient of l with respect to ξ.

Since the space of ξ is Riemannian, the natural gradient
learning rule [33] is given by

Δξ = −εG−1∇l, (165)

where G is the Fisher information matrix derived from
the conditional distribution.

2. Non-supervised learning and clustering
When signals x in the outside world are divided into

a number of clusters, it is expected that Yang machine
reproduces such a clustering structure. An example of
clustered signals is the Gaussian mixture

p(x) =
m∑
κ=1

wκ exp
{
− 1

2σ2
|x − yκ|2

}
, (166)

where yκ is the center of cluster Cκ. Given x, one can
see which cluster it belongs to by calculating the output
y = f(x, ξ) + n. Here, y is an inner representation of
the clusters and its calculation is controlled by ξ. There
are a number of clustering algorithms. See, e.g., Ref. [9].
We can use them to modify ξ. Since no teacher signals
exist, this is unsupervised learning.

Another typical non-supervised learning is imple-
mented by the self-organization model given by Amari
and Takeuchi [34].

The role of the Ying machine is to generate a pat-
tern x̃ from a conceptual information pattern y. Since
the mechanism of generating x̃ is governed by the con-
ditional probability q(x|y; ζ), its parameter is modified
to fit well the corresponding Yang machine p(y|x, ξ).
As ξ changes by learning, ζ changes correspondingly.
The Ying machine can be used to improve the primi-
tive representation x by filling missing information and
removing noise by using x̃.

4.4 Bayesian Ying-Yang machine

Let us consider joint probability distributions p(x,y) =
q(x,y) which are equal. Here, the Ying machine and the
Yang machine are identical, and hence the machines are
in perfect matching. Now consider y as the parameters

to specify the distribution of x, and we have a parame-
terized statistical model

MYing = {p(x|y)} , (167)

generated by the Ying mechanism. Here, the parameter
y is a random variable, and hence the Bayesian frame-
work is introduced. The prior probability distribution of
y is

p(y) =
∫
p(x,y)dx. (168)

The Bayesian framework to estimate y from observed
x, or more rigorously, a number of independent obser-
vations, x1, . . . ,xn, is as follows. Let x̄ = (x1, . . . ,xn)
be observed data and

p (x̄|y) =
n∏
i=1

p (xi|y) . (169)

The prior distribution of y is p(y), but after observing
x, the posterior distribution is

p(y|x̄) =
p(x̄,y)∫
p(x̄,y)dy

. (170)

This is the Yang mechanism, and the

ŷ = arg max
y

p(y|x̄) (171)

is the Bayesian posterior estimator.
A full exponential family p(x,y) = exp {∑ yixi+

k(x) + w(y) − ψ(x,y)} is an interesting special case.
Here, y is the natural parameter for the exponential fam-
ily of distributions,

q(x|y) = exp
{∑

yixi + k(x) − ψ(y)
}
. (172)

The family of distributions MYing = {q(x|y)} specified
by parameters y is again an exponential family. It has
a dually flat Riemannian structure.

Dually to the above, the family of the posterior dis-
tributions form a manifold MYang = {p(y|x)}, consisting
of

p(y|x) = exp
{∑

xiyi + w(y) − ψ∗(y)
}
. (173)

It is again an exponential family, where x (x̄ =
∑

xi/n)
is the natural parameter. It defines a dually flat Rie-
mannian structure, too.

When the probability distribution p(y) of the Yang
machine includes a hyper parameter p(y) = p(y, ζ), we
have a family q(x,y; ζ). It is possible that the Yang
machine have a different parametric family p(x,y; ξ).
Then, we need to discuss the Ying mechanism and the
Yang mechanism separately, keeping the Ying-Yang har-
mony.
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This opens a new perspective to the Bayesian frame-
work to be studied in future from the Ying-Yang stand-
point. Information geometry gives a useful tool for ana-
lyzing it.

5 Geometry of belief propagation

A direct application of information geometry to machine
learning is studied here. When a number of correlated
random variables z1, . . . , zN exist, we need to treat their
joint probability distribution q (z1, . . . , zN). Here, we as-
sume for simplicity’s sake that zi is binary, taking values
1 and −1. Among all variables zi, some are observed
and the others are not. Therefore, zi are divided into
two parts, {x1, . . . , xn} and {yn+1, . . . , yN}, where the
values of y = (yn+1, . . . , yN ) are observed. Our prob-
lem is to estimate the values of unobserved variables
x = (x1, . . . , xn) based on observed y. This is a typical
problem of stochastic inference. We use the conditional
probability distribution q(x|y) for estimating x.

The graphical model or the Bayesian network is used
to represent stochastic interactions among random vari-
ables [35]. In order to estimate x, the belief propagation
(BP) algorithm [15] uses a graphical model or a Bayesian
network, and it provides a powerful algorithm in the
field of artificial intelligence. However, its performance
is not clear when the underlying graph has loopy struc-
ture. The present section studies this problem by using
information geometry due to Ikeda, Tanaka and Amari
[16,17]. The CCCP algorithm [36,37] is another power-
ful procedure for finding the BP solution. Its geometry
is also studied.

5.1 Stochastic inference

We use a conditional probability q(x|y) to estimate the
values of x. Since y is observed and fixed, we hereafter
denote it simply by q(x), suppressing observed variables
y, but it always means q(x|y), depending on y.

We have two estimators of x. One is the maximum
likelihood estimator that maximizes q(x):

x̂mle = argmax
x

q(x). (174)

However, calculation of x̂mle is computationally difficult
when n is large, because we need to search for the max-
imum among 2n candidates x’s. Another estimator x̃

tries to minimize the expected number of errors of n
component random variables x̃1, . . . , x̃n. When q(x) is
known, the expectation of xi is

E [xi] =
∑

x

xiq(x) =
∑

xiqi (xi) . (175)

This depends only on the marginal distribution of xi,

qi (xi) =
∑′

q (x1, . . . , xn) , (176)

where summation
∑′ is taken over all x1, . . . , xn except

for xi. The expectation is denoted by

ηi = E [xi] = Prob [xi = 1] − Prob [xi = −1]

= qi(1) − qi(−1). (177)

When ηi > 0, Prob [xi = 1] > Prob [xi = −1], so that,
x̃i = 1, otherwise x̃i = −1. Therefore,

x̃i = sgn (ηi) (178)

is the estimator that minimizes the number of errors in
the components of x̃, where

sgn(u) =

{
1, u � 0,

−1, u < 0.
(179)

The marginal distribution qi (xi) is given in terms of
ηi by

Prob {xi = 1} =
1 + ηi

2
. (180)

Therefore, our problem reduces to calculation of ηi, the
expectation of xi. However, exact calculation is compu-
tationally heavy when n is large, because (176) requires
summation over 2n−1 x’s. Physicists use the mean field
approximation for this purpose [38]. The belief propa-
gation is another powerful method of calculating it ap-
proximately by iterative procedures.

5.2 Graphical structure and random Markov structure

Let us consider a general probability distribution p(x).
In the special case where there are no interactions among
x1, . . . , xn, they are independent, and the probability
is written as the product of component distributions
pi (xi). Since we can always write the probabilities, in
the binary case, as

pi(1) =
ehi

ψ
, pi(−1) =

e−hi

ψ
, (181)

where
ψ = ehi + e−hi, (182)

we have
pi (xi) = exp {hixi − ψ (hi)} . (183)

Hence,
p(x) = exp

{∑
hixi − ψ(h)

}
, (184)

where

ψ(h) =
∑

ψ (hi) , (185)

ψi (hi) = log {exp (hi) + exp (−hi)} . (186)

When x1, . . . , xn are not independent but their inter-
actions exist, we denote the interaction among k vari-
ables xi1 , . . . , xik by a product term xi1 · · · · · xik ,

c(x) = xi1 · · · · · xik . (187)
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When there are many interaction terms, p(x) is written
as

p(x) = exp

{∑
i

hixi +
∑
r

srcr(x) − ψ

}
, (188)

where ψ is the normalization factor, cr(x) represents a
monomial interaction term such as

cr(x) = xi1 · · · · · xik , (189)

where r is an index showing a subset {i1, . . . , ik} of in-
dices {1, 2, . . . , n}, k � 2 and sr is the intensity of such
interaction.

When all interactions are pairwise, k = 2, we have
cr(x) = xixj for r = (i, j). To represent the structure
of pairwise interactions, we use a graph G = {N,B},
in which we have n nodes N1, . . . , Nn representing ran-
dom variables x1, . . . , xn and b branches B1, . . . , Bb. A
branch Br connects two nodes Ni and Nj , where r de-
notes the pair (xi, xj) of interaction. G is a non-directed
graph having n nodes and b branches. When a graph has
no loops, it is a tree graph, otherwise, it is a loopy graph.
There are many physical and engineering problems hav-
ing a graphical structure. They are, for example, spin
glass, error-correcting codes, etc.

Interactions are not necessarily pairwise, and there
may exist many interactions among more than two vari-
ables. Hence, we consider a general case (188), where r
includes {i1, . . . , ik}, and b is the number of interactions.
This is an example of the random Markov field, where
each set r = {i1, . . . , ik} forms a clique of the random
graph.

We consider the following statistical model on graph
G or a random Markov field specified by two vector pa-
rameters θ and v,

M = {p(x,θ,v)} , (190)

p(x,θ,v) = exp
{∑

θixi+
∑

vrcr(x) − ψ (θ,v)
}
.

(191)

This is an exponential family, forming a dually flat man-
ifold, where (θ,v) is its e-affine coordinates. Here,
ψ(θ,v) is a convex function from which a dually flat
structure is derived. The model M includes the true
distribution q(x) in (13), i.e.,

q(x) = exp {h · x + s · c(x) − ψ(h, s)} , (192)

which is given by θ = h and v = s = (sr). Our job is to
find

η∗ = Eq [x] , (193)

where expectation Eq is taken with respect to q(x), and
η is the dual (m-affine) coordinates corresponding to θ.

We consider b+1 e-flat submanifolds, M0,M1, . . . ,Mb

in M . M0 is the manifold of independent distributions

given by p0(x,θ) = exp {h · x + θ · x − ψ(θ)}, and its
e-coordinates are θ.

For each branch or clique r, we also consider an e-flat
submanifold Mr,

Mr = {p (x, ζr)} , (194)

p (x, ζr) = exp {h · x + srcr(x) + ζr · x − ψr (ζr)} ,
(195)

where ζr is e-affine coordinates. Note that a distribu-
tion in Mr includes only one nonlinear interaction term
cr(x). Therefore, it is computationally easy to calculate
Er[x] or Prob{xi = 1} with respect to p (x, ζr). All of
M0 and Mr play proper roles for finding Eq[x] of the
target distribution (192).

5.3 m-projection

Let us first consider a special submanifold M0 of inde-
pendent distributions.

We show that the expectation η∗ = Eq[x] is given by
the m-projection of q(x) ∈M to M0 [39,40]. We denote
it by

p̂(x) =
∏

0
q(x). (196)

This is the point in M0 that minimizes the KL-
divergence from q to M0,

p̂(x) = arg min
p∈M0

KL[q : p]. (197)

It is known that p̂ is the point in M0 such that the m-
geodesic connecting q and p̂ is orthogonal to M0, and is
unique, since M0 is e-flat.

The m-projection has the following property.
Theorem 6 Them-projection of q(x) toM0 does not
change the expectation of x.

Proof Let p̂(x) = p (x,θ∗) ∈ M0 be the m-
projection of q(x). By differentiating KL [q : p(x,θ)]
with respect to θ, we have∑

xq(x) − ∂

∂θ
ψ0 (θ∗) = 0. (198)

The first term is the expectation of x with respect to
q(x) and the second term is the η-coordinates of θ∗

which is the expectation of x with respect to p0 (x,θ∗).
Hence, they are equal.

5.4 Clique manifold Mr

Them-projection of q(x) to M0 is written as the product
of the marginal distributions

∏
0
q(x) =

n∏
i=1

qi (xi) , (199)

which is what we want to obtain. Its coordinates are
given by θ∗, from which we easily have η∗ = Eθ∗ [x],
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since M0 consists of independent distributions. How-
ever, it is difficult to calculate the m-projection, or to
obtain θ∗ or η∗ directly. Physicists use the mean field
approximation for this purpose. The belief propagation
is another method of obtaining an approximation of θ∗.
Here, the nodes and branches (cliques) play an impor-
tant role.

Since the difficulty of calculations is given rise to by
the existence of a large number of branches or cliques
Br, we consider a model Mr which includes only one
branch or clique Br. Since a branch (clique) manifold
Mr includes only one nonlinear term cr(x), it is written
as

p (x, ζr) = exp {h · x + srcr(x) + ζr · x − ψr} , (200)

where ζr is a free vector parameter. Comparing this with
q(x), we see that the sum of all the nonlinear terms∑

r′ �=r
sr′cr′(x) (201)

except for srcr(x) is replaced by a linear term ζr · x.
Hence, by choosing an adequate ζr, p (x, ζr) is expected
to give the same expectation Eq[x] as q(x) or its very
good approximation. Moreover, Mr includes only one
nonlinear term so that it is easy to calculate the expec-
tation of x with respect to p (x, ζr). In the following
algorithm, all branch (clique) manifolds Mr cooperate
iteratively to give a good entire solution.

5.5 Belief propagation

We have the true distribution q(x), b clique distributions
p (x, ζr) ∈ Mr, r = 1, . . . , b, and an independent distri-
bution p0(x,θ) ∈ M0. All of them join force to search
for a good approximation p̂(x) ∈M0 of q(x).

Let ζr be the current solution which Mr believes to
give a good approximation of q(x). We then project it
to M0, giving the equivalent solution θr in M0 having
the same expectation,

p (x,θr) =
∏

0
pr (x, ζr) . (202)

We abbreviate this as

θr =
∏

0
ζr. (203)

The θr specifies the independent distribution equivalent
to pr (x, ζr) in the sense that they give the same expec-
tation of x. Since θr includes both the effect of the single
nonlinear term srcr(x) specific to Mr and that due to
the linear term ζr in (200),

ξr = θr − ζr (204)

represents the effect of the single nonlinear term srcr(x).
This is the linearized version of srcr(x). Hence, Mr

knows that the linearized version of srcr(x) is ξr, and
broadcasts to all the other models M0 and Mr′ (r′ �= r)
that the linear counterpart of srcr(x) is ξr. Receiving
these messages from all Mr, M0 guesses that the equiv-
alent linear term of

∑
srcr(x) will be

θ =
∑

ξr. (205)

Since Mr in turn receives messages ξr′ from all other
Mr′, Mr uses them to form a new ζ′

r,

ζ ′
r =

∑
r′ �=r

ξr, (206)

which is the linearized version of
∑
r′ �=r sr′cr′(x). This

process is repeated.
The above algorithm is written as follows, where the

current candidates θt ∈ M0 and ζtr ∈ Mr at time t,
t = 0, 1, . . ., are renewed iteratively until convergence
[17].
Geometrical BP Algorithm:
1) Put t = 0, and start with initial guesses ζ0

r, for ex-
ample, ζ0

r = 0.
2) For t = 0, 1, 2, . . ., m-project pr

(
x, ζtr

)
to M0, and

obtain the linearized version of srcr(x),

ξt+1
r =

∏
0

pr
(
x, ζtr

) − ζtr. (207)

3) Summarize all the effects of srcr(x), to give

θt+1 =
∑
r

ξt+1
r . (208)

4) Update ζr by

ζt+1
r =

∑
r′ �=r

ξt+1
r′ = θt+1 − ξt+1

r . (209)

5) Stop when the algorithm converges.

5.6 Analysis of the solution of the algorithm

Let us assume that the algorithm has converged to {ζ∗
r}

and θ∗. Then, our solution is given by p0 (x,θ∗), from
which

η∗i = E0 [xi] (210)

is easily calculated. However, this might not be the ex-
act solution but is only an approximation. Therefore,
we need to study its properties. To this end, we study
the relations among the true distribution q(x), the con-
verged clique distributions p∗r = pr (x, ζ∗

r) and the con-
verged marginalized distribution p∗0 = p0 (x,θ∗). They
are written as

q(x) = exp
{
h · x +

∑
srcr(x) − ψ

}
, (211)

p0 (x,θ∗) = exp
{
h · x +

∑
ξ∗
r · x − ψ0

}
, (212)

pr (x, ζ∗
r) = exp

{
h · x +

∑
r′ �=r

ξ∗
r′ · x + srcr(x) − ψr

}
.

(213)
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The convergence point satisfies the two conditions:

1. m-condition : θ∗ =
∏

0
pr (x, ζ∗

r) ; (214)

2. e-condition : θ∗ =
1

b− 1

b∑
r=1

ζ∗
r . (215)

Let us consider the m-flat submanifold M∗ connecting
p0 (x,θ∗) and all of pr (x, ζ∗

r),

M∗ =
{
p(x)

∣∣∣p(x) = d0p0 (x,θ∗) +
∑

drpr (x, ζ∗
r) ;

d0 +
∑

dr = 1
}
. (216)

This is a mixture family composed of p0 (x,θ∗) and
pr (x, ζ∗

r).
We also consider the e-flat submanifold E∗ connecting

p0 (x,θ∗) and pr (x, ζ∗
r),

E∗ =
{
p(x)

∣∣ log p(x) = v0 log p0 (x,θ∗)

+
∑
r

vr log pr (x, ζr) − ψ

}
.

(217)

Theorem 7 The m-condition implies that M∗ inter-
sects all of M0 and Mr orthogonally. The e-condition
implies that E∗ include the true distribution q(x).

Proof The m-condition guarantees that m-
projection of p∗r to M0 is p∗0. Since the m-geodesic con-
necting p∗r and p0 is included in M∗ and the expectations
are equal,

η∗
r = η∗

0, (218)

and M∗ is orthogonal to M0 and Mr. The e-condition is
easily shown by putting c0 = −(b− 1), cr = 1, because

q(x) = cp0 (x,θ∗)−(b−1)
∏

pr (x, ζ∗
r) (219)

from (211)–(213), where c = e−ψq .
The algorithm searches for θ∗ and ζ∗

r until both the
m- and e-conditions are satisfied. If M∗ includes q(x),
its m-projection to M0 is p0 (x,θ∗). Hence, θ∗ gives the
true solution, but this is not guaranteed. Instead, E∗

includes q(x).
The following theorem is known and easy to prove.

Theorem 8 When the underlying graph is a tree,
both E∗ and M∗ include q(x), and the algorithm gives
the exact solution.

5.7 CCCP procedure for belief propagation

The above algorithm is essentially the same as the BP
algorithm given by Pearl [15] and studied by many fol-
lowers. It is iterative search procedures for finding M∗

and E∗. In steps 2) − 5), it uses m-projection to obtain

new ζr’s, until the m-condition is satisfied eventually.
The m-projections of all Mr become identical when the
m-condition is satisfied. On the other hand, in each
step of 3), we obtain θ ∈ M0 such that the e-condition
is satisfied. Hence, throughout the procedures, the e-
condition is satisfied.

We have a different type of algorithm, which searches
for θ that eventually satisfies the e-condition, while the
m-condition is always satisfied. Such an algorithm is
proposed by Yuille [36] and Yuille and Rangarajan [37].
It consists of the two steps, beginning with initial guess
θ0:
CCCP Algorithm:
Step 1 (inner loop): Given θt, calculate

{
ζt+1
r

}
by solv-

ing ∏
0
pr

(
x, ζt+1

r

)
= bθt −

∑
ζt+1
r . (220)

Step 2 (outer loop): Given
{
ζt+1
r

}
, calculate θt+1 by

θt+1 = bθt −
∑
r

ζt+1
r . (221)

The inner loop use an iterative procedures to obtain
new

{
ζt+1
r

}
in such a way that they satisfy the m-

condition together with old θt. Hence, the m-condition
is always satisfied, and we search for new θt+1 until the
e-condition is satisfied.

We may simplify the inner loop by∏
0
pr

(
x, ζt+1

r

)
= p0

(
x,θt

)
, (222)

which can be solved directly. This gives a computation-
ally easier procedure. There are some difference in the
basin of attraction for the original and simplified proce-
dures.

We have formulated a number of algorithms for
stochastic reasoning in terms of information geometry.
It not only clarifies the procedures intuitively but make
it possible to analyze the stability of the equilibrium and
speed of convergence. Moreover, we can estimate the er-
ror of estimation by using the curvatures of E∗ and M∗.
The new type of free energy is also defined. See Refs.
[16,17] for more details.

6 Conclusions

We have given the dual geometrical structure in man-
ifolds of probability distributions, positive measures or
arrays, matrices, tensors and others. The dually flat
structure is given from a convex function in general,
which gives a Riemannian metric and a pair of dual
flatness criteria. The information invariancy and dual
flat structure are explained by using divergence func-
tions without rigorous differential geometrical terminol-
ogy. The dual geometrical structure is applied to vari-
ous engineering problems, which include statistical infer-
ence, machine learning, optimization, signal processing
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and neural networks. Applications to alternative opti-
mization, Ying-Yang machine and belief propagations
are shown from the geometrical point of view.
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