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Analysis of correlated spike trains is a hot topic of research in compu-
tational neuroscience. A general model of probability distributions for
spikes includes too many parameters to be of use in analyzing real data.
Instead, we need a simple but powerful generative model for correlated
spikes. We developed a class of conditional mixture models that includes
a number of existing models and analyzed its capabilities and limita-
tions. We apply the model to dynamical aspects of neuron pools. When
Hebbian cell assemblies coexist in a pool of neurons, the condition is
specified by these assemblies such that the probability distribution of
spikes is a mixture of those of the component assemblies. The proba-
bilities of activation of the Hebbian assemblies change dynamically. We
used this model as a basis for a competitive model governing the states
of assemblies.

1 Introduction

Neurons emit spikes for transmitting information, and the spike timing is
often stochastic. Spike trains may therefore be regarded as the outcome of
a stochastic process (see, e.g., Kass, Ventura, & Brown, 2005). The simplest
case is a Poisson process, which consists of a sequence of independent events
with a fixed probability of occurrence. The behavior of a real neuron is not
necessarily Poissonian, and for this reason, detailed considerations have
been given to its description in terms of a renewal or Markovian process.
The process is usually not stationary, and the firing rate generally varies
over time.

When we consider a pool of neurons, the spikes from these neurons are
generally not independent but correlated. Synchronous firing is an inter-
esting area of research (Abeles, 1991; Gerstein & Perkel, 1969; Diesmann,
Gewaltig, & Aertsen, 1999; Dayan & Abbot, 2005), in which correlations,
particularly higher-order correlations, play a fundamental role (Martignon,
von Hasseln, Grün, Aertsen, & Palm, 1995; Amari, Nakahara, Wu, & Sakai,
2003). We need to analyze correlated multineuron spiking processes with
temporal structures (Salinas & Sejnowski, 2001). Here, we consider mostly
the probability distributions of correlated spikes of a pool of neurons in
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one time bin of 5 msec to 20 msec, and the firing rates (firing probabilities)
of neurons may change over a longer time. We shall focus on the spatial
correlations represented by pairwise covariances (e.g., de la Rocha, Doiron,
Shea-Brown, Josic, & Reyes, 2007; Berger, Warren, Normann, Arieli, & Grün,
2007; Tatsuno, Fellous, & Amari, 2009), and touch on the higher-order
moments.

The family of all joint probability distributions of spikes from n neurons
has 2n − 1 degrees of freedom. Such a family has been studied by using
information geometry (Amari & Nagaoka, 2000; Amari, 2001; Nakahara
& Amari, 2002), where the firing rates and higher-order correlations are
decomposed orthogonally (Amari, 2009). However, the full model is too
complex and too detailed to be useful for explaining the stochastic nature
of observed data. We need simpler tractable models. Such models include
additive interaction, elimination, and replacement models (Cox & Isham,
1999; Kuhn, Aertsen, & Rotter, 2003; Kuhn, Rotter, & Aertsen, 2002; Niebur,
2007, see also Feng & Brown, 2000; Destexhe & Pare, 1999; Gutig, Aharonov,
Rotter, & Sompolinsky, 2003). Recently Brette (2009) proposed a stochastic
additive mixture model.

A mixture model is popular in statistics (Titterington, Smith, & Makov,
1985; McLachlan & Peel, 2000). We propose a conditional mixture model,
which is a mixture of component distributions, where the mixing coef-
ficients are determined by the state of the neuron pool. Typically when
Hebbian cell assemblies coexist in a pool of neurons, the mixing coefficients
are determined from the states of the assemblies. We first demonstrate that
the additive, elimination, and replacement models can be regarded as spe-
cial cases of our model. The mixture model is tractable because it does not
have many degrees of freedom. We clarify its capabilities and limitations
in terms of moments and show that our model is much simpler yet less
restrictive than existing models.

After that, we study the state transition of a neural network composed
of Hebbian assemblies within the framework of the conditional mixture
model. We first show how covariances change during the state transition
of the mixture model. When the state changes from one dominating cell as-
sembly to another, the pairwise covariances increase midway in the firing
sequence for two neurons in one and the same assembly, but they decrease
for two neurons belonging to different assemblies. We further study the dy-
namics of Hebbian cell assemblies, in which the mixing parameters among
cell assemblies are controlled by competitive dynamics.

This letter is organized as follows. Section 2 describes the joint proba-
bility distributions of correlated spikes as preliminaries. Section 3 explains
the conventional models of generating and analyzing correlated spikes and
shows that they are versions of our conditional mixture model. Section 4
describes properties of the mixture model and discusses the capabilities
and limitations of our model. Section 5 describes algorithmic aspects of de-
signing the mixture model for generation of prescribed correlational spikes
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and of statistical estimation of a mixture model from observed data. Sec-
tion 6 discusses the dynamics of state transitions using the mixture model.
This describes competition among Hebbian cell assemblies to control the
dynamics of the model’s mixing parameters. Section 7 contains conclusions.

2 Joint Firing Probabilities

We consider a pool of n neurons and denote its state by a vector x =
(x1, . . . , xn). Here, xi is a binary random variable taking a value of 1 or
0: xi = 1 when the ith neuron fires, and 0 otherwise. We assume that the
state x is determined stochastically.

Let p(x) be the joint probability of state x in a time bin. There are 2n

states, and

∑
x

p(x) = 1, (2.1)

so that the distribution p(x) has 2n − 1 degrees of freedom. We consider
the set Sn = {p(x)} of all probability distributions. Then it forms a (2n − 1)-
dimensional manifold. We introduce a coordinate system in it.

The firing probability (or shortly the firing rate) of neuron i is given by

ri = E[xi ] = Prob {xi = 1}, (2.2)

where E denotes the expectation with respect to p(x). The joint firing rate
of neurons i and j is

ri j = E[xi xj ] = Prob {xi = xj = 1}, (2.3)

and the joint firing rate of neurons i, j , and k is

ri jk = E[xi xj xk] = Prob {xi = xj = xk = 1}. (2.4)

Similarly, the firing rate of all neurons firing at the same time is

r12,...,n = E[x1 . . . xn]. (2.5)

All of the above quantities can be summarized in a vector r =
{ri , ri j , . . . , r12,...,n} having 2n − 1 components, and p(x) is uniquely deter-
mined by it. Hence, r plays the role of a coordinate system in the space
Sn = {p(x)} consisting of all probability distributions. We call it the joint fir-
ing coordinate system (which is called the mixture or m-coordinate system
in information geometry; Amari & Nagaoka, 2000).



Conditional Mixture Model for Correlated Neuronal Spikes 1721

δ11(x)

S2

δ00(x)

δ01(x)

I2

δ10(x)

Figure 1: Set of probability distributions S2 = {p(x1, x2)} and the set I2 of inde-
pendent probability distributions.

Consider the case of n = 2, where x takes on only four states:
(1, 1), (1, 0), (0, 1), (0, 0). S2 is represented by a three-dimensional simplex
(see Figure 1), where the four corners (extreme points) represent spe-
cial probability distributions denoted by δ11(x), δ10(x), δ01(x), δ00(x). Here,
δ11(x) = 1 if and only if x1 = x2 = 1; δ10(x) = 1 if and only if x1 = 1, x2 = 0;
and so on. Hence, these distributions are deterministic. Any p(x) can be
written as a mixture of these extreme points, p(x) = ∑

pi1,...,inδi1,...,in (x). In
the case of n = 2, r = (r1, r2, r12) is a coordinate system of the simplex S2.

When p(x) is an independent distribution, it is a function of only the
firing rates of neurons, r1, . . . , rn, and the other coordinates are functions of
ri , that is,

ri j = rir j , (2.6)

ri jk = rir j rk, (2.7)

and so on. Hence, the set In of all independent distributions has only n
degrees of freedom and forms an n-dimensional subspace In in Sn. When
n = 2, the set I2 of independent distributions is two-dimensional, and it can
be represented by a surface in S2, as shown in Figure 1.

The covariance of xi and xj is given by

ci j = E[xi xj ] − E[xi ]E[xj ] = ri j − rir j . (2.8)

The covariance is 0 on In. However, even when all the pairwise covariances
are 0, p(x) might not be an independent distribution. There are higher-order
correlations among more than two neurons (triple-wise correlations and
higher), which are not reduced to pairwise correlations (Martignon et al.,
1995; Amari et al., 2003).
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3 Conditional Mixture Model

3.1 Models for Generating Correlated Spikes. The theoretical ap-
proach of studying Sn is not useful in practice because it includes too many
parameters, 2n − 1. Sn is too complicated to be applied to experimental
data. We need much simpler and more tractable models (Nakahara, Amari,
& Richmond, 2006).

A number of models have been proposed for the purpose of generating
correlated spike trains. They realize probability distributions p(x) of corre-
lated spikes that give correlated Poisson trains when spikes are temporally
independent (Cox & Isham, 1980). As mentioned in section 1, they have
been discussed in many papers (Kuhn et al., 2002, 2003; Feng & Brown,
2000; Bahjat, 2003; Stroeve & Gielen, 2001; Macke, Berens, Ecker, Tolias, &
Bethge, 2008). In particular, Niebur (2007) proposed a new model that gen-
erates correlated spikes for stimulating a pool of neurons. Recently Brette
(2009) proposed a more general model.

We prepare n independent Poisson processes x̃i (t), i = 1, . . . , n; t =
1, . . . , N, of n neurons and use a vector p = (p1, . . . , pn) for representing
the firing rate pi of neuron i . The spikes are spatially and temporally in-
dependent. To introduce correlations, we use another independent Poisson
process y(t), called a reference process, with firing probability w, and mod-
ify the independent x̃i (t) to give correlated xi (t). New processes xi (t) are
generated from x̃i (t) and y(t) by

xi (t) = f {x̃i (t), y(t)}, (3.1)

where f is a deterministic function or a stochastic correspondence that
will be explained below. The model Brette (2009) proposed uses a number
of independent reference spike trains yi (t), i = 1, . . . , m. We denote it in
vector form y(t).

3.1.1 Additive Interaction Model. The additive interaction model gener-
ates xi (t) in such a way that, when y(t) = 1, an additional spike is randomly
inserted in x̃i (t) with probability qi independently for each neuron and each
time. In other words, when y(t) = 1 and x̃i (t) = 0, x̃i (t) changes into xi (t) = 1
with probability qi and xi (t) = x̃i (t) otherwise. The firing rates for the new
sequences are ri = (1 − wqi )pi + wqi , and each xi (t) is a Poisson process.
They generate a correlated Poisson process, because the xi ’s are correlated
since y(t) is common.

When qi = 1, this model is deterministic, and has been used by Kuhn
et al. (2003). This is called the single interaction process (SIP), where

xi (t) = x̃i (t) + y(t), (3.2)
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with the convention 1 + 1 = 1. Therefore, when y(t) = 1, all xi (t) are 1, and
synchronized spikes appear.

3.1.2 Eliminating Interaction Model. The eliminating interaction takes
place in this model. When y(t) = 1, if x̃i (t) is 1, this is changed to xi (t) = 0
with probability qi independently. This elimination was called the multiple
interaction by Kuhn et al. (2003). (See also Kuhn et al., 2002.)

3.1.3 Niebur Replacement Model. Niebur (2007) proposed a more powerful
model. Here, x̃i (t) is replaced by y(t) with probability qi independently,
irrespective of y(t) = 0 or y(t) = 1. Hence,

xi (t) =
{

y(t), with probability
√

qi

x̃i (t), with probability 1 − √
qi ,

(3.3)

where the replacements are independent for all i and t.

3.1.4 Brette Mixture Method. Brette (2009) proposed a new method, that
uses m independent reference spikes yi , i = 1, . . . , m and generates corre-
lated spikes by

xi =
∑

cik yk, (3.4)

where cik = 1 with probability pi,k and 0 otherwise.

3.2 Conditional Mixture Model. We propose a new mixture model, a
conditional mixture model, that includes all of the above models. Let y be
a random variable, taking m values, 1, . . . , m, which specifies a state of a
pool of neurons. The probability distribution of x is assumed to be p(x | s),
depending on the state y = s, s = 1, . . . , m. Let ws be the probability that
y = s. Then the overall probability distribution is given by

p(x;w) =
∑

ws p(x | s), (3.5)

where w = (w1, . . . , wm),
∑

ws = 1.
The model

M = {p(x);w} (3.6)

is a mixture model, having m component distributions, p(x | s), s =
1, . . . , m. Mixture models have been used in statistics (see, e.g., Tittering-
ton et al., 1985; McLachlan & Peel, 2000). The multilayer perceptron is also
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regarded as a mixture model. However, one should be careful, because mix-
ture models are singular where the Fisher information degenerates at some
regions (see Amari, Park, & Ozeki, 2006).

When p(x | s) is an independent distribution with a firing rate vector us ,

p(x | s) =
n∏

i=1

p
(
xi ; us

i

) = p(x; us), (3.7)

where p(x, u) denotes the probability distribution such that x = 1 with
probability u and x = 0 with probability ū = 1 − u, M consists of mixtures
of independent distributions (see equation 3.7).

Here we show possible ideas as to how the condition is controlled. Some
cortical neurons are known to be of two states; the up and down states. The
firing rates differ depending on the states, and this difference may generate
a mixture of probability distributions.

A mixture may also emerge from Hebbian cell assemblies. When Hebbian
assemblies H1, . . . , Hm coexist in a pool of neurons, we can represent the
activity of a Hebbian assembly Hs by p(x | s) = p(x, us), where us

i is large
when xi belongs to Hs . These assemblies coexist with weights (probabilities)
w, and the weights w develop over time through dynamic interactions
among the assemblies. We discuss this dynamics in a later section.

3.3 Examples of Mixture Models. We shall show that all models de-
scribed in section 3.1 are versions of the conditional mixture model. Let us
consider the case of m = 2, y taking on values of 0 and 1. We put

u1
i = Prob{xi = 1 | y = 1}, (3.8)

u2
i = Prob{xi = 1 | y = 0}. (3.9)

Since the probability of y = 1 is w1 = w and that of y = 0 is w2 = w̄ = 1 − w,
the unconditional probability of xi = 1 is given by

Prob{xi = 1} = wu1
i + w̄u2

i . (3.10)

This is a mixture of two independent distributions p(x, u1) and p(x, u2)
specified by the firing rate vectors u1 = (u1

1, . . . , u1
n) and u2 = (u2

1, . . . , u2
n),

respectively, and the new firing rate vector is given by

r = wu1 + w̄u2. (3.11)

The three models a, b, c (Kuhn et al., 2002; Kuhn et al., 2003; Niebur, 2007)
are mixture models with the following u1 and u2 and w = Prob{y = 1}.
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1. Additive interaction model:

u1
i = qi + (1 − qi )pi (3.12)

u2
i = pi (3.13)

2. Eliminating interaction model:

u1
i = pi (1 − qi ) (3.14)

u2
i = pi (3.15)

3. Replacement model:

u1
i = pi + √

qi (1 − pi ) (3.16)

u2
i = pi (1 − √

qi ) (3.17)

4. Brette model. In this case, the state is specified by a vector y, which has
2m states (Brette, 2009). When the state is y, the firing rates r = E[x | y]
are given by

ui ( y) =
m∑

k=1

pi,k yk . (3.18)

Hence,

p(x | y) = p(x, u( y)), (3.19)

and their mixtures are written as

p(x;w) =
∑

w( y)p(x | y). (3.20)

4 Properties of Mixture Models

We need a simple but reasonably powerful model of distributions, with
which we can easily generate correlated spike sequences for stimulating
a pool of neurons and also for analyzing correlational structures from the
observed data. The conditional mixture model is useful for this purpose.

4.1 Mixture of Independent Distributions. Let p(x, u) be an indepen-
dent distribution of n neurons with a firing rate vector u = (u1, . . . , un). Our
model p(x;w, u1, . . . , us) given by equation 3.5 is a mixture of m indepen-
dent distributions p(x, um) with mixing rate w

p(x;w) =
∑

ws p(x, us). (4.1)
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In order to analyze the properties of the mixture model, we need the
following lemma. Any function f (x) of a binary vector x can be written in
a reduced polynomial as

f (x) =
∑

k

∑
i1,...,ik

ci1,...,ik xi1 , . . . , xik , (4.2)

where the indices i1, . . . , ik are all different, because of x2
i = xi .

Lemma 1. When f (x) is a reduced form,

E [ f (x)] =
∑

ws f (us) . (4.3)

Proof. Since p(x | s) are independent distributions, from

E[ f (x)] = Ey Ex|y[ f (x) | y] =
∑

ws E[ f (x) | s], (4.4)

where Ey is expectation with respect to y and Ex|y is conditional expectation
over x conditioned on y, we have the theorem.

From this we get the firing rate vector:

r = E[x] =
∑

ws us . (4.5)

The joint firing rates are also given similarly, for example,

ri1···ik =
∑

wsus
i1
, . . . , us

ik
. (4.6)

To study the higher-order moments, let us decompose us as a sum of the
mean firing rate r and deviation δs from the mean,

us = r + δs, (4.7)

where

∑
wsδ

s = 0. (4.8)

The kth order central moments of x are

ci1,...,ik = E[(xi1 − ri1 ) · · · (xik − rik )]. (4.9)
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Theorem 1. The kth order central moments of x are given by

ci1,...,ik =
∑

wsδ
s
i1
, . . . , δs

ik
. (4.10)

The theorem describes a means of calculating moments in an indepen-
dent mixture model. Obviously when p(x) is independent, all central mo-
ments vanish.

When m = 2, we may put

δ1 = 1
w1

δ, δ2 = − δ

w2
. (4.11)

Hence, the moments are, for w = w1 and w̄ = w2

ci1···ik =
(

1
wk−1 + (−1)k 1

w̄k−1

)
δi1δi2 , . . . , δik . (4.12)

In particular, the covariances become

ci j = 1
ww̄

δiδ j . (4.13)

Hence, the covariance of xi and xj is positive when δi and δ j have the same
sign, that is,

(
u1

i − u2
i

) (
u1

j − u2
j

)
> 0, (4.14)

and negative, otherwise.

4.2 Mixture with Two Neurons. We will discuss the simple case of
two neurons. In the case of n = 2, m = 2, the mixture model M2 includes
2n + 1 = 5 parameters, while the manifold of all distributions S2 is three-
dimensional. We first show that any distribution of S2 can be realized in
our mixture model M2. It should be noted that the additive, elimination,
Niebur replacement, and Brette mixture models cannot generate some of
distributions in S2.

Theorem 2. M2 includes all the distributions in S2.

Proof. Let us consider the mapping of π from M2 to S2 given by equation
4.1. The image of π (M2) consists of mixtures of two independent distribu-
tions. S2 is a simplex having four faces and six edges (see Figure 1). Of the
six edges, four are composed of independent distributions. For example,
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any distribution p(x) connecting the vertices δ11(x) and δ10(x) can be written
in product form as

wδ11(x) + w̄δ10(x) = p (x1, 1) p (x2, w) . (4.15)

However, the distributions connecting the vertices of δ11(x) and δ00(x) are
not independent. All faces of S2 are surrounded by three edges, where two
are composed of independent distributions. Therefore, any distribution in
the faces of S2 can be expressed as a linear mixture of two independent
distributions. This means that the four faces are in the image of π . Since
M2 has no holes, its image given by a continuous mapping, equation 4.1,
cannot have holes because of homotopy. Hence, the whole of S2 is covered
by the image of π , proving the theorem.

Remark. One can easily see that δi are always positive or always negative
in the additive, elimination, and replacement models. Hence, δiδ j > 0, so
that negative covariances ci j < 0 cannot be realized in these models. Even
the more general Brette model cannot realize negative correlations.

4.3 Limitations of the Mixture Model. Since Mn includes only mn +
m − 1 parameters, Mn includes only a very limited range of probability
distributions. The limitation is given by theorem 1 that all the moments
ci1,...,ik are determined by the deviation vectors δs . When m = 2, they are
determined by a vector δ.

In the case with three neurons, n = 3 and m = 2, the number of dimen-
sions is 2n + 1 = 7, the same number as S3. However, not all distributions
in S3 can be represented in M3 with m = 2. The covariances ci j that can
be represented by using the mixture model satisfy ci j = ww̄δiδ j , as shown
in equation 4.13. Hence, when c12 < 0, c23 < 0, c31 < 0, we cannot find a
set of δ1, δ2, δ3 satisfying these inequalities. This shows that a distribution
for which all three pairs are negatively correlated cannot be represented
in our model. Even when all the covariances are positive, there are still
distributions that cannot be represented because equation 4.13 would be
violated.

4.4 Higher-Order Restrictions. A mixture connects a number of distri-
butions in a mixture-flat submanifold (Amari & Nagaoka, 2000) Mn. Since
Mn is not exponentially flat, higher-order correlations exist. For example,
for a distribution p (x1, x2, x3), the third-order correlation orthogonal to the
pairwise firing rates is given by

θ123 = log
p(1, 1, 1)p(1, 0, 0)p(0, 1, 0)p(0, 0, 1)
p(1, 1, 0)p(0, 1, 1)p(1, 0, 1)p(0, 0, 0)

. (4.16)
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Although we can calculate θ123 in terms of w, r, δs , it is a very complicated
function of the parameters. It would be interesting to see what type of
higher-order correlations emerges from a mixture model.

Here, we consider the higher-order moments realized by a mixture
model. Since the moments ci1,...,ik are determined by w and deviations
δ1, . . . , δm, they are within the restricted form of equation 4.10 in Mn.

When m = 2, we have

ci1,...,ik = ak(w)δi1δi2 , . . . , δik , (4.17)

where

ak(w) = 1
wk−1 + (−1)k 1

w̄k−1 . (4.18)

For example,

ci j =
(

1
w

+ 1
w̄

)
δiδ j , (4.19)

ci jk =
(

1
w2 − 1

w̄2

)
δiδ jδk, (4.20)

and so on. They show that higher-order moments are related to lower-order
moments through common δ.

4.5 State Transitions Through a Mixture. When an ensemble of neu-
rons processes information, its state changes dynamically. Let us assume
that the initial state is represented by a probability distribution p1(x) and
the final state by p2(x). Here, p1(x) and p2(x) do not need to be indepen-
dent distributions. One may assume that they correspond to two different
Hebbian cell assemblies coexisting in a network. At t = 0, the state is p1(x),
and it changes into the final state p2(x) at t = 1. Information is processed in
the network while the state transition takes place.

We assume that the state transition is represented by the mixture model,

p(x, t) = (t)p2(x) + (1 − t)p1(x), (4.21)

and check how the covariances among neurons change during the state
transition. This is a mixture model in which the mixing rate w = t changes
from 0 to 1 over time.

Sakamoto et al. (2008) observed increases in pairwise covariances among
some neurons during state transitions. They conjectured that this fact in-
dicates an increase in synchronous firing in information processing. The
mixture model provides a good tool for analyzing such phenomena. Let



1730 S. Amari

c1i j and c2i j be the covariances of neurons i and j of p1(x) and p2(x), and
let u1 and u2 be their firing rate vectors. Then we have

ci j (t) = (1 − t)c1i j (u) + tc2i j (v) + t(1 − t)
(
u1

i − u2
i

)(
u1

j − u2
j

)
. (4.22)

When p1(x) and p2(x) are independent distributions, we have

ci j (t) = t(1 − t)
(
u1

i − u2
i

)(
u2

j − u2
j

)
. (4.23)

The covariances ci j (t) between two neurons i and j are not only a mixture
of those of the initial and final states, but they have an additional term due
to the change in firing rates. The additional effect is maximized at t = 1/2.
It is interesting to see that the covariance increases when the firing rates
of neurons i and j increase together or decrease together through the state
transition. On the other hand, the covariance decreases when the firing rate
of one neuron increases while the other decreases.

5 Applications of Conditional Mixture Model

The mixture model will be used for generating correlated spikes and ana-
lyzing observed data. This section discusses these problems.

5.1 Generating Correlated Spikes. A mixture model is specified by
the mixing vector w, the firing rate vector r , and deviation vectors δs ,
s = 1, . . . , m, satisfying equation 4.8. We may use them as a new coordinate
system to specify the probability

p(x,w, r, δs) =
∑

ws p(x; r + δs). (5.1)

When the firing rates r̃ and covariances c̃i j , i �= j , are specified, we need
to search for w and δs that satisfy the requirements approximately. The
firing rate r is given by r = r̃ . Since a mixture model is limited, we can only
approximate given c̃i j . Since the covariances of a mixture model are given
by

ci j =
∑

wsδ
s
i δ

s
j , (5.2)

we may use the least squares method to design w and δs . The cost function
is

L(w, δ1, . . . , δm) = 1
2

∑
i j

(ci j − c̃i j )2, (5.3)
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under constraint 4.8 and

0 < ri + δs
i < 1. (5.4)

This is a nonlinear programming problem. We may use the gradient descent
method or others to solve it.

Let us consider a special case in which neurons are divided into two
groups. Neurons in each group are homogeneous, having the same firing
rate and the same covariance. The first group of neurons is assumed to be
independent. Let c be the covariances between two neurons in the second
group. We realize such a distribution by a mixture model with m = 2. Since
the first group consists of independent neurons, the deviation vector δ(1) =
0 in this group. The deviation vector of the second group has the same
component, δ2 = (δ, . . . , δ). It is determined from

c = 1
ww̄

δ2. (5.5)

When we have three homogeneous neuron groups, we can realize the
probability distribution with m = 3.

5.2 Analyzing Observed Data by Statistical Estimation. We can use
a mixture model to analyze experimental data for the purpose of estimat-
ing the underlying stochastic structure. Given experimental observations
x(1), . . . , x(t), we can estimate w, r , δs of the parameters of the mixture
model, equation 5.1. This is an ordinary estimation problem. However, a
mixture model is singular, and there are computational difficulties in esti-
mation. (See Amari et al., 2006; Wei & Amari, 2008; and Cousseau, Ozeki,
& Amari, 2008, for such singular models.)

When data are summarized in the observed firing rates r̃ = (r̃i ) and
covariances c̃i j , we can solve the estimation problem by the least-square
method of minimizing equation 5.3. This is known as the moment method
of estimation. The estimator is usually not Fisher efficient but consistent
(Wu, Amari, & Nakahara, 2002).

We may use the EM algorithm to solve the estimation problem (Demp-
ster, Laird, & Rubin, 1977; Csiszár & Tusnády, 1984; Amari, 1995). Let us
consider random variables (x, z), where z = 1, . . . , m, shows that x is gen-
erated from independent distribution p(x, uz), uz = r + δz. If we know z(t)
together with x(t), t = 1, . . . , T , the estimation is simple and easy. However,
z(t) are hidden. The EM algorithm is useful for estimation when some ran-
dom variables are hidden. It is an alternative minimization method (Csiszár
& Tusnády, 1984; Amari, 1995) consisting of the E-step and M-step.
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When a candidate distribution p(x, z; ŵ, r̂, δ̂s) is given, we calculate the
conditional estimate of

L (w, r, δs) = E

[∑
t

log p (x(t), z(t);w, r, δs)

]
, (5.6)

where E is the conditional expectation with respect to z(t) by using

p(z | x; ŵ, r̂, δ̂s). (5.7)

The M-step searches for the next estimate of w, r, δs by maximizing
L (w, r, δs).

The EM algorithm does not always guarantee the convergence to the true
minimizer, but it is computationally easy to obtain the maximum likelihood
estimator.

6 Discussions on Dynamics of Hebbian Assemblies

We discuss here a possible application of the conditional mixture model
to the dynamics of competition among Hebbian assemblies. Let us assume
that a pool of n neurons is composed of m Hebbian assemblies H1, . . . , Hm.
When assembly Hs is active, the probability distribution is p(x | s), in which
the neurons belonging to Hs have high firing rates. Let us

i be the firing rate
of neuron i when Hs is active:

p(x | s) = p (x; us) . (6.1)

We assume that p(x | s) is independent, but we may treat the case with a
correlated distribution for each Hebbian assembly.

A neuron may belong to a number of Hebbian assemblies at the same
time. Which neuron belongs to which Hebbian assembly is fuzzy, and we
may consider ais the membership value of neuron i belonging to assembly
Hs , 0 ≤ ais ≤ 1. When ais is large, the degree of neuron i belonging to Hs is
large. We may use us

i as the membership value.
The conditional mixture model is given by

p(x,w) =
∑

ws p(x | s), (6.2)

where ws is the probability or the degree that Hs is activated. The weight
vector w = (w1, . . . , wm) changes depending on the current firing pattern x
of neurons. We assume that there is a neural system that controls the level
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ws of activation of Hs . The total amount of stimuli that the system receives
for Hs is

Xs =
∑

ais xi , (6.3)

which is a weighted sum of xi with weight ais of xi belonging to Hs . Since
the average firing rate of xi is

∑
wsus

i , the average of Xs is

E [Xs] =
∑
r,i

wr ur
i ais . (6.4)

It is assumed that the activity ws of Hs is controlled by a continuous-time
dynamics of the type

τ
dws

dt
= −ws + f [X̄s] − I0 + Is . (6.5)

Here, X̄s = E[Xs] is the temporal average of Xs , f is a sigmoidal function,
and τ is a time constant. It increases in proportion to a nonlinear function of
the short-time temporal average of the activity Xs of the Hebbian assembly.
Is is an input to Hs from the outside, and

I0 = 1
m

∑
( f (X̄s) + Is − 1) (6.6)

is a common inhibitory term, which makes it possible to preserve the total
probabilities,

∑ dws

dt
= 0. (6.7)

Therefore equation 6.6 preserves the constraint

∑
ws = 1. (6.8)

Since the activation function f (u) is a sigmoid function, equation 6.8 is a
typical competition model. We illustrate this in a simple example in which
the membership function ais is hard,

ais =
{

1, when xi ∈ Hs,

0, otherwise.
(6.9)
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and us
i = 0 for xi /∈ Hs . Then,

X̄s = ws

∑
i

us
i = wsus, (6.10)

where us = ∑
us

i is a constant. Then the dynamics reduces to

τ
dws

dt
= −ws + f (wsus) − 1

m

∑{
f (wr ur ) − 1 + Ir

}
. (6.11)

This is a typical winner-takes-all or winners-share-all model (Amari &
Arbib, 1977; Fukai & Tanaka, 1997), and eventually one or some of Hebbian
assemblies win, depending the inputs Ir .

There are many other possibilities of dynamics in the conditional mixture
model and it is an interesting problem for future research.

7 Conclusions

We showed that many existing models for generating correlated spikes
are versions of our conditional mixture model. Although our model might
not explain the mechanism responsible for dynamical interactions in a real
neuron pool, it is a convenient statistical model for generating correlated
spike sequences for stimulation (Niebur, 2007; Brette, 2009). Moreover, we
may use it as a simple working model to analyze experimental data and
estimate the intrinsic correlational structure.

We also showed a model in which each Hebbian assembly generates a
component probability distribution and proposed a dynamical model of
competition among Hebbian assemblies. This is a dynamical model in the
space of a mixture family.
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