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Continuous attractor is a promising model for describing the encoding
of continuous stimuli in neural systems. In a continuous attractor, the
stationary states of the neural system form a continuous parameter space,
on which the system is neutrally stable. This property enables the neutral
system to track time-varying stimuli smoothly, but it also degrades the
accuracy of information retrieval, since these stationary states are easily
disturbed by external noise. In this work, based on a simple model, we
systematically investigate the dynamics and the computational proper-
ties of continuous attractors. In order to analyze the dynamics of a large-
size network, which is otherwise extremely complicated, we develop a
strategy to reduce its dimensionality by utilizing the fact that a contin-
uous attractor can eliminate the noise components perpendicular to the
attractor space very quickly. We therefore project the network dynamics
onto the tangent of the attractor space and simplify it successfully as a
one-dimensional Ornstein-Uhlenbeck process. Based on this simplified
model, we investigate (1) the decoding error of a continuous attractor
under the driving of external noisy inputs, (2) the tracking speed of a
continuous attractor when external stimulus experiences abrupt changes,
(3) the neural correlation structure associated with the specific dynamics
of a continuous attractor, and (4) the consequence of asymmetric neural
correlation on statistical population decoding. The potential implications
of these results on our understanding of neural information processing
are also discussed.

1 Introduction

External stimuli are encoded in neural activity patterns in the brain. The
brain can reliably retrieve the stored information even when external in-
puts are incomplete or noisy, achieving the so-called associative memory or
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invariant object recognition. Mathematically this can be described as attrac-
tor computation, that is, the network dynamics enables the neural system
to reach the same stationary state once external inputs fall into its basin of
attraction. In the conventional models for attractor computation, such as
the Hopfield model (Hopfield, 1984), it is often assumed that the station-
ary states of the neural system are discretely distributed in the state space,
which are called discrete attractors.

Recently progress in both experimental and theoretical studies has
suggested that there may exist another form of attractor, called continuous
attractors, in biological systems (Amari, 1977; Georgopoulos, Kalaska,
Caminiti, & Massey, 1982; Maunsell & Van Essen, 1983; Funahashi, Bruce,
& Goldman-Rakic, 1989; Wilson & McNaughton, 1993; Rolls, Robertson,
& Georges-François, 1995; Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995;
Zhang, 1996; Seung, 1996; Ermentrout, 1998; Hansel & Sompolinsky, 1998;
Taube, 1998; Deneve, Latham, & Pouget, 1999; Wang, 2001; Wu, Amari, &
Nakahara, 2002; Stringer, Trappenberg, Rolls, & Aranjo, 2002; Brody, Romo,
& Kepecs, 2003; Gutkin, Pinto, & Ermentrout, 2003; Trappenberg, 2003; Wu
& Amari, 2005; Chow & Coombes, 2006). This type of attractor is appealing
for encoding continuous stimuli, such as the orientation, the moving
direction, and the spatial location of objects, or those continuous features
that underlie the categorization of complicated objects. In a continuous
attractor, the stationary states of the neural system are properly aligned in
the state space according to the stimulus values they represent. They form
a continuous parameter space, on which the neural system is neutrally
stable. Figure 1 illustrates the typical structure difference between a
continuous and a discrete attractor. We see that in a discrete point attractor,
the system is stable only at the bottom of the bowl, whereas in a continuous
line attractor, the system is neutrally stable on the one-dimensional valley.

Neutral stability is the key that distinguishes a continuous attractor from
a discrete one. This property enables the neural system to change its stable
state rather easily along the attractor space and hence provides the neural
system the capacity of tracking time-varying stimuli in real time, an ability
that is crucial for the brain to carry out many important computational tasks
such as motion control and spatial navigation. On the other hand, neutral
stability can have a negative effect on attractor computation. For example,
because of neutral stability, the stationary states of the neural system are
easily disturbed by input noise. Consequently, it degrades the accuracy of
neural decoding (Seung, Lee, Reis, & Tank, 2000; Wang, 2001; Brody et al.,
2003; Wu & Amari, 2005).

In this study, by using a simple model whose solution is analytically
attractable, we systematically investigate the dynamics and the computa-
tional properties of continuous attractors. In particular, we elucidate how
the neutral stability of the network dynamics leads to these properties. The
investigated issues are (1) what the input noise components are that can
or cannot be cleaned by the dynamics of a continuous attractor and their
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Figure 1: An illustration of the structural difference between discrete and con-
tinuous attractors. (A) An example of a discrete point attractor. The system is
stable only at the bottom of the bowl. (B) An example of a line attractor, the one-
dimensional version of a continuous attractor. The stationary states of the system
form a one-dimensional valley. Along the valley, the system is neutrally stable.

effects on the performance of information retrieving; (2) what the tracking
speed of a continuous attractor is when external stimuli experience abrupt
changes; (3) how the neural correlation structure is shaped by the dynamics
of a continuous attractor; and (4) what the consequence is of this correla-
tion structure on statistical population decoding. We point out that some of
these issues have been studied in the literature: for instance, Amari (1977)
and Seung (1996) have pointed out that a continuous attractor retains the



Dynamics and Computation of Continuous Attractors 997

noise component only along the attractor space; Deneve et al. (1999) and Wu
et al. (2002) have studied the link between a continuous attractor and neural
population decoding; and Ben-Yishai et al. (1995), Spiridon and Gerstner
(2001), and Miller (2006) have also identified the asymmetric neural corre-
lation structure in continuous attractors. Compared with these studies, the
contribution of this work is that we will elucidate these properties in more
detail by giving formal analytical solutions.

A main challenge in analyzing the behavior of a large-size network is
to handle the extremely high dimensionality of the network dynamics.1

Here, by utilizing the specific nature of continuous attractors, we develop a
technique to reduce its dimensionality. This takes into account the facts that
neural population dynamics is extremely fast and that a continuous attrac-
tor can clean those noise components perpendicular to the attractor space
very quickly. Therefore, we can project the network dynamics onto the tan-
gent of the attractor space and simplify it to be a one-dimensional Ornstein-
Uhlenbeck (OU) process. Simulation results show that this method works
well.

Based on this simplified model, we then explore the decoding perfor-
mance of a continuous attractor under the driving of external noisy inputs.
In order to provide clues for checking experimently whether continuous at-
tractors are really applied in neural systems, we also investigate two general
properties associated uniquely with the dynamics of continuous attractors:
the tracking speed and the correlation structure between neural response
variabilities. It turns out that (1) the reaction time for a continuous attractor
catching upto abrupt stimulus change increases logarithmically with the
size of the stimulus change, and (2) the neural correlation is asymmetrical
with respect to the stimulus position. The latter finding agrees with those
in Ben-Yishai et al. (1995) and Miller (2006).

After obtaining the asymmetrical neural correlation, we further study
how this correlation structure affects statistical population decoding. In
experiments, we use a statistical inference method to reconstruct the stim-
ulus based on the recorded neural data without referring to the underly-
ing network dynamics. We particularly investigate an unfaithful decoding
strategy that ignores the neural correlation. We find that this method works
efficiently because the contributions of the positive and negative correlation
on the decoding error cancel each other.

The organization of the letter is as follows. In section 2, we introduce a
simple firing-rate-based model for a continuous attractor and analyze its
stationary states. In section 3, the dynamics of a continuous attractor under
the driving of noisy inputs is studied, and its tracking speed is quanti-
fied. In section 4, the decoding performance of a continuous attractor and
the correlation structure of neural activities are investigated. In section 5,

1Consider that each neuron has an independent input component with respect to oth-
ers; then the dimensionality of the network dynamics is equal to the number of neurons.
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simulation experiments on both firing-rate- and spiking-based models are
carried out to confirm the theoretical analysis. In section 6, we calculate
the performance of statistical population decoding when neural activities
are asymmetrically correlated. Finally, in section 7, we offer discussion and
conclusions about this work.

2 The Model

Although diverse models exist for a continuous attractor in the literature,
they all share two common features: (1) the network should have prop-
erly balanced excitatory and inhibitory interactions, so that it can hold
persistent activities after external inputs are removed, and (2) the neuronal
interactions should be translationally invariant, so that the network can
have a continuous family of stationary states. We start by considering a
simple firing-rate-based model for a continuous attractor. The advantage
of this model is that it allows us to compute the network dynamics
analytically, and its main conclusions can be extended to general cases,
since they depend on only the common features of continuous attractor.

Consider a one-dimensional continuous stimulus x encoded by an en-
semble of neurons. The neuronal preferred stimulus is denoted as c. We
assume c ∈ (−∞,∞) for convenience. The neurons are clustered according
to their preferred stimuli, mimicking a column structure. The clusters are
uniformly distributed in the parameter space c with density ρ. We denote
γc to be the firing rate of the cluster c and Uc the population-averaged input
(i.e., the synaptic drive as in Ermentrout, 1998, and Gutkin et al., 2003). The
interaction between the two clusters c and c ′ is written as Jc,c′ .

The dynamics of the network, in the unit of a cluster, is given by

τ
dUc

dt
=−Uc + ρ

∫
c′

Jc,c′γc′ dc ′ + I ext
c , (2.1)

γc = U2
c

1 + kρ
∫

c′ U2
c′ dc ′ , (2.2)

where k is a small, positive constant and I ext
c the external input. The pa-

rameter τ is the time constant for the population dynamics, which is on the
order of 1 ms (see the justification in appendix C or the relevant references:
e.g., Ermentrout, 1998, and Gutkin et al., 2003).

The recurrent interaction is set to be

Jc,c′ = J√
2πa

e−(c−c′)2/2a2
, (2.3)

where J is a constant that controls the magnitude of the recurrent inter-
actions. Jc,c′ is the decay function of the difference between the preferred
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stimuli of the clusters, (c − c ′). Here, Jc,c′ has only the excitatory compo-
nents. The contribution of inhibition is achieved indirectly through the
divisive normalization in equation 2.2.

When I ext
c = 0, the stationary states of the network, referred to as Ūc and

γ̄c , satisfy the following conditions:

Ūc = ρ

∫
c′

Jc,c′ γ̄c′ dc ′, (2.4)

γ̄c = Ū2
c

1 + kρ
∫

c′ Ū2
c′ dc ′ . (2.5)

It is straightforward to check that the network holds a continuous family
of nontrivial stationary states (Amari, 1977; Wu et al., 2002),

Ūc(z) = Aρ J√
2

e−(c−z)2/4a2
, (2.6)

γ̄c(z) = Ae−(c−z)2/2a2
, (2.7)

where A = (1 +
√

1 − 8
√

2πak/(J 2ρ))/(2
√

2πakρ), and z ∈ (−∞,∞) is a free
parameter.2 These states are of a gaussian bell shape and can be retained
after removing external inputs if 0 < k < J 2ρ/(8

√
2πa ) (note that k controls

the amount of inhibition). The parameter z is the peak position of the bump,
which indicates the network representation and decoding of the external
stimulus.

The stimulus information is conveyed to the neural system through the
external input I ext

c . In a conventional study, it is often assumed that I ext
c is

either a large transient or a small, constant input, which drives the network
to be stable at the position determined by Deneve et al. (1999) and Wu et al.
(2002):

x̂ = max
z

∫
c
γ̄c(z)I ext

c dc. (2.8)

In this study, we consider a more general case when I ext
c is time varying

and contains gaussian white noise. Without loss of generality, we choose

2The network has two sets of stationary states: one at A = (1 +
√

1 − 8
√

2πak/(J 2ρ))/

(2
√

2πakρ) and the other at A = 0 (the silent states). The network will be sustained at the

active states if the initial value A > (1 −
√

1 − 8
√

2πak/(J 2ρ))/(2
√

2πakρ).
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I ext
c to be of the following form (for a more general choice of I ext

c , see
appendix A),

I ext
c = αŪc(x) + σξc(t), (2.9)

where both α and σ are small, positive constants and ξc(t) is gaussian white
noise with zero mean and unit variance. The first term, αŪc(x), represents
the stimulus signal, whose contribution is to drive the system to the location
of the stimulus x. The second term, σξc(t), represents the input noise with
σ the noise strength. For simplicity, we assume ξc and ξc′ , for c �= c ′, are
independent to each other.

3 Dynamics of Continuous Attractor

In general it is difficult to solve the dynamics of a large, fully connected
network. Here, by utilizing the specific features of a continuous attractor,
we develop a strategy to assess its dynamics approximately.

To proceed, let us first check how neutral stability shapes the dynamics of
a continuous attractor. Consider the network state to be initially at a position
z. An input noise induces small fluctuations on the network state and the
stationary inputs, which are denoted as δγc(z) and δUc(z) for the cluster c,
respectively. Then, according to the stability conditions in equations 2.4 and
2.5, we have

δγc(z) =
∫

c′

∂γ̄c(z)
∂Ūc′ (z)

δUc′ (z)dc ′,

=
∫

c′,c′′

∂γ̄c(z)
∂Ūc′ (z)

ρ Jc′,c′′δγc′′ (z)dc ′dc ′′,

=
∫

c′
Fc,c′ (z)δγc′ (z)dc ′, (3.1)

where the matrix F(z) is calculated to be

Fc,c′ (z) = ρ

∫
c′′

∂γ̄c(z)
∂Ūc′′ (z)

Jc′,c′′ dc ′′

= Aρ2 J 2

B
√

πa
e−(c−z)2/4a2

e−(c−c′)2/2a2

− k A3ρ5 J 4

√
3B2

e−(c−z)2/2a2
e−(c′−z)2/6a2

, (3.2)

with B = 1 + A2 J 2
√

2πakρ3/2.
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Neutral stability implies that if the change of the network state is along
the attractor space (i.e., only the peak position is moved, whereas the
bump shape is unchanged), then the network is stable at the new posi-
tion; otherwise, the system will return to its original shape. Intuitively
stated, a continuous attractor will clean only those noise components that
are perpendicular to the attractor space. Mathematically, this means that
the matrix F(z) has one eigenvector whose eigenvalue is one and all other
eigenvalues are smaller than one. The eigenvector, belonging to unit eigen-
value, referred to as er (z), is along the tangent of the attractor space and is
dependent on the position z, whose component is given by

er
c (z) ∼ γ̄ ′

c (z),

= Dr (c − z)e−(c−z)2/2a2
, (3.3)

where Dr is a constant (the exact value of Dr is not important here). It
is straightforward to check that er is indeed the eigenvector of F with
eigenvalue unit (i.e.,

∫
c Fc,c′er

c′ dc ′ = er
c ).

The vector er (z) specifies the direction in the state space along which the
network state is neutrally stable. In the input space Ic , the corresponding
direction, referred to as eI (z), is given by

e I
c (z) ∼ Ū ′

c(z),

= DI (c − z)e−(c−z)2/4a2
, (3.4)

where DI is a constant. Similarly, it can be checked that eI is the eigenvec-
tor of the matrix, Gc,c′ = ∫

c′′ Jc,c′′ (∂γ̄c′/∂Ūc′′ )dc ′′, with eigenvalue unit (see
appendix B).

We note that the neural population dynamics, in the unit of a cluster, is
extremely fast, which is on the order of τ (1 ∼ 2 ms), much smaller than the
membrane time constant of single neurons (10 ∼ 20 ms) (see the justification
in appendix C). Combining this with the special stability of a continuous
attractor, it means that the network dynamics can clean those noise com-
ponents perpendicular to eI (z) very quickly. Thus, if the time window for
the neural system to read out the stimulus is sufficiently long (e.g., much
larger than τ ), we can reasonably assume the network dynamics is mainly
driven by the projection of external inputs on the direction eI (z) and ignore
the contribution of other components. This implies that the network bump
has only its position shifted, whereas its shape is unchanged. By this ap-
proximation, we reduce the dimensionality of the network dynamics from
the original value of infinity (since c ∈ (−∞,∞)) to unity.

Without loss of generality, we consider in what follows that the true
stimulus is at x = 0, and under the perturbation of external noise, the peak
position of the bump deviates from the stimulus position only weakly.
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Assuming the peak position is at z at time t, we project both sides of
equation 2.1 on the direction eI (z), and obtain

Left-hand side = τ

∫
c

dUc

dt
e I

c (z)dc,

=
[

τ AJ ρ

2
√

2a2

∫
c
(c − z)e−(c−z)2/4a2

e I
c dc

]
dz
dt

,

=
[

τ AJ ρ
√

π DI a
2

]
dz
dt

, (3.5)

and

Right-hand side = −
∫

c

(
Uc −

∑
c′

Jc,c′γc′

)
e I

c (z)dc + α

∫
c

Ūc(0)e I
c (z)dc

+ σ

∫
c
ξc(t)e I

c (z)dc,

= − AJ aρ
√

π DI

2
αz + σ (2π)1/4a3/2 DI ε(t). (3.6)

To obtain the above results, we have used two approximations: (1) the dis-
tortion of the bump from its stationary state is small, that is, Uc ≈ Ūc(z),
γc ≈ γ̄c(z), and (2) for |z| 	 a , by the first-order Taylor expansion, Ūc(0) ≈
Ūc(z) − zAJ ρ/(2

√
2a2 DI )e I

c (z). The second term in equation 3.6 is the pro-
jection of the input noise on eI (z), where ε(t) is the gaussian white noise of
zero mean and unit variance.

Combining the above results, we get,

τ
dz
dt

= −αz + βε(t), (3.7)

where β is a positive number and β2 is given by

β2 = σ 2∫
c[Ū ′

c(z)]2dc
,

= 4
√

2aσ 2

A2 J 2ρ2
√

π
. (3.8)

Equation 3.7 is the one-dimensional OU process for the peak position. The
meaning of this equation is straightforward: whenever the bump position
deviates from the true stimulus, the stimulus signal generates a force, −αz,
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that pulls the bump back to the stimulus position (z = 0). The noise effect,
βε(t), tends to shift the bump position randomly.

To solve equation 3.7, we define a new stochastic variable y(t) = eαt/τ z(t),
with y(0) = z(0) and z(0) being the initial bump position. It is easy to check
that

dy
dt

= β

τ
eαt/τ ε. (3.9)

Integrating this equation gives

y(t) = y(0) + β

τ

∫ t

0
eαt′/τ ε(t′)dt′. (3.10)

Thus, after averaging over many trials, we get

〈y(t)〉 = y(0), (3.11)

〈y(t)2〉 = y(0)2 + β2

2α
(e2αt/τ − 1). (3.12)

Finally by using the relationship z(t) = e−αt/τ y(t), we obtain

〈z(t)〉 = z(0)e−αt/τ , (3.13)

〈z(t)2〉= z(0)2e−2αt/τ + β2

2α
(1 − e−2αt/τ ). (3.14)

3.1 The Tracking Speed. With the simplified dynamical model,
equation 3.7, we can calculate the tracking speed of a continuous attrac-
tor. We consider a scenario that the stimulus value is abruptly changed
from the initial value z(0) to 0. We measure the reaction time for the system
to catch upto this change.

Note that when z is approaching zero, the driving force −αz becomes
smaller and smaller, which implies that when there is no noise, it takes
t → ∞ for the bump to reach the stimulus position. This, however, should
not be a problem in practice, since the neural system does not have to wait
for the bump to be exactly at z = 0 in order to make a judgment. Without
loss of generality, we assume that after the distance |z| is below a threshold
θ , a predefined small, positive number, the tracking is finished.

Because of noise, the reaction time of the network is given by the first
passage time for its bump position across the threshold θ . Following the
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standard procedure for solving the OU process (Tuckwell, 1988), we get the
mean of the reaction time T to be

〈T〉 = τ

α

√
π

∫ d2

d1

eu2
[1 + er f (u)]du, (3.15)

where d1 = −z(0)
√

ατ/β and d2 = −θ
√

ατ/β.
To see this relationship more clearly, we consider that the noise is suffi-

ciently small and can be ignored. Then equation 3.15 becomes

〈T〉 = τ

α
ln

|z(0)|
θ

. (3.16)

This equation reveals that the reaction time of a continuous attractor in-
creases logarithmically with the stimulus change (here, the size of change
is equal to |z(0)|). This logarithm relationship is intuitively understandable.
It comes from the fact that the driving force for the bump movement is
proportional to the discrepancy between the current bump position and the
stimulus value (see the first term on the right-hand side of equation 3.7): the
bump tends to move faster when it is far away from the stimulus and slower
when it is close. We further confirm this result by simulation in section 5.1.

Since the property of smooth tracking is uniquely associated with the
neutral stability of the dynamics of continuous attractors, we expect that
this logarithm reaction time can provide a clue for checking experimently
whether continuous attractors are actually applied in neural systems.

4 Computation of Continuous Attractor

We now assess the performance of a continuous attractor as a general model
for information retrieval. We consider that a neural estimator reads out the
stimulus based on the peak position of the bump.3 Two ways of collecting
data are distinguished: to infer the stimulus based on: the instant position
of the bump or the accumulated cluster activities over a period.

In the first case, the decoding result is given by z(t). From equations 3.13
and 3.14, we observe the following properties:

� The mean of z(t) is determined by the initial position of the bump,
which decays exponentially with time. When t → ∞, 〈z(t)〉 = 0, im-
plying that at long times, the decoding accuracy of continuous attrac-
tor is unbiased.

3Note that due to neutral stability of the network dynamics, it is the discrepancy of
the bump peak from the stimulus position that dominates the encoding error rather than
the distortion of the bump. We may use some more complicated population decoding
strategies, such as center of mass, template matching, or maximum likelihood inference,
to read out the stimulus, but the result will not be much different.
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� The mean square error,4 〈z(t)2〉, measures the discrepancy between the
true stimulus and the estimation at time t and has two parts. The first
is due to the initial position of the bump, which decays exponentially
with time. The second is the noise contribution, which increases with
time initially and saturates to a constant β2/(2α) when t → ∞. The
saturating constant is determined by the ratio between the noise (β2)
and the signal (α) strengths.

� When α = 0, that is, no stimulus signal, 〈z(t)2〉 = z(0)2 + β2t/τ , indi-
cating that the network state fluctuates on the attractor space like a
random walk.

� When the height of the bump is fixed (i.e., A, and also ak, is a constant),
the decoding error increases with the parameter a (note β2 ∼ a ; see
equation 2.7). This is understandable. The size of a determines the
range of excitatory interaction (see equation 2.3) and the tuning width
of neurons (see equation 2.7). The larger the value of a is, the quicker
the bump can be moved under the driving of external noise, indicating
“larger” neutral stability.5

� The decoding error decreases with signal strength α. This is intuitively
correct.

In the second case, more effort is required to compute the decoding
error. Let us denote the cluster activity observed by the estimator over a
time window T to be r (T), which is calculated to be

rc(T) = 1
T

∫ T

0
γc(t)dt. (4.1)

By using the approximation that the change of the network activity is
dominated by the bump position shift, we have

rc(T) ≈ 1
T

∫ T

0
γ̄c(z(t))dt,

≈ γ̄c(0) +
[

1
T

∫ T

0
z(t)dt

]
γ̄ ′

c (0),

= γ̄c(0) + h(T)γ̄ ′
c (0),

≈ γ̄c(h(T)), (4.2)

where h(T) = (
∫ T

0 z(t)dt)/T . In the above, we used the condition |z(t)| 	 a .

4Note that here we do not use variance, 〈(z − 〈z〉)2〉, to measure the decoding error.
This is because the initial pump position is unknown to the estimator, and it can have a
significant contribution on the decoding error.

5Intuitively, the bump movement is conducted through neuronal excitatory interac-
tions. Larger a implies the bump can be moved more quickly (Wu & Amari, 2005).
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The task of a neural estimator is to infer the stimulus value based on
{rc(T)} for all c values. Since {rc(T)} can be approximated as a smooth bump
centered at h(T), the decoding result there is h(T).

The averaged values of h(T) and h(T)2 are calculated to be

〈h(T)〉 = z(0)τ
αT

(1 − e−αT/τ ), (4.3)

〈h(T)2〉=
〈[

1
T

∫ T

0
z(t)dt

]2〉
,

= (z(0)τ )2

(αT)2 (1 − e−αT/τ )2 + β2τ

2α2T2

(
2T − 3τ

α
+ 4τ

α
e−αT/τ − τ

α
e−2αT/τ

)
,

=〈h(T)〉2 + Var(h(T)) (4.4)

where the average is over many trials and Var(h) denotes the variance of
h(T).

From equations 4.3 and 4.4, we observe the following properties:

� The mean of h(T) is determined by the initial position of the bump.
When T → ∞, 〈h(T)〉 = 0.

� When T is sufficiently large, 〈h(T)2〉 ∼ β2τ/(α2T). This means that the
decoding error, based on the accumulated cluster activities, decreases
with time, which is different from the result based on the instant po-
sition of the bump. This is understandable, since although noise can
shift the bump position randomly, by integrating over time, these fluc-
tuations are averaged out due to the memoryless nature of gaussian
white noise.

� When α = 0, 〈h(T)2〉 = z(0)2 + β2T/(3τ ), reflecting the consequence of
random walk.

It is worth noting that although in the second case the decoding accuracy
of the continuous attractor is improved, it is at the expense of delaying the
tracking speed of the network.

4.1 The Correlation Structure. The correlation between neuronal activ-
ities is an important quantity to measure in experiment to infer the mecha-
nism of brain functions. Here we investigate how the specific dynamics of
continuous attractor shapes the neural correlation form.

Consider that neural activities are recorded over a time window T ; the
cross-correlation between cluster activities is defined as

Rc,c′ (T) = 〈[rc(T) − 〈rc(T)〉][rc′ (T) − 〈rc′ (T)〉]〉. (4.5)
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By using the relationship in equation 4.2, we obtain

Rc,c′ (T) =〈[h(T) − 〈h(T)〉]2〉γ̄ ′
c (0)γ̄ ′

c′ (0)

= Var(h)A2cc ′

a4 e−c2/2a2
e−(c′)2/2a2

. (4.6)

This correlation structure exhibits an interesting feature: Rc,c′ is asym-
metric with respect to the stimulus x: when x = 0, Rc,c′ = −Rc,−c′ . It is
straightforward to check that when x �= 0, Rc,c′−x = −Rc,x−c′ . The clusters’
correlation is positive if their preferred stimuli are on the same side of the
stimulus: (c − x)(c ′ − x) > 0; otherwise it is negative. Mathematically, this
structure comes from that the bump γ̄c(x) is symmetrical with respect to
x, whereas γ̄ ′

c is asymmetrical (see equation 2.7). This is due to the fact
that the bump fluctuations are dominated by the bump’s position shift as
a consequence of the neutral stability of the network dynamics. Thus, this
property is associated with the specific dynamics of continuous attractors. It
can serve as an important clue for experimentally checking the application
of continuous attractors in neural systems.

5 Simulation Experiments

In this section, we give results of the simulation to further confirm our
theoretical analysis. Two types of model are considered: one based on the
firing rate model and the other on spiking neurons.

5.1 A Firing-Rate-Based Model. In this case, we do not consider the
responses of individual neurons, but rather focus on the the population-
averaged firing rates. The dynamics of the network is given by equations 2.1
and 2.2. We consider there are N = 101 clusters, whose preferred stimuli
are uniformly distributed in the range (−π, π]. The clusters’ interactions
are periodic, that is, Jc,c′ = Jc,c′′ if |c − c ′| = 2π − |c − c ′′|, where | · | denotes
the absolute value. In this case, the stationary states of the network will
not have the exact form as given by equations 2.4 and 2.5, but they are still
bell shaped. Also, since now the number of clusters is finite, the integration
in all the above calculations is replaced by the corresponding summation,
ρ

∫
c = 2π/N

∑
i . The parameters are set to be x = 0, τ = 1 ms, k = 10, J =

50, a = 0.5, α = 0.1, and σ 2 = 0.1. All simulation results are obtained by
averaging over 100 trials.

Figures 2A and 2B illustrate examples of the stationary states and
the synaptic drive of the network when there is no external input. They
can be well fitted as gaussian functions: γ̄c = 0.08e−(c−x)2/0.5 and Ūc =
2.75e−(c−x)2/1.125. Figure 3A first shows, when no stimulus signal exists,
how the mean squared discrepancy of the bump position with respect to its
initial location varies with time under the driving of gaussian white noise.
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Figure 2: (A) An example of the stationary state of the network centered at
z = 0. If approximated as a gaussian function, the width of the bump is 1. (B)
An example of the stationary synaptic drive centered at z = 0. The width of the
bump is 0.75.

We see that its value linearly increases with time, indicating the random
walk behavior. We then add the stimulus signal x = 0. Figure 3B shows that
the decoding error based on the instant position of the bump saturates to a
constant value. Depending on the initial position of the bump, the decoding
error may increase or decrease initially. Figure 3C shows that the decoding
error based on the accumulated cluster activities decreases with time. If
the initial bump position is very close to the true stimulus, the decoding
error increases with time initially. All of these observations agree with our
theoretical analysis in section 3.
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Figure 3: (A) When no stimulus signal exists, the bump position fluctuates
randomly under the driving of external noise. Its mean squared distance to the
initial location increases linearly with time, displaying the behavior of a random
walk. (B) When the stimulus signal x = 0 is added, the decoding error based
on the instant position of the bump saturates to a constant value. (C) When the
stimulus signal is added, the decoding error based on the accumulated cluster
activities decreases with time.
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Figure 4: Reaction time versus the size of abrupt stimulus change.

Figure 4 shows the reaction time of the network for catching upto differ-
ent sizes of abrupt stimulus change. We see that the reaction time increases
logarithmically with the change size, supporting the theoretical analysis in
section 3.1.

Figure 5 further illustrates the correlation structure between cluster ac-
tivities. We see that they indeed have the asymmetric shape with respect to
the stimulus position, agreeing well with our theoretical analysis.

5.2 A Spiking Neuron–Based Model. To further confirm that our the-
oretical analysis is applicable to general cases, we also carry out simulation
on a spiking neuron network. We consider that there are N = 64 clusters,
whose preferred stimuli are uniformly distributed in the range (−π, π] with
the periodic condition held. In each cluster, there are M = 64 neurons. The
connections between neurons are random and sparse; the probability for
two neurons being connected is ρc = 0.1. The connection strength between
two clusters c and c ′ is Jc,c′ . The dynamics of a single neuron is given by

τm
dvi

c

dt
= −(

vi
c − VL

) + I i
c + I ext

c + σξ i
c (t), (5.1)

τ
I i
c

dt
= −I i

c +
∑

c′

∑
j→i

J c,c′ Aj
c′ (t), (5.2)

where vi
c represents the membrane potentials of the ith neuron in the cluster

c and τm the membrane time constant. The parameter τ is the synaptic
current constant. We use Aj

c′ to denote the spike train generated by the
j th neuron in the cluster c ′, which can be written as Aj

c′ = ∑
m δ(t − tm),

with tm the firing moment of the mth spike. The symbol j → i indicates the
summation runs over all neurons connected to neuron i .
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Figure 5: The correlation structures between cluster activities. The cluster ac-
tivities are collected at T = 20 ms. (A) The correlation structure plotted in 3D.
(B) The correlation strengths between the cluster c = −0.4π and all others. (C)
The correlation strengths between the cluster c = 0.4π and all others.

We choose Jc,c′ to be of the Mexican hat type,

Jc,c′ = J0

NMρ
+ J1

NMρ
cos(c − c ′), (5.3)

where J0 and J1 are constants.
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Figure 6: (A) An example of the stationary state of the network centered at
z = 0. (B) An example of the stationary synaptic drive centered at z = 0. Uc =
1/M

∑
i I i

c .

We further choose the external input that contains the information of the
stimulus x to be

I ext
c = I ext

0 + I ext
1 cos(c − x). (5.4)

A neuron fires when its potential exceeds the threshold Vth = −55 mV
and subsequently resets to the resting potential Vreset = −65 mV. The re-
fractory period is 5 ms. The other parameters used in the simulation are
τm = 10 ms, τ = 2 ms, J0 = −149.5, J1 = 897, and σ = 10.

Figure 6 illustrates the examples of the stationary states and synaptic
drive of the network when no external input exists. Both exhibit a bell shape.
Figure 7 displays the computational properties of the network, which agree
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Figure 7: (A) When no stimulus signal exists, the bump position fluctuates
randomly under the driving of external noise. Its mean squared distance to
the initial location increases linearly with time, displaying the behavior of a
random walk. (B) When the stimulus signal exists, the decoding error based on
the instant position of the bump saturates to a constant value. Depending on
the initial position of the bump, the decoding error may increase or decrease
first. (C) When the stimulus signal exists, the decoding error based on the
accumulated cluster activities decreases with time.
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Figure 8: The correlation structures between cluster activities. (A) The correla-
tion structure plotted in 3D. (B) The correlation strengths between the cluster
c = −0.4π and all others. (C) The correlation strengths between the cluster
c = 0.4π and all others.

well with our theoretical analysis and the simulation results based on the
rate model shown in Figure 3. The correlation structure between clusters
is shown in Figure 8, which is asymmetric with respect to the stimulus
position as expected.
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6 Effect of Asymmetrical Correlation on Population Decoding

We have observed that the neuronal correlations in a continuous attrac-
tor exhibit a specific feature, that is, they are asymmetrical with respect to
the stimulus position. In this section, we investigate how this correlation
structure affects the performance of statistical population decoding. In ex-
periments, we use a statistical inference method to reconstruct the stimulus
based on the recorded neural activities without referring to the underlying
network dynamics.

The problem is formulated as follows. Consider a set of cluster activities,
r = {rc}, for all c values. Their mean values averaged over many trials are
given by r̄ = {r̄c}. For simplicity, we ignore at first the discrepancy of the
initial position of the bump from the stimulus value and assume r̄c = r̄c(x),
with x the stimulus value (if the initial discrepancy is considered, it should
be r̄c = r̄c(x + 〈h〉); see equation 4.3). According to the underlying dynamics
of the continuous attractor, the correlation matrix can be written as Rc,c′ =
Var(h(T))γ̄ ′

c (x)γ̄ ′
c′ (x) + σ 2

mδc,c′ (see equation 4.6, and consider that data are
collected over a time window T). Here, for generality, we also include a
term, σ 2

mδc,c′ , to represent the bump distortion and the measurement errors,
which are assumed to be independent gaussian noises of zero mean and the
variance σ 2

m. The probability of observing a particular set of cluster activities
r is given by

Q(r | x) = 1
Z

exp
[

− ρ2

2

∫ ∫
(rc − γ̄c)R−1

c,c′ (rc′ − γ̄c′ )dcdc ′
]
, (6.1)

where R−1 is the inverse of R.
We are particularly interested in using a simple unfaithful decoding strat-

egy to estimate the stimulus.6 This method ignores the neural correlation
and calculates the stimulus x by

x̂ = Max ln P(r | x),

= Min
∫

(rc − γ̄c)2dc,

= Max
∫

rcr̄cdc, (6.2)

6There are two main reasons. First, unfaithful decoding is more feasible in practice.
Faithful decoding needs full knowledge of the correlation structure, which itself depends
on the stimulus value. This makes faithful decoding difficult to implement. Second, as
shown later, a proper unfaithful decoding is already accurate enough.
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where the unfaithful model

P(r | x) = 1
Z

exp
[

− ρ

2

∫
(rc − γ̄c)2dc

]
. (6.3)

From equation 6.2, we see that this decoding strategy is actually the
template-matching method with r̄ the template.

Suppose the estimation x̂ is close enough to x. We expand ∇ ln P(r | x̂)
at x,

∇ ln P(r | x̂) ≈ ∇ ln P(r | x) + ∇∇ ln P(r | x)(x̂ − x). (6.4)

Since ∇ ln P(r | x̂) = 0, we have

(x̂ − x) ≈ − ∇ ln P(r | x)
∇∇ ln P(r | x)

,

= − R
S

. (6.5)

Here the variable R is calculated to be

R =∇ ln P(r | x),

= ρ

∫
[rc − γ̄c(x)]γ̄ ′

c (x)dc, (6.6)

where γ̄ ′
c (x) = dγ̄c/dx.

Its variance is given by

V[R] = ρ2
∫

γ̄ ′
c Rc,c′ γ̄ ′

c′ dcdc ′. (6.7)

The random variable S can be divided into two parts,

S = ∇∇ ln P(r | x),

= ρ

∫
[rc − γ̄c(x)]γ̄ ′′

c (x)dc − ρ

∫
(γ̄ ′

c (x))2dc,

= S1 + S2, (6.8)

where S2 is a constant and S1 is a random number of zero mean, with the
variance given by

V[S1] = ρ

∫
σ 2

c (γ̄ ′′
c )2dc + ρ2

∫
c �=c′

γ̄ ′′
c Rc,c′ γ̄ ′′

c′ dcdc ′, (6.9)

where σ 2
c = Rc,c , the variance of the activity of the cluster c.
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Since γ̄ ′′
c (x) is symmetric with respect to x, whereas Rc,c′ is asymmetric,

it is straightforward to check that the contribution of the cross-correlation
in equation 6.9 vanishes. Therefore, V[S1] is on the order of ρ, and S1/S2 ∼
ρ1/2. This implies that S1 can be neglected when the number of clusters is
large, and the decoding error asymptotically satisfies a gaussian distribution
with the variance given by

〈(x̂ − x)2〉≈ V[R]
(S2)2 ,

= ρ2
∫

γ̄ ′
c Rc,c′ γ̄ ′

c′ dcdc ′

ρ2[
∫

(γ̄ ′
c (x))2dc]2

,

= Var(h(T)) + σ 2
m

ρ
∫

(γ̄ ′
c (x))2dc

. (6.10)

It consists of two parts. The first part is equal to the decoding result based
on the peak position of the bump (see equation 4.4), which reflects the error
due to the neutral stability of the network dynamics and is independent
of the neuronal density ρ. The second part represents the error due to the
bump distortion and the measurement mistakes, which decreases with ρ. If
we include the effect due to the discrepancy of the initial position, the real
decoding error is given by 〈(x̂ − x)2〉 = Var(h) + (〈h〉)2 + σ 2

m/[ρ
∫

(γ̄ ′
c (x))2dc],

since in this case, γ̄c = γ̄c(x + 〈h〉).

Remarks. Understanding the effect of correlation on population coding is
important for us to elucidate theoretically the mechanism of neural infor-
mation processing. Recently two aspects of this issue have been intensively
studied: (1) whether correlation degrades the accuracy of population decod-
ing (see, e.g., Abbott & Dayan, 1999; Sompolinsky, Yoon, Kang, & Shamir,
2001; Wu et al., 2002) and (2) whether the correlation information can be
ignored in the decoding process (see, e.g., Wu, Nakahara, & Amari, 2001;
Wu et al., 2002; Nirenberg & Latham, 2003; Averbeck, Latham, & Pouget,
2006; Amari & Nakahara, 2006). In one study (Wu et al., 2002; Wu, Amari,
& Nakahara, 2004), Wu et al. found that a strong, positive correlation will
make a simple decoding method, such as template matching or center of
mass, inefficient.7 In another work, Sompolinsky et al. (2001) have shown
that negative correlation can increase the optimal population decoding ac-
curacy (based on an analysis of Fisher information). Here we observe that

7A population decoding method is inefficient if its decoding error satisfies the Cathy,
rather than the gaussian, distribution, and the variance of the decoding error averaged
over many trials diverges. Mathematically, this is due to that the cross-correlation term in
equation 6.9 is not small (Wu et al., 2002).



1018 S. Wu, K. Hamaguchi, and S. Amari

for the asymmetric correlation, the contributions of the negative and posi-
tive parts of the decoding error cancel each other (see equation 6.9), which
makes a simple decoding method efficient. Because continuous attractors
may be widely applied in neural systems, this finding can provide guidance
on designing a proper population decoding method.

7 Discussion and Conclusion

This study investigates the dynamics of a continuous attractor when ex-
ternal inputs are noisy and evaluates its performance as a general model
for information retrieval. In order to carry out the research, we develop a
strategy to reduce the dimensionality of the network dynamics by utilizing
the fact that a continuous attractor retains only the noise component along
the attractor space. Therefore, we project the network dynamics onto the
tangent of the attractor space and simplify it to be a one-dimensional OU
process. Based on this simplification, the computational behaviors of a con-
tinuous attractor are clear. We observe that (1) if the network decoding is
based on the instant position of the bump (i.e., fast decoding), then the de-
coding error saturates to a constant value determined by the ratio between
the signal and the noise strengths; and (2) if the decoding is based on the
accumulated neural activities (i.e., slow decoding), the error decreases with
time. The latter, however, is achieved at the expense of delaying the track
speed of a continuous attractor.

We also investigate two general properties associated with the unique
dynamics of continuous attractors: the logarithm reaction time and the
asymmetric neural correlation structure. We expect they can serve as im-
portant experimental clues for us to check whether continuous attractors
are actually applied in neural systems.

At first, it may appear that the logarithm reaction time is in contradiction
to the linear relationship as observed in many mental rotation experiments
(see, e.g., Shepard & Metzler, 1971). However, as already pointed out in
the literature (see, e.g., Shepard & Metzler, 1988; Koriat & Norman, 1989),
the mechanisms underlying mental rotation can be rather complicated and
may vary in different experimental settings. On the other hand, we find
encouraging evidence in a special type of mental rotation: backward align-
ment (Koriat & Norman, 1989). In this experiment, the human subjects
were instructed to judge whether the rotated letter or number is the one
just presented. The data showed that the reaction time of the subjects tends
to increases logarithmically with the rotation angle (since this experiment
was not designed for checking this property, it is not clear yet how accu-
rately the data fit the logarithm function). We will carry out psychophysical
experiments to clarify this point.

The asymmetric neural correlation is another salient feature that indi-
cates the specific dynamics of continuous attractors. A direct way to prove
this property is to measure the neural correlation in a computational task
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where a continuous attractor is likely to be involved, such as orientation
tuning and motion control (see, e.g., Montani, Kohn, Smith, & Schultz,
2007). Alternatively, we may use fMRI data to indirectly check this correla-
tion form. The idea is that since the voxel activities measured in fMRI are
associated with neural responses, the neural correlation structure may be
embedded in the corresponding voxel activities. We will carry out research
along these two lines to check our analysis.

Although our results are obtained by using an ideal mathematical model
for continuous attractors, they are qualitively applicable to general cases.
Consider, for instance, that in reality, the number of clusters and neurons is
finite and the network structure is often heterogeneous; in such a situation,
the attractor space of the network is no longer perfectly flat but will contain
many local minimums (Zhang, 1996; Seung, 1996; Renart, Song, & Wang,
2003). Nevertheless, if the distortion of the attractor space is sufficiently
small, then the direction along the attractor space still dominates the net-
work dynamics; that is, we can still reasonably approximate the network
dynamics as a one-dimensional OU process (Renart et al., 2003) and obtain
the main results in this work. We will firmly prove this point in our future
work.

We also analyze the effect of asymmetrical correlation on neural pop-
ulation coding and find that in this particular correlation structure, the
contributions of the positive and negative correlation on the decoding er-
ror cancel each other, leading a simple decoding method such as template
matching to be efficient.

Appendix A: On the Choice of Iext
c

In this study we have modeled the external signal as an input form that
drives the bump to be stable at the stimulus position. For convenience,
we have chosen I ext

c = Ūc(x), when no noise exists. In principle, we can
model the signal, referred to as Sc(x), by any unimodal function centered at
x and obtain the similar results. The only difference in calculation will be
the second term in equation 3.6, where Ūc(0) will be replaced by Sc(0).
Considering that z is sufficiently small, we have Sc(0) ≈ Sc(z) − zS′

c(z),
with S′

c = d Sc/dz. By utilizing the fact that Sc(z) is symmetric with re-
spect to z, and hence

∫
c Sc(z)e I

c (z)dc = 0, we will reach the same dynam-
ical equation as equation 3.7, except that the value of β is given by
β2 = σ 2

∫
c[e I

c (z)]2dc/[
∫

c S′
c(z)e I

c (z)dc]2.

Appendix B: The Neutral Direction in the Input Space

We can similarly calculate the direction in the input space, on which the
projection of external inputs has a sustained effect on the stationary state of
the network.
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According to the stability conditions in equations 2.4 and 2.5, we have

δUc(z) =
∫

c′

∂Ūc(z)
∂γ̄c′ (z)

δγc′ (z)dc ′,

=
∫

c′,c′′
ρ Jc,c′

[
2Ūc′

B
δ(c ′ − c ′′) − 2kρŪ2

c′Ūc′′

B2

]
δUc′′ dc ′dc ′′,

=
∫

c′
Gc,c′ (z)δUc′ (z)dc ′, (B.1)

where the matrix G(z) is calculated to be

Gc,c′ (z) =
∫

c′′
ρ Jc,c′′

[
2Ūc′′

B
δ(c ′ − c ′′) − 2kρŪ2

c′′Ūc′

B2

]
dc ′′

= AJ 2ρ2

B
√

πa
e−(c−c′)2/2a2

e−(c′−z)2/4a2

− k A3ρ5 J 4

√
3B2

e−(c−z)2/6a2
e−(c′−z)2/2a2

. (B.2)

We check that eI is indeed the eigenvector of G with the eigenvalue being
one:

∫
c′

Gc,c′e I
c′ dc ′ =

∫
c′

AJ 2ρ2 DI

B
√

πa
e−(c−c′)2/2a2

e−(c′−z)2/4a2
(c ′ − z)e−(c′−z)2/4a2

dc ′,

= AJ 2ρ2 DI

B
√

πa
e−(c−z)2/4a2

∫
c′

(c ′ − z)e−[(c′−z)−(c−z)/2]2/a2
dc ′,

= AJ 2ρ2 DI

B
√

πa
e−(c−z)2/4a2

∫
l
[(c − z)/2 + l]e−l2/a2

dl,

= AJ 2ρ2 DI

2B
(c − z)e−(c−z)2/4a2

,

= e I
c . (B.3)

In the above we used the condition AJ 2ρ2/(2B) = 1 due to the stability
constraint of equation 2.5.

Appendix C: From Spiking- to Rate-Based Models

Here we show an example for linking a spiking-neuron-based attractor
model to a firing-rate-based one. Much of this knowledge has been re-
ported in the literature (see, e.g., Ermentrout, 1998; Gerstner, 2000; Gutkin
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et al., 2003). We include this part for completeness of the work and also for
clarifying the meaning of several important parameters in our model.

C.1 The Dynamics of a Single Neuron. We consider that the dynamics
of a single neuron is given by

τm
dvi

c

dt
= −vi

c + ρ

∫
c′

I i
c,c′ dc ′ + I i,ext

c , (C.1)

where vi
c represents the membrane potential of the ith neuron in the cluster

c. The parameter τm is the membrane time constant, which is typically on
the order of 10 to 20 ms. I i

c,c′ is the recurrent input coming from the cluster
c ′. I i,ext

c is the external input.
We consider that the number of neurons in each cluster is N. Each neu-

ron has, on average, M random connections to neurons in each of other
clusters. The connection is sparse in the sense that the connection density
ρc = M/N 	 1. The connection strength between two connected neurons
in the clusters c and c ′ is Jc,c′ . Here, we do not distinguish excitatory and
inhibitory neurons. Their effects are combined by using the Mexican hat
form of Jc,c′ .

We denote Aj
c′ (t) the discrete spike train generated by the j th neuron in

the cluster c ′, which can be written as

Aj
c′ (t) =

∑
m

δ
(
t − t j

m

)
, (C.2)

where t j
m is the firing moment of the mth spike of this neuron.

The postsynaptic current generated by a spike firing at time s is given by

α(t − s) = 1
τ

e−(t−s)/τ H(t − s), (C.3)

where H(t − s) is the Heaviside function, which equals one when t > s and
zero otherwise. The parameter τ is the synaptic current constant, whose
value is typically on the order of 1 ms.

With the above notations, the recurrent input I i
c′,c is written as

I i
c,c′ (t) =

∑
j→i

J c,c′

∫ t

−∞
α(t − s)Ac′, j (s)ds, (C.4)

where the summation runs over those neurons in the cluster c ′ that have
connections to the neuron i in the cluster c, illustrated by j → i .



1022 S. Wu, K. Hamaguchi, and S. Amari

Thus, the total synaptic drive to neuron i in cluster c is given by

ui
c(t) = ρ

∫
c′

I i
c,c′ dc ′ + I i,ext

c (t),

= ρ

∫
c′

Jc,c′
∑
j→i

∫ t

−∞
α(t − s)Ac′, j (s)dsdc ′ + I i,ext

c . (C.5)

C.2 The Dynamics of a Cluster. To maintain persistent activity in a
spiking neuron network, it is important that neurons fire irregularly. Here
we consider that this condition already holds and define the firing rate of a
cluster to be

rc(t) = lim
t→0

nc(t)
t

, (C.6)

where nc(t) is the number of spikes generated in cluster c in a time window
t.

Furthermore, we define the averaged synaptic drive to a cluster as

Uc(t) = 1
N

∑
i

ui
c(t). (C.7)

We take into account two properties of the network dynamics: (1)
that since neurons are randomly connected, the number of spikes re-
ceived by the neuron i from the cluster c ′ is approximately given by∑

j→i Ac′, j (t) ∼ ρcrc′ (t); and (2) that because of sparse connectivity, the
inputs to two neurons in the same cluster can be regarded as being
largely independent of each other. According to the law of large num-
bers, 1/N

∑
i
∑

j→i Ac′, j (t) ≈ ρcrc′ (t) + O(1/
√

N). With the two properties,
we obtain

Uc(t) = ρρc

∫
c′

Jc,c′

∫ t

−∞
α(t − s)γc′ (s)dsdc ′ + I ext

c , (C.8)

where I ext
c = (

∑
i I i,ext

c )/N, representing the common input and the common
noise to the cluster c (independent noise components are averaged out due
to large N).

Finally, by differentiating Uc(t) with respect to t, we obtain

τ
dUc

dt
= −Uc + ρρc

∫
c′

Jc,c′γc′ dc ′ + I ext
c . (C.9)

Without loss of generality, we can absorb the connection density ρc into
Jc,c′ . Then the above equation returns to equation 2.1 in our model. Note
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here that the time constant for the cluster dynamics is τ rather than τm,
indicating that the population dynamics is much faster than that of single
neurons.

In principle, we should be able to solve the cluster dynamics with the
knowledge of a single neuron’s dynamics and the profile of neuronal con-
nections. But in practice, this is difficult. In order to illustrate network
properties, we often start by assuming that the relationship between the
synaptic drive and the cluster activity is known, for example,

rc = gc(Uc), (C.10)

where gc is a properly defined gain function, and confirm the obtained
result by simulation. In our model, we assume the gain function is given by
equation 2.2.
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