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We considered a gamma distribution of interspike intervals as a statistical
model for neuronal spike generation. A gamma distribution is a natural
extension of the Poisson process taking the effect of a refractory period
into account. The model is specified by two parameters: a time-dependent
firing rate and a shape parameter that characterizes spiking irregularities
of individual neurons. Because the environment changes over time, ob-
served data are generated from a model with a time-dependent firing
rate, which is an unknown function. A statistical model with an un-
known function is called a semiparametric model and is generally very
difficult to solve. We used a novel method of estimating functions in in-
formation geometry to estimate the shape parameter without estimating
the unknown function. We obtained an optimal estimating function an-
alytically for the shape parameter independent of the functional form of
the firing rate. This estimation is efficient without Fisher information loss
and better than maximum likelihood estimation. We suggest a measure
of spiking irregularity based on the estimating function, which may be
useful for characterizing individual neurons in changing environments.

1 Introduction

The firing patterns of cortical neurons look very noisy (Holt, Softky, Koch, &
Douglas, 1996), so probabilistic models are necessary to describe them (Cox
& Lewis, 1966; Sakai, Funahashi, & Shinomoto, 1999; Tuckwell, 1988). For
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example, Baker and Lemon (2000) showed that the firing patterns recorded
from motor areas can be explained using a continuous-time rate-modulated
gamma process. Their model had a rate parameter ξ and a shape parameter
κ related to spiking irregularity. ξ was assumed to be a function of time
because it depended strongly on the behavior of the monkey. κ was assumed
to be unique to individual neurons and constant over time.

The assumption that κ is unique to individual neurons is also supported
by other studies (Shinomoto, Miura, & Koyama, 2005; Shinomoto, Miyazaki,
Tamura, & Fujita, 2005; Shinomoto, Shima, & Tanji, 2003). However, these
indirect supports are not conclusive. Therefore, we need to accurately esti-
mate κ to make the assumption more reliable. If the assumption is correct,
neurons may be identified by κ estimated from the spiking patterns, and
κ may provide useful information about the function of a neuron. In other
words, it may be possible to classify neurons according to functional firing
patterns rather than static anatomical properties. Thus, it is very important
to accurately estimate κ in the field of neuroscience.

In reality, however, it is very difficult to estimate all the parameters in the
model from the observed spike data. The reason is that the unknown func-
tion for the time-dependent firing rate ξ (t) has infinite degrees of freedom.
This kind of estimation problem is called a semiparametric model (Bickel,
Klaassen, Ritov, & Wellner, 1993; Groeneboom & Wellner, 1992; Pfanzagl,
1990; van der Vaart, 1998) and is generally very difficult to solve. Are there
any ingenious methods of estimating κ accurately to overcome this diffi-
culty?

Ikeda (2005) pointed out that the problem we need to consider is the
semiparametric model. However, the problem remains unsolved. There
is a method called estimating functions (Godambe, 1960, 1976, 1991;
Mukhopadhyay, 2004) for semiparametric problems, and a general the-
ory has been developed (Amari, 1987; Amari & Kawanabe, 1997; Amari &
Kumon, 1988) from the viewpoint of information geometry (Amari, 1982,
1985, 1998; Amari, Kurata, & Nagaoka, 1992; Amari & Nagaoka, 2001; Mur-
ray & Rice, 1993). However, the method of estimating functions cannot be
applied to our problem in its original form.

In this letter, we consider the semiparametric model suggested by Ikeda
(2005) instead of the continuous-time rate-modulated gamma process. In
this discrete-time rate-modulated model, the firing rate varies in time but as-
sumes a fixed value during each interspike interval. This model is a mixture
model and can represent various types of interspike interval distributions
by adjusting its weight function. For our model, the difficulty of semipara-
metric models can be explained as follows. If one parameterizes the rate
function to be estimated in a manner that does not make assumptions about
its form, one needs one parameter for each spike. But then one has more
parameters than data. Then there are more parameters than data points,
unless there are repeated measures over the same time period. In spite of
this difficulty, κ can be estimated by assuming that we have (at least) two
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observations at each rate and using the method of estimating functions for
semiparametric models, in which we do not need to estimate the firing rate.

Various attempts have been made to solve semiparametric models.
Neyman and Scott (1948) pointed out that the maximum likelihood method
does not generally provide a consistent estimator when the number of pa-
rameters increases in proportion to that of observations. In fact, we show
that maximum likelihood estimation for our problem is biased. Ritov and
Bickel (1990) and Bickel et al. (1993) considered asymptotic attainability
of information bound purely mathematically. However, their results are
not practical for application to our problem. Amari and Kawanabe (1997)
showed a practical method of estimating a finite number of parameters
without estimating an unknown function. This is the method of estimating
functions. If this method can be applied, then κ can be estimated consis-
tently independently of the functional form of a firing rate.

In this article, we show that the model we consider here belongs to
the class of the exponential form defined by Amari and Kawanabe (1997).
However, an estimating function does not exist unless multiple observa-
tions are given for each firing rate ξ . We show that if multiple observations
are given, the method of estimating functions can be applied. In that case,
the estimating function of κ can be analytically obtained, and κ can be es-
timated consistently independently of the functional form of a firing rate.
In general, estimation using estimating functions is not efficient. However,
for our problem, this method yielded an optimal estimator in the sense
of Fisher information (Amari & Kawanabe, 1997). That is, we obtained an
efficient estimator whose mean-square error is asymptotically the smallest.
The estimator generalizes well even when the assumptions of the model are
violated. We suggest a measure of spiking irregularity based on the estimat-
ing function, which may be useful for characterizing individual neurons in
the case where only a single observation is given for each firing rate.

2 Maximum Likelihood Estimation

2.1 Simple Case. We consider the following gamma distribution, which
is defined as

q (T; ξ, κ) = (ξκ)κ

�(κ)
Tκ−1e−ξκT , (2.1)

where the random variable T denotes an interspike interval. We generate
interspike intervals from the distribution and align them to make a spike
train. The mean and variance of the interspike intervals are

{
Ex(T) = 1

ξ

Var(T) = 1
ξ 2κ

.
(2.2)
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Figure 1: Probability densities of gamma distributions for various κ with ξ = 1.

ξ is the mean firing rate, and κ is called a shape parameter. κ = 1 corre-
sponds to a Poisson process in which the instantaneous firing rate (hazard
function) is constant over time independent of the previous firing time. In
this case, a spike train looks irregular. When κ is large, a gamma distribution
can be approximated by a normal distribution, whose variance decreases
with increasing κ . In the limit of large κ , the interspike intervals become
completely regular. Thus, κ is related to spiking irregularities. Figure 1 plots
the probability densities of gamma distributions for various κ . We can scale
T so that ξ = 1 because ξ always appears as ξT in q (T; ξ, κ).

We assume that ξ changes over time under changing environments.
One may assume that ξ is generated for each T from a probability density
k(ξ ), whose functional form is unknown. Let ξ (l) be the lth firing rate and
T (l) be the lth observation of an interspike interval. Thus, we have N + 1
parameters {ξ (1), ξ (2), . . . , ξ (N), κ} and N observations {T (1), T (2), . . . , T (N)}.
The purpose is to estimate κ that may be unique to individual neurons by
the method of maximum likelihood estimation. Here we estimate all the
parameters because we need all ξ (l)’s to estimate κ .

The likelihood that T (l)’s are generated from the gamma distribution
with {ξ (1), ξ (2), . . . , ξ (N), κ} is given by

L =
N∏

l=1

q (T (l); ξ (l), κ). (2.3)
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In maximum likelihood estimation, we choose the parameter values that
maximize the likelihood. Without loss of generality, we can consider the
maximization of the log likelihood:

log L =
N∑

l=1

log q (T (l); ξ (l), κ). (2.4)

The estimated parameters must satisfy

∂

∂κ
log L =

N∑
l=1

u(T (l) : ξ (l), κ) = 0 and (2.5)

∂

∂ξ (l)
log L = v(T (l); ξ (l), κ) = 0 (2.6)

for all l, where the score functions for q (T; ξ, κ) are defined as

u(T; ξ, κ) = ∂

∂κ
log q (T; ξ, κ)

= 1 − ξT + log T + log(κξ ) − φ(κ) and (2.7)

v(T; ξ, κ) = ∂

∂ξ
log q (T; ξ, κ) = κ

ξ
− κT, (2.8)

where the digamma function φ(κ) is defined using the gamma function �(κ)
as

φ(κ) = �′(κ)
�(κ)

. (2.9)

The parameters are estimated by solving these equations as

κ̂ =∞ and (2.10)

ξ̂ (l) = 1
T (l)

(2.11)

for all l.
This result can be understood intuitively as follows. When the mean

µ and variance σ of a normal distribution are estimated from a single
observation x, they are estimated as µ̂ = x and σ̂ = 0. Similarly, ξ and κ

of a gamma distribution q (T; ξ, κ) are estimated from a single observation
T as ξ̂ = 1

T and κ̂ = ∞ corresponding to zero variance. Thus, two or more
observations are required to estimate κ .
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2.2 Cases with Multiple Observations for Each ξ . Next we consider the
case where m observations are given for each ξ (l), which may be distributed
according to k(ξ ). Let {T} = {T1, . . . , Tm} be the m observations, which are
generated from the same distribution specified by ξ and κ . We have N such
observations {T (l)}, l = 1, . . . , N, with a common κ and different ξ (l). Thus,
{T (l)

1 , . . . , T (l)
m } are generated from the same firing rate ξ (l). Let us take one

{T}. The probability model can be written as

p({T}; ξ, κ) =
m∏

i=1

q (Ti ; ξ, κ). (2.12)

In this case, the score functions for p({T}; ξ, κ) become

u = ∂

∂κ
log p({T}; ξ, κ)

=
m∑

i=1

(1 − ξTi + log Ti + log(κξ ) − φ(κ)) and (2.13)

v = ∂

∂ξ
log p({T}; ξ, κ) =

m∑
i=1

(−κξ + κξ 2Ti ). (2.14)

Note that a score function is defined as the derivative of log likelihood with
respect to a parameter. Then κ can be estimated by solving the equation as

N∑
l=1

m∑
i=1

(log T (l)
i + log(κ̂ ξ̂ (l)) − φ(κ̂)) = 0, (2.15)

where

ξ̂ (l) = 1
1
m

∑m
i=1 T (l)

i

(2.16)

for all l.
As we show numerically later, the maximum likelihood estimator is bi-

ased even when an infinite number of observations is given (N → ∞) for a
fixed m. In general, in the case where the number of parameters is finite, the
maximum likelihood estimator gives an asymptotically consistent estima-
tor. However, as Neyman and Scott (1948) pointed out, when the number
of parameters increases with increasing observations, the maximum like-
lihood estimator is not necessarily asymptotically consistent. To obtain an
unbiased estimator of κ , we use the method of estimating functions in what
follows.
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Figure 2: Schematic diagram for finding estimating functions from the
viewpoint of information geometry. u⊥ can be obtained by projecting u so
that u⊥ and v’s are orthogonal to each other. In information geometry, score
functions are represented as tangent vectors. The cone T N represents the mul-
tidimensional space spanned by v’s. The cone T E represents the multidimen-
sional space spanned by u⊥’s. Although T E is one-dimensional in our model,
it can be multidimensional in general. The cone T A represents the zero-mean
functions of T that are orthogonal to both T N and T E . Note that in information
geometry for semiparametric models, tangent vectors are functions and span
an infinite-dimensional Hilbert space.

3 Theory of Estimating Functions

We introduce the information-geometric theory of estimating functions de-
veloped by Amari and Kawanabe (1997). Their method is based on the
global geometry of families of probability distributions (see Figure 2) and
provides a general method for finding unbiased estimators for semipara-
metric problems. However, here we summarize only necessary conditions
for obtaining the estimator for our problem.

Let p(x; θ, k) be a probability density function of a random variable x,
where the parameter of interest θ is a scalar and the nuisance parameter k
is an infinite-dimensional parameter, typically a function. The purpose is to
estimate θ consistently without estimating k.

A function y(x, θ ) that does not depend on k is called an (unbiased)
estimating function when it satisfies, for all k,

Eθ,k[y(x, θ )] = 0, (3.1)
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where Eθ,k denotes the expectation with respect to p(x; θ, k). When a
nontrivial estimating function exists, we have an estimator θ̂ of θ by solving

N∑
l=1

y(x(l), θ̂ ) = 0, (3.2)

where {x(1), . . . , x(N)} are N independent observations. As this sample aver-
age approximates the expectation with respect to the true probability, if the
number of observations is large enough, θ can be estimated asymptotically.

In the maximum likelihood estimation, the interest score function

u(x, θ, k) = ∂

∂θ
log p(x; θ, k) (3.3)

played the role of an estimating function in equation 2.5 provided k is
known. Note that an interest score function is defined as the derivative
of log likelihood with respect to a parameter of interest, which we want to
estimate. When k is unknown, the interest score function is not an estimating
function in its original form. By differentiating equation 3.1 with respect to
k, we get

Eθ,k[v y(x, θ )] = 0, (3.4)

where

v(x, θ, k) = ∂

∂k
log p(x; θ, k) (3.5)

is the functional derivative (Fréchet derivative). We call v a nuisance score
function because it is the derivative of log likelihood with respect to a
“nuisance” parameter, which we do not need to estimate. We define an
inner product as

a · b = Eθ,k[a b]. (3.6)

Then equation 3.4 means that y(x, θ ) must be orthogonal to all v’s. Note
that v is infinite-dimensional when k is a function.

Let us first consider an easier example where k is a scalar. In this case,
we can construct y(x, θ ), which is orthogonal to v by projection in the sense
of probability as shown in Figure 2. The projection is given as

u⊥ = u − u · v

v · v
v. (3.7)
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In fact, we have

Eθ,k[u⊥] = Eθ,k[u] − u · v

v · v
Eθ,k[v] = 0 and (3.8)

u⊥ · v = u · v − u · v

v · v
v · v = 0, (3.9)

where the expectations of the score functions are 0 as

Eθ,k[u] = ∂

∂θ

∫
p(x; θ, k)dx = 0. (3.10)

When k is a function, v is infinite-dimensional, and the projection is very
difficult to obtain in the closed form except for the case of the mixture model
of an exponential form,

p(x; θ, k) =
∫

q (x; ξ, θ )k(ξ )dξ, (3.11)

where

q (x; ξ, θ ) = exp{ξ · s(x, θ ) + r (x, θ ) − ψ(θ, ξ )}. (3.12)

In this mixture model, {ξ (1), ξ (2), . . .} is an unknown sequence where ξ is
independently and identically distributed (i.i.d.) according to a probability
density function k(ξ ). Then lth observation x(l) is distributed according to
q (x(l); ξ (l), θ ). In effect, x is i.i.d. according to p(x; θ, k).

The nuisance score function for this model is given as follows. The small
deviation of k(ξ ) in the direction of a (ξ ) can be represented by a curve k(ξ, t)
starting from k(ξ ),

k(ξ, t) = k(ξ ) + ta (ξ ), (3.13)

where t (0 ≤ t < ε) is the parameter of the curve. The nuisance score function
in the direction of a (ξ ) is

v = d
dt

log p(x; θ, k)|t=0 =
∫

a (ξ ) exp(ξ · s − ψ(θ, ξ ))dξ∫
k(ξ ) exp(ξ · s − ψ(θ, ξ ))dξ

. (3.14)

Note that the nuisance score functions depend on x only through s(x, θ ).
Thus, the vector space spanned by nuisance scores is generated by the
random variable s(x, θ ). In this case, we have an estimating function as

uI = u − Eθ,k[u|s], (3.15)
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where Eθ,k[u|s] is the conditional expectation of u conditioned on s. In fact,
uI is orthogonal to any function of s(x, θ ) because

Eθ,k[uI f (s)] =
∫

Eθ,k[uI f (s)|s]p(s)ds =
∫

Eθ,k[uI |s] f (s)p(s)ds = 0.

(3.16)

It has been shown that the projected score function gives an optimal esti-
mator when we estimate only one of many parameters. Thus, uI gives an
efficient estimating function for θ if it does not depend on k(ξ ) (Amari &
Kawanabe, 1997; Bickel et al., 1993).

There is a special case when ∂θ s is a function of s. In this case, the
estimating function becomes simple as

uI = {∂θ s − E[∂θ s|s]} · Eξ [ξ |s] + ∂θr − E[∂θr |s]

= ∂θr − E[∂θr |s], (3.17)

where

Eξ [ξ |s] =
∫

ξk(ξ ) exp(ξ · s − ψ)dξ∫
k(ξ ) exp(ξ · s − ψ)dξ

. (3.18)

4 Estimation by Estimating Functions

4.1 Simple Case. We considered the following statistical model of inter-
spike intervals proposed by Ikeda (2005). Interspike intervals are distributed
according to a gamma distribution whose mean firing rate changes over
time. The mean firing rate ξ at each time is determined randomly according
to an unknown probability density k(ξ ). To demonstrate that the model is
of the exponential form defined by Amari and Kawanabe (1997), we define
s, r , and ψ as

s(T, κ) = −κT, (4.1)

r (T, κ) = (κ − 1) log(T), and (4.2)

ψ(κ, ξ ) = −κ log(ξκ) + log �(κ). (4.3)

Here, T denotes an interspike interval. The model is described by

p(T; κ, k(ξ )) =
∫

q (T; ξ, κ)k(ξ )dξ, (4.4)
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where

q (T; ξ, κ) = (ξκ)κ

�(κ)
Tκ−1e−ξκT = eξs(T,κ)+r (T,κ)−ψ(κ,ξ ). (4.5)

Note that this type of model is called a semiparametric model because it
has both an unknown finite parameter κ , which is a scalar in this case, and
a function k(ξ ).

To estimate κ without estimating k(ξ ), let us calculate the estimating
function according to the method shown in the previous section. It was
shown there that for the mixture distributions of an exponential form, the
estimating function uI is given by the projection of the score function,
u = ∂κ log p, as

uI (T, κ) = u − E[u|s]

= (∂κs − E[∂κs|s]) · E[ξ |s] + ∂κr − E[∂κr |s]

= ∂κr − E[∂κr |s], (4.6)

where the relation

E[∂κs|s] = s
κ

= −T = ∂κs (4.7)

holds because the numbers of random variables T and s are the same. For
the same reason,

E[∂κr |s] = log(T) = ∂κr. (4.8)

Then,

uI = 0. (4.9)

This means that the set of estimating functions is empty. The restrictions
imposed on uI are the necessary conditions that the estimating function
must satisfy by definition (Amari & Kawanabe, 1997). Therefore, we have
proved that no estimating function of κ exists for the model.

Two or more random variables may be needed. We may generalize the
model such that ξi ’s are not independently generated but are related. Let
us consider the multivariate model described by

p(T1, . . . , Tn; κ, k(ξ1, . . . , ξn)) =
∫ n∏

i=1

q (Ti ; ξi , κ)k(ξ1, . . . , ξn)dξ. (4.10)
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In this case, si , r , and ψ are defined as

si (T, κ) =−κTi , (4.11)

r (T, κ) = (κ − 1)
n∑

i=1

log(Ti ), and (4.12)

ψ(κ, ξ ) =−κ

n∑
i=1

log(ξiκ) + n log �(κ). (4.13)

The numbers of random variables Ti ’s and si ’s are also the same. Then uI

becomes an empty set. This result implies that two or more observations
are needed for each ξ .

4.2 Cases with Multiple Observations for Each ξ . Let us consider the
case where we have multiple observations for each ξ . Here, a consistent
estimator of κ exists.

Let {T} = {T1, . . . , Tm} be the m observations that have the same firing
rate ξ . The probability model can be written as

p({T}; κ, k(ξ )) =
∫ m∏

i=1

q (Ti ; ξ, κ)k(ξ )dξ, (4.14)

where

m∏
i=1

q (Ti ; ξ, κ) =
m∏

i=1

(ξκ)κ

�(κ)
Tκ−1

i e−ξκTi = eξ ·s({T},κ)+r ({T},κ)−ψ(κ,ξ ). (4.15)

We define s, r , and ψ as

s({T}, κ) =−κ

m∑
i=1

Ti , (4.16)

r ({T}, κ) = (κ − 1)
m∑

i=1

log(Ti ), and (4.17)

ψ(κ, ξ ) =−mκ log(ξκ) + m log �(κ). (4.18)

Then the estimating function is given by

uI ({T}, κ) = u − E[u|s]

= (∂κs − E[∂κs|s]) · E[ξ |s] + ∂κr − E[∂κr |s]
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= ∂κr − E[∂κr |s]

=
m∑

i=1

log(Ti ) −
m∑

i=1

E[log(Ti )|s]

=
m∑

i=1

log(Ti ) − mE[log(T1)|s], (4.19)

where we used

E[∂κs|s] = s
κ

= ∂κs. (4.20)

The last equality in equation 4.19 holds because of the permutation sym-
metry among T ’s. The conditional expectation of log T1 is given as (see the
appendix)

E[log(T1)|s] = log
(
− s

κ

)
− φ(mκ) + φ(κ), (4.21)

where the digamma function is defined as

φ(κ) = �′(κ)
�(κ)

. (4.22)

Note that E[log(T1)|s] does not depend on the unknown function k(ξ ). Thus,
we have

uI ({T}, κ) =
m∑

i=1

log(Ti ) − m log

(
m∑

i=1

Ti

)
+ mφ(mκ) − mφ(κ). (4.23)

The form of uI can be understood as follows. If we scale T as t = ξT , we
have E[t] = 1. Then we can show that uI does not depend on ξ because

m∑
i=1

log(Ti ) − m log

(
m∑

i=1

Ti

)
=

m∑
i=1

log(ti ) − m log

(
m∑

i=1

ti

)
. (4.24)

This implies that we can estimate κ without estimating ξ .
κ can be estimated consistently from N independent sets of observations,
{T (l)} = {T (l)

1 , . . . , T (l)
m }, l = 1, . . . , N, as the value of κ that solves

N∑
l=1

uI ({T (l)}, κ̂) = 0. (4.25)
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In fact, the expectation of uI is 0 independent of k(ξ ):

E[uI ] =
∫

E[u − E[u|s]|s]p(s)ds = 0 (4.26)

uI yields an efficient estimating function. An efficient estimator is one whose
variance attains the Cramér-Rao lower bound asymptotically. Thus, there
is no estimator of κ whose mean square estimation error is smaller than
that given by uI . As uI does not depend on k(ξ ), it is the optimal esti-
mating function whatever k(ξ ) is, or whatever the sequence ξ (1), . . . , ξ (N)

is.
Maximum likelihood estimation for this problem gives an estimating

function as

uML E =
m∑

i=1

log(Ti ) + m log(ξ̂ ) + m log κ − mφ(κ), (4.27)

where

1
ξ̂

= 1
m

m∑
i=1

Ti . (4.28)

uML E is similar to uI but different in terms of the constant

uML E − uI = m log(mκ) − mφ(mκ). (4.29)

As a result, the maximum likelihood estimator κ̂ is biased.
Figure 3 shows the biases for the maximum likelihood estimation and

the proposed estimation. The maximum likelihood estimation is biased
even when an infinite number of observations are given while the es-
timating function is asymptotically unbiased. In the numerical calcula-
tion, we used the model with κ = 4 and m = 2. An interspike interval
with firing rate ξ can be generated as follows. First, a normalized inter-
spike interval t is generated according to the standard gamma distribu-
tion with ξ = 1. Second, an interspike interval T is obtained by dividing
t by ξ : T = t/ξ . Note that log T = log t − log ξ . Then, as shown in equa-
tion 4.24, y does not depend on ξ and f (ξ ) at all. Therefore, we fixed ξ

to be 1 without loss of generality. The figure is obtained as follows. We
generated T ’s according to the standard gamma distribution and substi-
tuted them into equation 4.27 to estimate κ . We repeated the estimation
many times (n = 104) for each number of observations and calculated the
mean (bias) and the quartiles of κ̂ . Note that the result does not depend on
k(ξ ).
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Figure 3: Biases of κ̂ for maximum likelihood estimation and proposed method
for m = 2. The dotted line represents the true value, κ = 4. The error bars rep-
resent the quartiles for repeated trials. The estimation was repeated 104 times
for each number of observations. The maximum likelihood estimation is biased
even when an infinite number of observations are given while the estimating
function is asymptotically unbiased.

We examined whether our estimator works when κ is close to zero.
Figure 4 plots the biases for κ = 0.5. The detail of Figure 4 is the same as
that of Figure 3. Figure 4 demonstrates that the proposed estimator also
works for κ = 0.5.

5 Cases Where the Firing Rate Is Continuously Modulated

So far, we have considered only the cases in which two or more con-
secutive firing rates are the same. In this section, we remove this as-
sumption and consider more general cases where consecutive firing
rates are not necessarily the same but the firing rate continuously
changes slowly. Although the assumption of the statistical model is vi-
olated, we try to estimate κ by the proposed method heuristically. We
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Figure 4: Biases of κ̂ for maximum likelihood estimation and proposed method
for m = 2. The dotted line represents the true value, κ = 0.5. The error bars
represent the quartiles for repeated trials. The estimation was repeated 104

times for each number of observations. The maximum likelihood estimation
is biased even when an infinite number of observations are given while the
estimating function is asymptotically unbiased. The proposed estimator works
even if κ is close to zero.

compare the estimating functions with various m and the measure of
spiking irregularity, which we will introduce based on the estimating
function.

5.1 Measure of Spiking Irregularity. In this section, we introduce a
practical measure of spiking irregularity for experimental data based on
the estimating function. The new measure may be useful in the case where
the firing rate continuously changes slowly. For experimental data, the
assumption that consecutive m interspike intervals have the same or similar
ξ is most probable for m = 2. Therefore, we set m = 2 in the estimating
function. Let {T1, T2, . . . , TN} form a single spike train, where Ti denotes
the ith interspike interval. Let N be odd. There are two types of possible
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estimating equations depending on the choice of the starting point: (1)

1
N−1

2

N−1
2∑

i=1

1
2

log
(

4T2i−1T2i

(T2i−1 + T2i )2

)
− log 2 + φ(2κ̂) − φ(κ̂) = 0, (5.1)

where ξ1 = ξ2, ξ3 = ξ4, . . . , ξN−2 = ξN−1 are assumed, and (2)

1
N−1

2

N−1
2∑

i=1

1
2

log
(

4T2i T2i+1

(T2i + T2i+1)2

)
− log 2 + φ(2κ̂) − φ(κ̂) = 0, (5.2)

where ξ2 = ξ3, ξ4 = ξ5, . . . , ξN−1 = ξN are assumed. We take the average of
these equations as

1
N − 1

N−1∑
i=1

1
2

log
(

4Ti Ti+1

(Ti + Ti+1)2

)
− log 2 + φ(2κ̂) − φ(κ̂) = 0. (5.3)

We estimate κ by solving this equation for κ̂ numerically. To avoid trou-
blesome numerical iterations, we suggest using part of the estimating
equation

SI ≡ − 1
N − 1

N−1∑
i=1

1
2

log
(

4Ti Ti+1

(Ti + Ti+1)2

)
, (5.4)

as a measure of spiking irregularity. φ(2κ) − φ(κ) is monotonic, so that it
is clear that we can easily solve equation 5.3 for κ . The correspondence
between κ̂ and SI is shown in Figure 5.

Note that we assumed ξ1 = ξ2, ξ2 = ξ3, and so on. Therefore, unless
all ξi ’s are the same, κ̂ is biased. However, when the firing rate changes
slowly enough, κ̂ is approximately correct, as we will show in the exam-
ple below. In addition, SI is similar to the measure of local variation LV ,
which is known to be useful for cell classification (Shinomoto, Miyazaki,
et al., 2005; Shinomoto et al., 2003). Then, SI may also be useful for cell
classification.

The measure of local variation (Shinomoto et al., 2003),

LV = 1
N − 1

N−1∑
i=1

3(Ti − Ti+1)2

(Ti + Ti+1)2 = 3 − 12
N − 1

N−1∑
i=1

Ti Ti+1

(Ti + Ti+1)2 (5.5)

looks similar to the measure of spiking irregularity SI . In fact, there exists a
tight inequality between these measures. By using Jensen’s inequality, we
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Figure 5: Correspondence between κ̂ and SI . The lower bound of SI is 0. For
κ = 1, SI is 1 − log 2 = 0.307.

obtain

− 1
N − 1

N−1∑
i=1

1
2

log
(

4Ti Ti+1

(Ti + Ti+1)2

)
≥ −1

2
log

(
1

N − 1

N−1∑
i=1

4Ti Ti+1

(Ti + Ti+1)2

)

= −1
2

log
(

1 − LV

3

)
. (5.6)

Thus, LV gives a lower bound of SI . Since SI and κ̂ are inversely related,
as shown in Figure 5, LV gives an upper bound on κ̂ . This relation may be
useful when only the value of LV is available in the existing literature. Note
that this relation holds for any spike trains independent of their statistical
models and for any N.

5.2 AR Model. As an example of a rate-modulated case, let us consider
an AR model in which ξi ’s are given as

log ξi+1 = e− 1
τ log ξi + �

√
1 − e− 2

τ σi+1, (5.7)
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Figure 6: Sample processes of ξ for AR model with � = 0.3. The larger the time
constant, τ , the longer the correlations.

where σi ’s are independently and identically distributed according to the
standard normal distribution with mean 0 and variance 1. Here, we as-
sumed that log ξi ’s obey a gaussian process so that ξi ’s are nonnegative. τ

represents the time correlation length of log ξ :

〈log ξi+ j log ξi 〉 = �2e− j
τ . (5.8)

The coefficient
√

1 − e− 2
τ is multiplied to the noise so that the variances of

log ξi ’s are � independent of τ . Thus, we have two free parameters, τ and
�. Figure 6 illustrates sample paths for � = 0.3. The figure shows that the
larger the time constant τ , the longer the correlation of ξ .

Next, we generated interspike intervals by using these ξi ’s and estimated
κ from them. Figure 7 plots the results of numerical calculation. The dotted
line represents the true value, κ = 4. SI denotes the estimation given by SI

using equation 5.3. Note that what is plotted is not SI , but rather the estimate
of κ obtained putting SI through the function shown in Figure 5. m = 2
denotes the estimation given by the estimating function with m = 2 using
equation 5.1. Note that m = 2 refers to estimating κ without averaging over
the two types of pairing: ξ1 = ξ2, ξ3 = ξ4, . . . and ξ2 = ξ3, ξ4 = ξ5, . . . as SI

does. The figure shows that biases exist even if the number of observations
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Figure 7: Asymptotic biases for AR model with � = 0.3. The dotted line rep-
resents the true value, κ = 4. m = 2 denotes the estimation obtained using the
estimating function with m = 2. SI denotes the estimation given by SI . m = 2
and SI give the same result. LV denotes the estimation given by LV . Moment
estimator denotes the estimation by the moment estimator. The number of ob-
servations is N = 107. The biases decrease with increasing τ . m = 2 (and SI )
always gives the smallest bias.

is infinite, although they decrease with increasing τ . The bias increases with
increasing m. It is not the case that there is an optimal m depending on τ , but
the estimating function with m = 2 always gives the smallest bias. The bias
given by the estimating function with m = 2 and that given by SI are the
same because the AR model does not distinguish ξi ’s with even and odd i .
Note that the biases in Figure 7 are much smaller than those in Figure 3 for
the maximum likelihood estimation. Although we fixed � = 0.3 in Figure 7,
the bias increases as � increases.

We also estimated κ by the moment estimator:

κ̂ = Mean(T)2/Variance(T).

If the firing rate is constant over time, the mean and variance are given
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by equations 2.2, and κ can be estimated correctly. Figure 7 shows that the
moment estimator is always the worst independent of τ . In fact, because
the moment estimator assumes that the firing rate is constant over time, it
does not properly capture the spiking irregularity κ when the firing rate
changes over time.

κ can also be estimated by using LV :

κ̂ = 3
2LV

− 1
2
. (5.9)

Note that the expectation value of LV for the gamma distribution is LV =
3

2κ+1 (Shinomoto et al., 2003). Figure 7 shows that the estimate of κ obtained
by putting LV through equation 5.9 is slightly more biased than that given
by SI . We also compared the variances directly in the limit of large τ where
there is no bias. The variance of the estimate given by LV is larger than that
given by SI although the difference is only about 3%.

Figure 8 shows how bias and variability of the estimator for the AR
model depend on the number of observations. The true value is κ = 4.
The estimation by SI gives a smaller bias than the estimating function
with m = 2 for finite observations. This can be intuitively understood as
follows. The number of terms summed in SI is about twice as large as that
in the estimating function with m = 2. Then, because the bias decreases
with the number of observations, the bias given by SI is smaller. The bias
for the estimating function with m = 4 is the smallest in a certain range
of the number of observations. In fact, the bias for m = 4 becomes 0 for
a certain number of observations, because the asymptotic bias is always
negative while the bias due to finite observations is always positive, as
shown in Figure 3. However, it is not a good way to fix the number of
observations because the variance of the estimator decreases as the numbers
of observations increases, as we show next.

So far, we have considered only the biases of the estimators. However, it
is also important to know the trial-to-trial variability of the estimators. The
smaller the variability, the better the estimate. The error bars in Figure 8
show the quartiles of the estimators of κ for repeated trials. The estimation
was repeated 104 times for each number of observations. While the vari-
ability decreases with increasing m, the bias increases with increasing m.
Thus, there is a trade-off between bias and variability. The variability of the
estimator given by SI is smaller than that given by the estimating function
with m = 2.

Thus, SI gives a relatively good estimator of κ for the AR model. In par-
ticular, as far as the bias is concerned, SI looks optimal among the estimators
we considered here. We believe that SI generally works well in many mod-
els, including the Markov model in which the firing rate changes slowly
because the Markov model does not distinguish even and odd i for Ti .



2380 K. Miura, M. Okada, and S.-I. Amari

10 20 50 100 200 500

3
4

5
6

7

Number of observations

κ̂
m=2 (Eq. 5.1)
SI (Eq. 5.3)
m=4

Figure 8: Bias and variability for AR model with finite observations. The dotted
line represents the true value, κ = 4. � = 0.3 and τ = 8. m = 2 denotes the
estimation obtained using the estimating function with m = 2. SI denotes the
estimation by SI . The error bars represent the quartiles for repeated trials. The
estimation was repeated 104 times for each number of observations. The bias
for SI is smaller than that for m = 2 for finite observations.

6 Summary and Discussion

We estimated the shape parameter κ of the semiparametric model suggested
by Ikeda (2005) without estimating the firing rate ξ . The maximum likeli-
hood estimator is not consistent for this problem because the number of
nuisance parameters ξl increases with increasing observations of interspike
interval T . We showed that the model is of the exponential form defined by
Amari and Kawanabe (1997) and can be analyzed by a method of estimating
functions for semiparametric models. We found that an estimating function
does not exist unless multiple observations are given for each firing rate
ξ . If multiple observations are given, the method of estimating functions
can be applied. In that case, the estimating function of κ can be analytically
obtained, and κ can be estimated consistently independent of the functional
form of the firing rate k(ξ ). In general, the estimating function is not efficient.
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However, this method provided an optimal estimator in the sense of Fisher
information for our problem. That is, we obtained an efficient estimator.
We suggested the measure of spiking irregularity based on the estimating
function, which may be useful for characterizing individual neurons in the
case where only a single observation is given for each firing rate.

Various measures for spiking randomness have been used in previous
studies. The coefficient of variation CV is the global variance normalized by
the mean interspike interval (Holt et al., 1996):

CV =
√

Var[T]
T

. (6.1)

Although CV increases with increasing irregularity, it also becomes large
when the firing rate changes over time. Thus, we cannot distinguish these
two cases according to CV . The local variation of interspike intervals LV

is locally normalized and relatively independent of the firing rate change
(Shinomoto, Miyazaki et al., 2005; Shinomoto et al., 2003).

However, it is an ad hoc measure and has no corresponding parameter in
statistical models. The measure of spiking irregularity SI that we introduced
in this article is an estimator of κ , relatively independent of the firing rate
change. For these reasons, we suggest using SI as a measure of spiking
irregularity.

In this article, we focused on the semiparametric model, in which the
firing rate may vary for each interspike interval. However, a better fit of
experimental data could be obtained by using other models, depending on
situations. For instance, the firing rate can be assumed to be a function of
continuous time (Baker & Lemon, 2000; Brown, Barbieri, Ventura, Kass, &
Frank, 2002) or early stages of sensory cortex can be explained by more
deterministic models such as a noisy leaky integrate-and-fire model (Reich,
Victor, & Knight, 1998). The selection of an appropriate model (Brown et al.,
2002; Reich et al., 1998) is very important and will depend on the recorded
area and its state.

It is important to know to what extent the proposed estimator is robust
in the sense that if the ISI distribution is close to a gamma distribution
but not precisely gamma. We believe that the robustness can be evaluated
numerically or analytically. However, it is beyond the scope of this letter.
We leave it for future work.

Appendix: Calculation of E[log(T1)|s] in Equation 4.21

To calculate E[log(T1)|s] in equation 4.21 let us use Bayes theorem:

p(T |s) = p(T, s)∫
p(T, s)dT

= p(T, s)
p(s)

. (A.1)
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By repeating beta integrals,

∫ 1

0
xa−1(1 − x)b−1dx = B(a , b) = �(a )�(b)

�(a + b)
= (a − 1)!(b − 1)!

(a + b − 1)!
, (A.2)

we obtain

p(s)

=
∫

δ

(
s + κ

m∑
i=1

Ti

)
m∏

i=1

(q (Ti ; ξ, κ)dTi )k(ξ )dξ

=
∫

q

(
− s

κ
−

m−1∑
i=1

Ti

)
m−1∏
i=1

(q (Ti ; ξ, κ)dTi )
k(ξ )
κ

dξ

=
∫ 

 (ξκ)κ

�(κ)

(
− s

κ
−

m−1∑
i=1

Ti

)κ−1

e−ξκ(− s
κ
−∑m−1

i=1 Ti )




×
m−1∏
i=1

(
(ξκ)κ

�(κ)
Tκ−1

i e−ξκTi dTi

)
k(ξ )
κ

dξ

=
∫ 


(

− s
κ

−
m−2∑
i=1

Ti

)κ−1 (
1 − Tm−1

− s
κ

− ∑m−2
i=1 Ti

)κ−1



×
m−1∏
i=1

(
Tκ−1

i dTi
) esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ

=
∫ 

∫ (
1 − Tm−1

− s
κ

− ∑m−2
i=1 Ti

)κ−1

Tκ−1
m−1dTm−1




×
(

− s
κ

−
m−2∑
i=1

Ti

)κ−1 m−2∏
i=1

(
Tκ−1

i dTi
) esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ

=
∫

B(κ, κ)

(
− s

κ
−

m−2∑
i=1

Ti

)2κ−1 m−2∏
i=1

(
Tκ−1

i dTi
) esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ

= . . .

=
∫ [∫ (

− s
κ

− T1

)(m−1)κ−1
Tκ−1

1 dT1

] m−2∏
i=1

B(iκ, κ)
esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ

=
m−1∏
i=1

B(iκ, κ)
(−s)mκ−1

�(κ)m

∫
ξmκesξ k(ξ )dξ. (A.3)
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Similarly, by Taylor expansion of log(T1) about T1 = − s
κ

, we get

E[log(T1)|s]

=
∫

log(T1)δ

(
s + κ

m∑
i=1

Ti

)
m∏

i=1

(q (Ti ; ξ, κ)dTi )k(ξ )dξ
1

p(s)

=
∫

log(T1)
(
− s

κ
− T1

)(m−1)κ−1
Tκ−1

1 dT1

m−2∏
i=1

B(iκ, κ)

× esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ
1

p(s)

= log
(
− s

κ

)
+

∫ ∞∑
j=1

−1
j

B((m − 1)κ + j, κ)
(
− s

κ

)mκ−1 m−2∏
i=1

B(iκ, κ)

× esξ (ξκ)mκ

�(κ)m

k(ξ )
κ

dξ
1

p(s)

= log
(
− s

κ

)
−

∞∑
j=1

1
j

B((m − 1)κ + j, κ)
B((m − 1)κ, κ)

. (A.4)

Next we show that

∞∑
j=1

1
j

B((m − 1)κ + j, κ)
B((m − 1)κ, κ)

= φ(mκ) − φ(κ), (A.5)

where the digamma function is defined as

φ(κ) = �′(κ)
�(κ)

. (A.6)

Let κ be an integer. We define Il as

Il =
∞∑
j=1

1
j

(mκ − 1)(mκ − 2) · · · ((m − 1)κ + l)
(mκ + j − 1)(mκ + j − 2) · · · ((m − 1)κ + j + l)

. (A.7)

Then the infinite series can be rewritten as

∞∑
j=1

1
j

B((m − 1)κ + j, κ)
B((m − 1)κ, κ)

= I0. (A.8)
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By repeatedly using the following equation,

Il = Il+1 − 1
κ + l − 1

, (A.9)

we get

I0 = Iκ−1 −
κ−2∑
l=0

1
κ − 1 − l

=
∞∑
j=1

1
j

mκ − 1
mκ + j − 1

−
κ−1∑
l=1

1
l

=
mκ−1∑
l=1

1
l

−
κ−1∑
l=1

1
l
.

(A.10)

The last equality follows by telescoping of the infinite sum.
By using the formula for harmonic series (Havil, 2003),

n∑
l=1

1
l

= γ + φ(n + 1), (A.11)

where Euler’s constant is γ = 0.57721 · · ·, we get

∞∑
j=1

1
j

B((m − 1)κ + j, κ)
B((m − 1)κ, κ)

= φ(mκ) − φ(κ). (A.12)

Although we assumed that κ is an integer during the proof, the numerical
calculation shows that the result also holds for noninteger κ . Thus, we
obtain

E[log(T1)|s] = log(− s
κ

) − φ(mκ) + φ(κ). (A.13)

Note that E[log(T1)|s] does not depend on the unknown function k(ξ ).
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