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The parameter spaces of hierarchical systems such as multilayer per-
ceptrons include singularities due to the symmetry and degeneration of
hidden units. A parameter space forms a geometrical manifold, called
the neuromanifold in the case of neural networks. Such a model is iden-
tified with a statistical model, and a Riemannian metric is given by the
Fisher information matrix. However, the matrix degenerates at singulari-
ties. Such a singular structure is ubiquitous not only in multilayer percep-
trons but also in the gaussian mixture probability densities, ARMA time-
series model, and many other cases. The standard statistical paradigm of
the Cramér-Rao theorem does not hold, and the singularity gives rise to
strange behaviors in parameter estimation, hypothesis testing, Bayesian
inference, model selection, and in particular, the dynamics of learning
from examples. Prevailing theories so far have not paid much attention
to the problem caused by singularity, relying only on ordinary statistical
theories developed for regular (nonsingular) models. Only recently have
researchers remarked on the effects of singularity, and theories are now
being developed.

This article gives an overview of the phenomena caused by the sin-
gularities of statistical manifolds related to multilayer perceptrons and
gaussian mixtures. We demonstrate our recent results on these problems.
Simple toy models are also used to show explicit solutions. We explain
that the maximum likelihood estimator is no longer subject to the gaus-
sian distribution even asymptotically, because the Fisher information
matrix degenerates, that the model selection criteria such as AIC, BIC,
and MDL fail to hold in these models, that a smooth Bayesian prior be-
comes singular in such models, and that the trajectories of dynamics of
learning are strongly affected by the singularity, causing plateaus or slow
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manifolds in the parameter space. The natural gradient method is shown
to perform well because it takes the singular geometrical structure into
account. The generalization error and the training error are studied in
some examples.

1 Introduction

The multilayer perceptron is an adaptive nonlinear system that receives
input signals and transforms them into adequate output signals. Learning
takes place by modifying the connection weights and the thresholds of
neurons. Since perceptrons are specified by a set of these parameters, we
may regard the whole set of perceptrons as a high-dimensional space or
manifold whose coordinate system is given by these modifiable parameters.
We call this a neuromanifold.

Let us assume that the behavior of a perceptron is disturbed by noise,
so that by receiving input signal x, a perceptron emits output y stochas-
tically. This stochastic behavior is determined by the parameters. Let us
also assume that a pair (x, y), of input signal x and corresponding answer
y is given from the outside by a teacher. A number of examples are gen-
erated by an unknown probability distribution, p0(x, y) or the conditional
probability p0(y|x), of the teacher. Let us denote the set of examples as
(x1, y1), (x2, y2), · · · , (xn, yn). A perceptron learns from these examples to
imitate the stochastic behavior of the teacher.

The behavior of a perceptron under noise is described by a conditional
probability distribution p(y|x), which is the probability of output y given
input x, so it can be regarded as a statistical model that includes a number
of unknown parameters. From the statistical point of view, estimation of
the parameters is carried out from examples generated by an unknown
probability of the teacher network. Learning, especially online learning,
is a type of estimation where the parameters are modified sequentially,
using examples one by one. The parameters change by learning, forming a
trajectory in the neuromanifold. Therefore, we need to study the geometrical
features of the neuromanifold to elucidate the behavior of learning.

The neuromanifold of multilayer perceptrons is a special statistical model
because it includes singular points, where the Fisher information matrix de-
generates. This is due to the symmetry of hidden units, and the number of
hidden units substantially decreases when two hidden neurons are iden-
tical. The identifiability of parameters is lost at such singular positions.
Such a structure was described in the pioneering work of Brockett (1976)
in the case of linear systems, and in the case of multilayer perceptrons by
Chen, Lu, and Hecht-Nielsen (1993), Sussmann (1992), Kůrková & Kainen
(1994), and Rüger & Ossen (1997). This type of structure is ubiquitous in
many hierarchical models such as the model of probability densities given
by gaussian mixtures, the ARMA time-series model, and the model of lin-
ear systems whose transfer functions are given by rational functions. The
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Riemannian metric degenerates at such singular points, which are not iso-
lated but form a continuum. In all of these models, when we summarize the
parameters that give the same behavior (probability distribution), the set
of behaviors is known to have a generic cone-type singularity embedded
in a finite-dimensional, sometimes infinite-dimensional, regular manifold
(Dacunha-Castelle & Gassiat, 1997).

Many interesting problems arise in such singular models. Since the Fisher
information matrix degenerates at singular points, its inverse does not ex-
ist. Therefore, the Cramér-Rao paradigm of classic statistical theory cannot
be applied. The maximum likelihood estimator is no longer subject to the
gaussian distribution even asymptotically, although the consistency of be-
havior holds. The criteria used for model selection (such as AIC, BIC, and
MDL) are derived from the gaussianity of the maximum likelihood esti-
mator, with the covariance given by the inverse of the Fisher information,
so that their validity is lost in such hierarchical models. The generalization
error has so far been evaluated based on the Cramér-Rao paradigm, so we
need a new theoretical method to attack the problem. This is related to the
strange behavior of the log-likelihood ratio statistic in a singular model.
These problems have not been fully explored by conventional statistics.

When the true distribution lies at a regular point, the classical Cramér-
Rao paradigm is still valid, provided it is sufficiently separated from a singu-
lar point. However, the dynamics of learning is a global problem that takes
place throughout the entire neuromanifold. It has been shown that once
parameters are attracted to singular points, at the parameters are very slow
to move away from them. This is the plateau phenomenon ubiquitously
observed in backpropagation learning. Therefore, even when the true point
lies at a regular point, the singular structure strongly affects the dynamics
of learning. Although there is no unified theory, problems caused by the
singular structure in hierarchical models have been remarked by many re-
searchers, and various new approaches have been proposed. This is a new
area of research that is attracting much attention. Hagiwara, Toda, and Usui
(1993) noticed this problem first. They used AIC (the Akaike information
criterion) to determine the size of perceptrons to be used for learning and
found that AIC did not work well. AIC is a criterion to determine the model
that minimizes the generalization error. However, it has been reported for a
long time that AIC does not give good model selection performance in the
case of multilayer perceptrons. Hagiwara et al. found that this is because of
the singular structure of such a hierarchical model and investigated ways
to overcome this difficulty (Hagiwara, 2002a, 2002b; Hagiwara, Hayasaka,
Toda, Usui, and Kuno, 2001; Hagiwara et al., 1993; Kitahara, Hayasaka,
Toda, & Usui, 2000).

To accelerate the dynamics of learning, Amari (1998) proposed the nat-
ural or Riemannian gradient method of learning, which takes into account
the geometrical structure of the neuromanifold. Through this method, one
can avoid the plateau phenomenon in learning (Amari, 1998; Amari &
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Ozeki, 2001; Amari, Park, & Fukumizu, 2000; Park, Amari, & Fukumizu,
2000). However, the Fisher information matrix, or the Riemannian metric,
degenerates at some places because of singularity, so we need to develop
a new theory of dynamics of learning (see Amari, 1967, for dynamics of
learning for regular multilayer perceptrons) to understand its behavior, in
particular the effects of singularity in the ordinary backpropagation method
and the natural gradient method. Work done regarding this aspect includes
that of Fukumizu and Amari (2000) as well as the statistical-mechanical ap-
proaches taken by Saad and Solla (1995), Rattray, Saad, and Amari (1998),
and Rattray and Saad (1999).

Fukumizu used a simple linear model and indicated that the general-
ization error of multilayer perceptrons with singularities is different from
that of the regular statistical model (Fukumizu, 1999). This problem is re-
lated to the analysis of the log-likelihood-ratio statistic of the perceptron
model at a singularity (Fukumizu, 2003). The strange behavior of the log-
likelihood statistic in the gaussian mixture has been remarked since the time
of Hotelling (1939) and Weyl (1939), but only recently has it become pos-
sible to derive its asymptotic behavior (Hartigan, 1985; Liu & Shao, 2003).
Fukumizu (2003) extended the idea of the gaussian random field (Hartigan,
1985; Dacunha-Castelle & Gassiat, 1997) to make it applicable to multilayer
perceptrons and formulated the asymptotics of the generalization error of
multilayer perceptrons. Watanabe (2001a, 2001b, 2001c) was the first who
studied the effect of singularity in Bayesian inference. He and his colleagues
introduced algebraic geometry and algebraic analysis by using Hironaka’s
theorem of singularity resolution and Sato’s formula in algebraic analysis
to evaluate the asymptotic performance of the Bayesian predictive distribu-
tion in various hierarchical singular models; remarkable results have been
derived (Watanabe, 2001a, 2001b, 2001c; Yamazaki & Watanabe, 2002, 2003;
Watanabe & Amari, 2003).

In this article, we give an overview concerning the strange behaviors of
singular models so far studied. They include estimation, testing, Bayesian
inference, model selection, generalization, and training errors. Special at-
tention is paid to the dynamics of learning from the information-geometric
point of view by summarizing our previous results (Amari & Ozeki, 2001;
Amari, Park, & Ozeki, 2001, 2002; Amari, Ozeki, & Park, 2003). In particular,
we show new results concerning the fast and slow submanifolds in learning
of gaussian mixtures.

The article is organized as follows. We give various examples of singular
models in section 2. They include models of simple multilayer perceptrons
with one hidden unit and two hidden units, the gaussian mixture model of
probability distributions, and a toy model of the cone that is used to give
an exact analysis. The analysis of the gaussian mixture is newly presented
here. In section 3, we explain the theory developed by Dacunha-Castelle
and Gassiat (1997), which shows the generic cone structure of a singular
model. This elucidates why strange behaviors emerge in a singular model.
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We then show that such models with singularity have strange behaviors,
differing from those of ordinary regular statistical models, in parameter
estimation, Bayesian predictive distribution, the dynamics of learning, and
model selection in section 4. Section 5 is devoted to a detailed analysis of the
dynamics of learning. We use simple models to show that there appear slow
and fast manifolds in the neighborhood of a singularity, which explains the
plateau phenomenon in the ordinary gradient learning method. The natural
gradient method is shown to resolve this difficulty. Section 6 deals with the
generalization error and training error in simple singular models, where the
gaussian random field (Hartigan, 1985; Dacunha-Castelle & Gassiat, 1997;
Fukumizu, 2003) is used and the special potential functions are introduced
(Amari & Ozeki, 2001). Explicit formulas will be given in the cases of the
maximum likelihood estimator and the Bayesian estimator.

2 Singular Statistical Models and Their Geometrical Structure

The manifolds, or the parameter spaces, of many hierarchical models such
as multilayer perceptrons inevitably include singularities. Typical examples
are presented in this section.

2.1 Single Hidden Unit Perceptron. We begin with a trivial model of a
single hidden unit perceptron, which receives input vector x = (x1, · · · , xm)
and emits scalar output y. The hidden unit calculates the weighted sum
w · x = ∑

wi xi of the input, where w = (w1, · · · , wm) is the weight vector,
and emits its nonlinear function ϕ(w · x) as the output, where ϕ(u) is the
activation function ϕ(u) = tanh(u). The output unit is linear, so its output
is vϕ(w · x), which is eventually disturbed by gaussian noise ε. Hence, the
final output is

y = vϕ(w · x) + ε. (2.1)

The parameters to specify a perceptron are summarized into a single vector
θ = (w, v). The average of y, given x, is

E[y] = f (x, θ ) = vϕ(w · x), (2.2)

where E denotes expectation, given x.
Any point θ in the (m + 1)-dimensional parameter space M = {θ} spec-

ifies a perceptron and its average output function f (x, θ ). However, the
parameters are redundant or unidentifiable in some cases. Since ϕ is an odd
function, (w, v) and (−w,−v) give the same function,

f (x, θ ) = f (x,−θ ). (2.3)
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Figure 1: (Left) Parameter space M of a single hidden unit perceptron. (Right)
Space M̃ of the average output functions of perceptrons with a singular struc-
ture.

Moreover, when v = 0 (or w = 0), f (x, θ ) = 0, whatever value w takes (v
takes). Hence, the function f (x, θ ) is the same in the set C ⊂ M,

C = {(v,w)| v‖w‖ = 0} (2.4)

(see Figure 1, left), which we call the critical set. Therefore, if we summarize
the points that have the same average output function f (x, θ ) into one, the
parameter space shrinks such that the critical set C is reduced to a single
point. The parameter space reduces to M̃, which consists of all the differ-
ent average output functions of perceptrons. It consists of two components
connected by a single point (see Figure 1, right). In other words, M̃ has
singularity. Note that M is the parameter space, each point of which cor-
responds to a perceptron. However, the behaviors of some perceptrons are
the same even if their parameters are different. The reduced M̃ is the set
of perceptron behaviors that correspond to the average output functions or
the probability distributions specified thereby.

The probability density function of the input-output pair (x, y) is given
by

p(y, x, θ ) = 1√
2π

q (x) exp
{
−1

2
(y − f (x, θ ))2

}
, (2.5)

where ε in equation 2.1 is subject to the standard gaussian distribution
N(0, 1) and q (x) is the probability density function of input x. The Fisher
information matrix is defined by

G(θ ) = E

[
∂l(y, x, θ )

∂θ

∂l(y, x, θ )T

∂θ

]
, (2.6)
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where E denotes the expectation with respect to p(y, x, θ ) and l(y, x, θ ) =
log p(y, x, θ ) = − 1

2 (y − f (x, θ ))2 + log q (x), is a fundamental quantity in
statistics. It is positive definite in a regular statistical model and plays the
role of the Riemannian metric of the parameter space, as is shown by the
information geometry (Amari & Nagaoka, 2000).

The Fisher information gives the average amount of information inclu-
ded in one pair (y, x) of data, which is used to estimate the parameter θ .

Cramér-Rao Theorem. Let θ̂ be an unbiased estimator from n examples in a
regular statistical model. Then the error covariance of θ̂ satisfies

E[(θ̂ − θ )(θ̂ − θ )T ] ≥ 1
n

G−1(θ ). (2.7)

Moreover, the equality holds asymptotically (i.e., for large n) for the MLE (max-
imum likelihood estimator) θ̂ , and it is asymptotically subject to the gaussian
distribution with mean θ and covariance matrix (1/n)G−1(θ )}.

However, this does not hold when v = 0 or w = 0, because

∂l(y, x, θ )
∂v

= 0 (2.8)

or

∂l(y, x, θ )
∂w

= 0. (2.9)

When v = 0, p(y, x, θ ) is kept constant even when w changes, and the
same situation holds when w = 0. Hence, the Fisher information matrix,
equation 2.6, degenerates, and its inverse G−1(θ ) does not exist in the set
C : v‖w‖ = 0. The Cramér-Rao theorem is no longer valid at the critical
set C . The model is singular on C . This makes it difficult to analyze the
performance of estimation and learning when the true distribution is in C
or in the neighborhood of C .

2.2 Gaussian Mixture. The Gaussian mixture is a statistical model of
probability distributions that has long been known to include singularities
(Hotelling, 1939; Weyl, 1939). Let us assume that the probability density of
the real variable x is given by a mixture of k gaussian distributions as

p(x, θ ) =
k∑

i=1

viψ(x − µi ), (2.10)
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where ψ(x) = (1/
√

2π ) exp{−x2/2}. The parameters are θ = (v1, · · · , vk;
µ1, · · · , µk) and 0 ≤ vi ≤ 1,

∑
vi = 1. When we know the number k of com-

ponents, all we have to do is to estimate the unknown parameters θ from
observed data x1, x2, · · · , xn. However, in the usual situation, k is unknown.

To make the story simple, let us consider the case of k = 2. The model is
given by

p(x, θ ) = vψ (x − µ1) + (1 − v)ψ (x − µ2) . (2.11)

The parameter space M is three-dimensional, θ = (v, µ1, µ2). If µ1 = µ2

holds, p(x, θ ) actually consists of one component, as is the case with k = 1.
In this case, the distribution is the same whatever value v takes, so we
cannot identify v. Moreover if v = 0 or v = 1, the distribution is the same
whatever value µ1 or µ2 takes, so the parameters are unidentifiable. Hence,
in the parameter space M = {θ}, some parameters are unidentifiable in the
region C :

C : v(1 − v) (µ1 − µ2) = 0. (2.12)

This is depicted in the shaded area in Figure 2. We call this the critical set.
In the critical set, the determinant of the Fisher information matrix becomes
0, and there is no inverse matrix. Let us look at the critical set C ⊂ M
carefully. In C , any point on the three lines—µ1 = µ2 = µ0, v = 0, µ2 =
µ0, and v = 1, µ1 = µ0—(see Figure 2 left), represents the same gaussian
distribution, ψ(x − µ0). If we regard the parameter points representing the
same distribution as one and the same, these three lines shrink to one point.

Figure 2: Parameter space of gaussian mixture M and singular structure M̃.
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Mathematically speaking, we obtain the residue class M̃ = M/ ≈ through
the equivalence relation ≈. Then we get the space M̃ depicted in Figure
2 (right), which is the set of probability distributions (not the set M of
parameters). This is the space where singularities are accumulated on a line
C̃ and the dimensionality is reduced on the line. The line corresponds to
the critical set C .

To analyze the nature of singularity, let us introduce new variables w

and u : w is the center of gravity of the two peaks, or the mean value of the
distribution, and u is the difference between the locations of the two peaks,

w = vµ1 + (1 − v)µ2 (2.13)

u =µ2 − µ1. (2.14)

Estimation of the mean parameter w of the distribution is easy, because the
Fisher information matrix is nondegenerate in this direction. The problem
is estimation of u and v when uv(1 − v) is small, because the critical region C
is given by uv(1 − v). To make discussions simpler, consider the case where
w = 0 is known, and only u and v are unknown. The distribution is then
written as

p(x, u, v) = vψ
{

x − (1 − v)u
} + (1 − v)ψ(x + vu). (2.15)

Let us consider only the region where u ≈ 0 and v(1 − v) > c holds for some
constant c. By Taylor expansion of the above equation around u = 0, we get

p(x, u, v) ≈ ψ(x)
{

1 + 1
2

c2(v)H2(x)u2 + 1
6

c3(v)H3(x)u3

+ 1
24

c4(v)H4(x)u4 + 1
120

c5(v)H5(x)u5 + · · ·
}

, (2.16)

where

ci (v) = v(1 − v)i + (1 − v)(−v)i ,

meaning that

c2(v) = v(1 − v),

c3(v) = v(1 − v)(1 − 2v),

c4(v) = v(1 − v)(1 − 3v + 3v2),

and
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H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3

are the Hermite polynomials. We can embed this singular model locally in a
regular model S as its singular subset. This is our new strategy of studying
the singular structure by locally embedding it in an exponential family of
distributions whose structure is well known and regular statistical analysis
is possible.

Let us consider a regular exponential family S specified by the regular
parameters θ = (θ1, θ2, θ3),

p(x, θ ) = ψ(x) exp
{
θ1 H2(x) + θ2 H3(x) + θ3 H4(x)

}
, (2.17)

where ψ(x) is a dominating measure. Let us denote by S the parameter space
of θ . Now we calculate l(x, u, v) = log p(x, u, v), by taking the logarithm of
equation 2.16 and performing Taylor expansion again,

l(x, u, v) = log ψ + u2

2
c2(v)H2(x) + u3

6
c3(v)H3(x)

+ u4

24
{c4(v)H4(x) − 3c2(v)2 H2(x)2}. (2.18)

Hence, the parameter space M of gaussian mixtures is approximately em-
bedded in S by

θ1 = 1
2

c2(v)u2, (2.19)

θ2 = 1
6

c3(v)u3, (2.20)

θ3 = 1
24

{c4(v) − 3c2(v)2}u4. (2.21)

This embedding from (u, v) to θ is singular. We first consider how M
is embedded in the two-dimensional space (θ1, θ2) by equations 2.19 and
2.20 in Figure 3a, where θ3 is ignored. The shape near the singularity
u ≈ 0 becomes clear by using (u, v)-coordinates of M and their map in
S. Let us consider a line in M where v is constant. This line v = const is
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(a)

(b)

Figure 3: Gaussian mixture distribution M embedded in S. (a) M embedded in
the parameter space S, (θ1, θ2). (b) The picture where M cannot be embedded in
S and sticks out into the higher dimension.

embedded in S as

θ1 = a1u2

θ2 = a2u3,

where a1 and a2 are constants depending on v. This curve is not smooth but
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is a cusp in S. The transformation from (u, v) to (θ1, θ2) is singular at u = 0,
and the Jacobian determinant,

|J | = det

∣∣∣∣∣∣∣∣∣

∂θ1

∂u
∂θ2

∂u

∂θ1

∂v

∂θ2

∂v

∣∣∣∣∣∣∣∣∣
, (2.22)

vanishes at u = 0. To elucidate the dynamics of learning near the singularity
u = 0, θ3 is necessary, as we will show later.

Note that the above approximation, which uses Taylor expansion of u, is
not applicable in the case where u is not small, but v is close to 0 or 1. Equa-
tion 2.16 is valid only in the case of small u. Taylor expansion is not suitable
when v(1 − v) becomes small and u is large. Another consideration in terms
of a random gaussian field is necessary, because an infinite-dimensional
regular space is required to include the singular M. We have drawn the
picture of M embedded in the three dimensions of S = {θ = (θ1, θ2, θ3)} by
calculating the higher-order term of u4 in Figure 3b. If u becomes large or
v approaches 0 or 1, the surface of the embedded M includes higher terms
that cannot be represented in equation 2.17 and embedded M̃ sticks out and
is wrapped in higher dimensions. As v(1 − v) approaches 0, the points in
M̃ shrink toward the origin as u → 0 but expand into infinite dimensions.
This situation arises in the non-Donsker case (Dacunha-Castelle & Gassiat,
1997).

Our primary interest is to know the influence of the singularity on the
dynamics of learning. Because the natural gradient learning method takes
the geometrical structure into account, it will not be greatly affected by the
singularity. However, the effect of the singularity is not negligible when the
true distribution is at, or near, the singularity C . In gradient descent learn-
ing algorithms, the critical set C works as a pseudo-attractor (the Milnor
attractor) even when the true distribution is at a regular point far from it.
The singular point resembles a black hole in the dynamics of learning, and
it is necessary to investigate its influence on the dynamics, as we discuss in
a later section. The Fisher information matrix degenerates in the critical set.
We calculate it explicitly in a later section.

2.3 Multilayer Perceptron. We consider here the multilayer perceptron
with hidden units (Rosenblatt, 1961; Amari, 1967; Minsky & Papert, 1969;
Rumelhart, Hinton, & Williams, 1986). It is a singular model where the
output y is written as

y =
k∑

i=1

viϕ (wi · x) + ε. (2.23)



Singularities Affect Dynamics of Learning in Neuromanifolds 1019

Here, x is an input vector, ϕ(wi · x) is the output of the ith neuron of the
hidden layer, and wi is its weight vector. The neuron of the output layer
summarizes all the outputs of the hidden layer by taking the weighted
sum with weights vi . Gaussian noise ε ∼ N(0, 1) is added at the end, so the
output y is a random variable.

Let us summarize all the modifiable parameters in one vector, θ =
(w1, · · · ,wk; v1, · · · , vk), and then the average output is given by

E[y] = f (x, θ ) =
k∑

i=1

viϕ (wi · x) . (2.24)

This model has a structure similar to the gaussian mixture distribution.
When the parameter wi of the ith neuron is 0, this neuron is useless be-

cause ϕ(0) = 0 and vi may take any value. Moreover, when vi = 0, whatever
value wi takes, this term is 0. In the meantime, if wi = w j (or wi = −w j ),
these two neurons emit the same output (or the negative output). Then
viϕ(wi · x) + v jϕ(w j · x) is the same, not depending on particular values
of vi and v j , provided vi + v j (or vi − v j ) takes a fixed value. Therefore,
we can identify their sum (or difference), but each of vi and v j remains
unidentifiable.

The neuromanifold M of perceptrons is a space whose admissible coor-
dinate system is given by θ . The critical set C is defined by the join of the
two subsets,

vi ‖wi‖ = 0, wi = ±w j , (2.25)

in which the parameters are unidentifiable. In other words, there is a di-
rection such that the behavior (the input-output relation) is the same even
when the parameters change in this direction. Since the Fisher information
is 0 along this direction, the Fisher information matrix degenerates, and its
inverse diverges to infinity.

In statistical study, the Cramér-Rao theorem guarantees that the error of
estimation from a large number of data is given by the inverse of the Fisher
information matrix in the regular case. However, because the inverse of the
Fisher information matrix diverges, the classical theory is not applicable
here. In geometrical terms, the Riemannian metric, which is determined by
the Fisher information matrix, degenerates. Therefore, the distance becomes
0 along a certain direction. This is what the singular structure gives rise to.

Remark. We have absorbed the bias term in the weighted sum as

wi · x =
∑

wi xi + wi0x0 = w̃i · x̃ + wi0, (2.26)
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where x0 = 1. Because x0 is constant, this causes another nonidentifiability.
When

w̃i = w̃ j = 0, (2.27)

if the other parameters satisfy

viϕ(wi0) + v jϕ(v j0) = const., (2.28)

they give the same behavior. In this article, we ignore such a case for sim-
plicity. There are no other types of nonidentifiability (see Sussmann, 1992;
Kůrková & Kainen, 1994).

We regard two perceptrons as being equivalent when their behaviors are
the same even if their parameters are different. Let us shrink the manifold
M by reducing the equivalent points of M to one point, giving the reduced
M̃. In the mathematical sense, the reduced M̃ corresponds to the residue
class of M because of the equivalence. In this case, degeneration of the
dimensionality occurs in the critical set of the neuromanifold. We showed
this in the trivial case of one hidden neuron. We now show this through
another simple example. Let us consider a perceptron with two hidden
units with ‖w‖ = 1,w = (cos θ, sin θ ), which is represented by

f (x, v, θ ) = vϕ(x1 cos θ + x2 sin θ + b), (2.29)

where b is a fixed bias term. In this case, the parameter space is two-
dimensional with coordinates θ = (v, θ ). Consider the space S consisting of
functions of the form f (x, θ ) = θ3ϕ(θ1x1 + θ2x2 + b). Then equation 2.29 is
embedded in S by θ1 = cos θ, θ2 = sin θ , and θ3 = v. The embedded M̃ in S,

M̃ = {θ | θ1 = cos θ, θ2 = sin θ, θ3 = v} ,

is a cone depicted in Figure 4, and the apex is the singular point.

2.4 Cone Model. Amari and Ozeki (2001) analyzed a toy model, the
cone model, to examine the exact behavior of the estimation error and the
dynamics of learning. We introduce this model here for later use. Let us
consider the statistical model described by a random variable x ∈ Rd+2,
which is subject to a gaussian distribution with mean µ and covariance
matrix I , where I is the identity matrix,

p(x;µ) = 1

(
√

2π )d+2
exp

{
−1

2
||x − µ||2

}
. (2.30)
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Figure 4: Singular structure of the neuromanifold.

The parameter space S = {µ} is a (d + 2)-dimensional Euclidean space with
a coordinate system µ. When the mean parameter µ is restricted on the
surface of a cone in S, the family of the gaussian distributions is called the
cone model M. We first consider the case with d = 1, that is, d + 2 = 3, in
which the cone is given by

µ1 = ξ, µ2 = ξ cos θ, µ3 = ξ sin θ (2.31)

(see Figure 5), where (ξ, θ ) are the parameters used to specify M.
In the general case, the cone is parameterized by (ξ,ω),

M : µ = ξ√
1 + c2

(
1

cω

)
= ξa(ω), (2.32)

where c is a constant that specifies the shape of the cone, ω is a vector on
the d-dimensional unit sphere that specifies the directions of the cone, and
ξ is the distance from the origin. In the case of d = 1, the sphere is a circle
(see Figure 5), and the parameter ω is replaced by θ . The model M, which
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Figure 5: Cone Model.

is given by the parameters (ξ,ω), is embedded in the d + 2–dimensional
space S, and consists of two cones, one for ξ ≥ 0 and the other for ξ ≤ 0,
of d + 1 dimensions, R × Sd , which are connected at the apex ξ = 0. The
apex ξ = 0 is the singularity. Amari et al. analyzed the behavior of the
maximum likelihood estimator in the case where the true parameters are
on the singularity (Amari et al., 2001, 2002, 2003). In this case, the true
distribution p0(x) is given by x ∼ N(0, Id+2).

The simple multilayer perceptron with one hidden unit (Amari et al.,
2001, 2002, 2003) has a similar cone structure. Through a transformation of
parameters—β = ‖w‖, ξ = vβ, and ω = w

β
∈ Sd−1—we get

y = ξϕβ (ω · x) + ε, (2.33)

where we put ϕβ (u) = 1
β
ϕ(βu). This is a cone in the space of (ξ,ω). In previ-

ous articles, we have analyzed the behavior of learning when the true pa-
rameter is on the singularity (ξ = 0). In this article, we analyze the behavior
of learning when the true parameter is not necessarily at the singularity and
show that the singularity strongly affects the dynamics.

2.5 Other Models. There are many other statistical models with sin-
gular structures. Hierarchical models include such singular structures in
many cases. The space of the ARMA time-series model and that of linear
rational systems are good examples (Amari, 1987; Brockett, 1976), but little
is known about the effects of singularity. The estimation of points of change,
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which is called the Nile River problem, is also a well-known example of
singularity.

Let us consider another model, the model of population coding with
multiple stimuli in a neural field (Amari, 1977), on which neurons are
lined up continuously along a one-dimensional positional axis z. When
a stimulus from the outside is applied at a specific place corresponding
to z = µ, the neurons located around z = µ are excited. Excitation of the
neural field—that is, the firing rate of a neuron at z—is written in this case
as

r (z) = vψ(z − µ) + ε(z), (2.34)

where v is the strength of the stimulus, µ is its center, and ε(z) is a noise term
dependent on z. Function ψ is unimodal and is called the tuning function.
This model has been applied in population coding where the problem is
to estimate µ from the neural response r (z). Its statistical analysis has been
given in terms of the Fisher information in many reports (for example, Wu,
Nakahara, & Amari, 2001; Wu, Amari, & Nakahara, 2002).

When two stimuli are simultaneously given at locations µ1 and µ2 with
intensities v and 1 − v, the response of the field is written as

r (z; v, µ1, µ2) = vψ (z − µ1) + (1 − v)ψ (z − µ2) + ε(z). (2.35)

In this case, the same singular structure as that of the gaussian mixture
appears in the parameter space θ = (v, µ1, µ2). The strange behavior of the
maximum likelihood estimator is analyzed in Amari and Burnashev (2003)
and Amari and Nakahara (2005).

3 Locally Conic Structure and Gaussian Random Field

The local structure of singular statistical model is studied by Dacunha-
Castelle and Gassiat (1997) in a unified manner. The local structure of a reg-
ular statistical model is represented by the tangent space of the manifold of
the statistical model, where the first-order asymptotic theory is well formu-
lated. The concepts of affine connections and related e- and m-curvature
are necessary for the higher-order asymptotic theory, as is shown by
information geometry (Amari & Nagaoka, 2000). A singular statistical
model does not have the tangent space at singularity, and instead the tan-
gent cone is useful for analyzing its local structure.

We summarize the results of Dacunha-Castelle and Gassiat (1997) in
this section without mathematical rigor but intuitively. The locally conic
structure and the related random gaussian field play a fundamental role
in analyzing the behaviors of the likelihood ratio statistics (Hartigan, 1985;
Fukumizu, 2003) and also of the MLE and its generalization ability (Amari
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& Ozeki, 2001). Another general framework for singular models is given
from algebraic geometry, which we do not summarize here. (See Watanabe,
2000a, 2000b, and 2000c, and related papers.)

3.1 Locally Conic Structure. All the examples in section 2 have a lo-
cally conic structure. For a singular statistical model M = {p(x, θ ), θ ∈ Rk}
in which the critical set C exists, Dacunha-Castelle and Gassiat (1997) in-
troduced the following parameters in the neighborhood of C . Let us denote
by p0(x) a probability density in C where the identifiability is lost. Given
p(x, θ ), let ξ be the Hellinger distance between p(x, θ ) and C ,

ξ = inf
p0(x)∈C

∫
(
√

p0(x) −
√

p(x, θ ))2dx. (3.1)

It is further assumed that p(x, θ ) can be parameterized in a neighborhood
of p0(x) ∈ C by (ξ,ω), where ω ∈ 
 is (k − 1)-dimensional.

We thus have the new parameterization p(x, ξ,ω), where

lim
ξ→0

p(x, ξ,ω) = p(x, 0,ω) = p0(x). (3.2)

The critical set C is given by ξ = 0, where p(x, 0,ω) represents p0(x) ∈ C
so that ω is not identifiable. The score function with respect to ξ is the
directional derivative of log likelihood and is denoted by

v(x,ω) = d
dξ

log p(x, 0,ω) (3.3)

at ξ = 0. It depends on ω ∈ 
. Since ξ is the Hellinger distance, we have,

E[{v(x,ω)}2] = 1, (3.4)

that is, the Fisher information in the ξ -direction is normalized to 1 at any ω.
Now consider

l(x, ξ,ω) = log p(x, ξ,ω) (3.5)

in the function space of random variable x. The model M is embedded
in it, where the points in C are reduced to equivalent points, so that the
dimension reduction takes place. Its image is the reduced set M̃. Let us fix
a point p0(x) in C . In its neighborhood, the Taylor expansion gives

l(x, ξ,ω) = log p0(x) + ξv(x,ω), (3.6)
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so that when ξ is very small, the image of M forms a cone in the space
of functions of x, whose apex is log p0(x) and whose edges are spanned
by v(x,ω),ω ∈ 
. This is called the tangent cone and is different from the
tangent space of a regular statistical model.

3.2 MLE and Gaussian Random Field. Given n examples D =
{x1, · · · , xn} from a singular model M, the log likelihood is written as

L(D, ξ,ω) =
n∑

i=1

log p(xi , ξ,ω). (3.7)

The MLE is the maximizer of L , but it is difficult to calculate because the
derivatives of L with respect to ω are 0 at ξ = 0 in some directions,

∂L(D, 0,ω)
∂ω

= ∂2 L(D, 0,ω)
∂ω∂ω

= · · · = 0. (3.8)

We now fix ω and calculate the maximizer ξ̂ (D,ω) of L . By expansion
with respect to ξ , we have

L(D, ξ,ω) = L(D, 0,ω) + ∂L
∂ξ

ξ + 1
2

∂2 L
∂ξ 2 ξ 2 + · · · . (3.9)

Since ξ̂ is small when the true distribution is p0(x), that is, ξ = 0, the maxi-
mizer is given from

−∂2 L
∂ξ 2 ξ̂ = ∂L

∂ξ
. (3.10)

The term of the second derivative,

− 1
n

∂2 L
∂ξ 2 = − 1

n

n∑
i=1

∂2 log p(xi , ξ,ω)
∂ξ 2 , (3.11)

converges to the Fisher information in the direction ω, because of the law
of large numbers. The second term of the first derivative is

Yn(ω) = 1√
n

∂L
∂ξ

= 1√
n

n∑
i=1

∂l(xi , 0,ω)
∂ξ

= 1√
n

n∑
i=1

v(xi ,ω), (3.12)

which converges to the gaussian random variable Y(ω) in law because of the
central limit theorem. For ω �= ω′, Y(ω) and Y(ω′) are correlated in general.
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A family of gaussian distributions {Y(ω),ω ∈ 
} forms a random gaussian
field over 
. The maximizer ξ̂ is given by

ξ̂ (D,ω) = 1√
n

Yn(ω). (3.13)

3.3 MLE. Let us substitute ξ̂ in equation 3.7, obtaining the partially
maximized likelihood,

L̂(D,ω) = L(D, ξ̂ (D,ω),ω)

=
∑

log p0(xi ) + 1
2

Yn(ω)2.

Hence, the MLE is given by the maximizer of the random field,

ω̂ = argmax Yn(ω)2. (3.14)

It is difficult to calculate this and study the properties of the MLE in general.

3.4 Likelihood Ratio Statistics. The log likelihood ratio statistics,

λ = 2
∑

log
p(xi , θ̂ )
p(xi , θ0)

, (3.15)

is used for testing the null hypothesis H0 : θ = θ0 against the alternative
H1 : θ �= θ0, where θ̂ is the mle. The statistic λ is asymptotically subject to
the χ2 distribution with k degrees of freedom in a regular model, and hence

E[λ] = k (3.16)

asymptotically. However, this does not hold in a singular model.
The log likelihood ratio statistics λ in a singular model is

λ = 2 sup
ξ,ω

∑
log

p(xi , ξ,ω)
p0(xi )

(3.17)

= 2 sup
ω

{L(D, ξ̂ ,ω) − L(D, 0,ω)} (3.18)

= 2 sup
ω

Yn(ω)2. (3.19)

Hence, it is given by the supremum of the gaussian random field.
Hartigan (1985) suggested that λ ∼ log log n in the gaussian mix-

ture model by extracting m = log n almost independent Y(ω1), · · · , Y(ωm).
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Fukumizu (2003) followed the idea to evaluate λ in the case of multilayer
perceptrons and derived λ ∼ log n.

4 Singularity Causes Strange Behaviors in Estimation and Learning

In the framework of singular statistical models, we give a glimpse of strange
behaviors of estimation, testing, model selection, and online learning. We
study three cases. In the first case, the true distribution, or the distribution
that best approximates the true distribution, is exactly at the singularity. In
this case, the parameters are not identifiable and the model is redundant (a
smaller model suffices), but we can estimate its behavior (or the equivalent
class) consistently. The gaussian random field plays a key role. In the second
case, the true distribution is near the singularity. In the last case, the true
distribution is at a regular point. In the last case, the classical theory can
be applied locally. However, when studying the dynamics of learning, we
need to take the influence of the singularity into account. The trajectories of
learning cover the entire space, so it is a global problem in the entire space.

The log likelihood ratio test and MLE are known to be asymptotically
optimal in the regular model. The likelihood principle is the belief that statis-
tical inference should be based on likelihood. In singular models, however,
this is not always true, and their optimality is not guaranteed (Amari &
Burnashev, 2003). The behavior of Bayesian estimation and estimation with
a regularization term also shows a different aspect from the regular case.
There are many interesting problems to be studied, such as learning and its
dynamics.

4.1 Statistical Testing in the Neighborhood of Critical Set. Statistical
testing is a general method to judge from data whether the true distribution
lies at the singularity. In the case of gaussian mixtures, we judge whether
k = 1 or k = 2 through a statistical test. We take equation 2.12 as the null
hypothesis and perform testing against the alternative that this equation is
not true. In a general regular case, the log likelihood ratio statistic λ obeys
the χ2 distribution with the degrees of freedom equal to the number of
parameters when the number of data is large enough. However, when the
model is singular, the log likelihood ratio statistic may not be subject to the
χ2 distribution and may diverge to infinity in proportion to the number n
of observations. This was shown in the classical works of Weyl (1939) and
Hotelling (1939). Only recently was a precise asymptotic evaluation of the
log likelihood ratio statistic given (Fukumizu, 2003; Hartigan, 1985; Liu &
Shao, 2003) for some singular models. It is unfortunate that such tangled
problems have usually been excluded as pathological cases and have not
been well studied. Such cases are not pathological; they are ubiquitous in
hierarchical engineering models.

Let us consider the statistical test H0 : θ = θ0 against H1 : θ �= θ0. When
the true point θ0 is a regular point—that is, it is not in the critical set—the
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MLE is asymptotically subject to a gaussian distribution with mean θ0 and a
variance-covariance matrix G−1 (θ0) /n, where G(θ ) is the Fisher information
matrix. In such a case, the log likelihood ratio statistic is expanded in the
Taylor series, giving

λ = n
(
θ̂ − θ0

)T
G−1 (θ0)

(
θ̂ − θ0

)
. (4.1)

Hence, this is subject to the χ2 distribution of the degrees of freedom equal
to the number k of parameters. Its expectation is

E[λ] = k. (4.2)

However, when the true distribution θ0 lies on the critical set, the situation
changes. The Fisher information matrix degenerates, and G−1 diverges,
so the expansion is no longer valid. The expectation of the log likelihood
estimator is asymptotically written as

E[λ] = c(n)k, (4.3)

where the term c(n) takes various forms depending on the nature of sin-
gularities. By evaluating the property of the gaussian random field Y(ω),
Fukumizu (2003) showed that

c(n) = log n (4.4)

in the case of multilayer perceptrons under a certain condition. In the case
of the gaussian mixture,

c(n) =
√

log log n (4.5)

holds (Hartigan, 1985; Liu & Shao, 2003).

4.2 Estimation, Training Error, and Generalization Error. When the
true parameter is at the singularity (or close to it), the MLE is no longer sub-
ject to the gaussian distribution, even asymptotically. This causes strange
behaviors of training and generalization errors. The standard theory (Amari
& Murata, 1993; Murata, Yoshizawa, & Amari, 1994) does not hold. This will
be discussed in more detail in a later section.

4.3 Bayesian Estimator. The Bayesian estimator is used in many cases
where an adequate prior distribution π (θ ) is assumed. When the prior
distribution penalizes complex models, it plays a role equivalent to the
regularization term. When a set of independently and identically (i.i.d) data
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D = {x1, · · · , xn} generated by p(x; θ0) is given, the posterior distribution of
the parameters is written as

p(θ |D) = π (θ )p (D|θ )
p(D)

, (4.6)

where

p(D) =
∫

p(D|θ )π (θ )dθ (4.7)

is the distribution of data D. The maximum a posterior (MAP) estimator is
given by the parameter θ̂ that maximizes the posterior distribution. Also,
the Bayesian predictive distribution is used as the distribution of a new
data x based on D. It is given by averaging the distribution p(x|θ ) over the
posterior distribution p(θ |D),

p(x|D) =
∫

p(x, θ )p(θ |D)dθ . (4.8)

It is empirically known that the Bayesian predictive distribution or MAP
behaves well in the case of large-scale neural networks. In such a case, one
uses a smooth prior π (θ ) > 0 on the neuromanifold. Obviously, if π(θ0) = ∞
at a specific point, the MAP estimator is attracted to that specific point. This
is not fair. When π (θ ) > 0 is smooth, its influence decreases as n approaches
∞, and it approaches the MLE, which is regarded as the MAP under the
uniform prior.

However, a smooth prior on M is singular in the equivalence class M̃ of
the neuromanifold, because a singular point in this class includes infinitely
many equivalent parameters of M. Hence, the prior density is infinitely large
on the singular points compared with that at regular points. This implies
that the Bayesian smooth prior is in favor of singular points (perceptrons
with a smaller number of hidden units) with an infinitely large factor.
Hence, the Bayesian method works well in such a case to avoid overfitting.
One may use a very large perceptron with a smooth Bayesian prior, and
an adequate smaller model will be selected, although no theory exists that
explains how to choose the prior.

The Bayesian estimator of singular models was studied by Watanabe
(2001a, 2001b) and Yamazaki and Watanabe (2002, 2003) by using algebraic
geometry, in particular, Hironaka’s theory of singularity resolution and
Sato’s formula in the theory of algebraic analysis.

4.4 Model Selection. To obtain an adequate model, one should select a
model from many alternatives based on the data. In the case of hierarchical
models, one should determine the preferred model size, that is, the number
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of hidden units. This is the problem of model selection. AIC, BIC, and MDL
have been widely used as model selection criteria. NIC is a version of AIC
applicable to the general cost function of a neural network (Murata et al.,
1994).

AIC (Akaike, 1974) is a criterion to minimize the generalization error.
The model that minimizes

AIC = 2 × training error + 2k
n

(4.9)

is selected according to this criterion. This is derived from asymptotic sta-
tistical analysis, where the MLE estimator θ̂ is assumed to be asymptotically
subject to the gaussian distribution with the covariance matrix equal to the
inverse of the Fisher information matrix divided by n.

MDL (Rissanen, 1986) is a criterion to minimize the length of encoding
for the observed data by using a family of parametric models. It is given
asymptotically by the minimizer of

MDL = training error + log n
2n

k. (4.10)

The Bayesian BIC (Schwarz, 1978) gives the same criterion as MDL. These
criteria are derived also through the same assumption regarding the Gaus-
sianity of the MLE.

In the case of multilayer perceptrons, the neuromanifold with a smaller
number of hidden units is included in that with a larger number, but the
smaller one forms a critical set within the larger neuromanifold. There-
fore, the MLE (or any other efficient estimator) is no longer subject to the
gaussian distribution, even asymptotically, provided the true distribution
belongs to a smaller model. Model selection is required when the estimator
is close to the critical set, but the validity of AIC and MDL fails to hold.
Akaho and Kappen (2000) noted this in the gaussian mixture model. One
should evaluate the log likelihood ratio statistic more carefully in such a
case (Amari, 2003). The situation is the same in other hierarchical models
with singularity.

There have been reported many comparisons of AIC and MDL by com-
puter simulations. Sometimes AIC works better, while MDL does better in
other cases. Such confusing reports seem to be the result of the difference
between regular and singular models and also the difference in the nature
of singularities.

4.5 Dynamics of Learning. Let us consider online learning of multi-
layer perceptrons through the gradient descent method. Let us define the
error by the square of the difference between the network output and the
teacher’s signal. When the noise term is gaussian, the square of the error is
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equal to the negative of the log likelihood. The minimization of the error
is then equivalent to the maximization of the likelihood, and the result
of learning locally converges to the maximum likelihood estimator. The
stochastic gradient descent method was proposed by Amari (1967) and was
named the backpropagation method (Rumelhart et al., 1986), while the nat-
ural gradient method (Amari, 1998; Amari et al., 2000; Park et al., 2000)
takes the Riemannian structure of the space into account.

For an input-output example (x, y), the loss function or the negative log
likelihood is given by

l(x, y; θ ) = 1
2

{
y − f (x, θ )

}2
. (4.11)

Its expectation is given by averaging it with respect to the true distribution
p0(x, y),

L(θ) = E p0 [l(x, y; θ )] . (4.12)

The backpropagation and natural gradient learning algorithm (Amari,
1998) are written, respectively, as

θ t+1 = θ t − η∇l (xt, yt; θ t) (4.13)

θ t+1 = θ t − ηG−1(θ t)∇l(xt, yt; θ t), (4.14)

when example (xt, yt) is given at time t = 1, 2, · · ·. Here, η is a learning
constant, ∇ is the gradient ∂/∂θ , and G is the Fisher information matrix. It is
generally difficult to calculate G(θ ), because the distribution q (x) of inputs is
unknown. Moreover, its inversion is costly. The adaptive natural gradient
method estimates G−1(θ t) adaptively from data (Amari et al., 2000; Park
et al., 2000). It has been shown that the natural gradient method is locally
equivalent to the Newton method, giving a Fisher efficient estimator, while
the backpropagation is not Fisher efficient. The natural gradient method is
capable of near-optimal performances (Rattray et al., 1998; Rattray & Saad,
1999). In the present formulation, the natural gradient is equivalent to the
adaptive version of the Gauss-Newton method, but it is different and more
powerful in other cost functions (Park et al., 2000).

The adaptive update of G−1
t = G−1(θ t) is calculated online by

G−1
t+1 = (1 + τ )G−1

t − τG−1
t ∇l(xt, yt, θ̂ t)[G−1

t ∇l(xt, yt, θ̂ t)]T . (4.15)

The learning constant τ should not be large in order to guarantee the sta-
bility of the estimation of G−1, but should not be too small to guarantee
that the estimator Gt = G(θ̂ t) traces the change of θ̂ t well. Inoue, Park and
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Okada (2003) show that the ratio η/τ should be kept within an adequate
range.

Since examples are generated stochastically, the dynamics of learning,
equations 4.13 and 4.14, are represented by the stochastic difference equa-
tions. However, when η is small, stochastic fluctuation is averaged out.
Hence, we investigate the behavior of the averaged learning equation where
∇l is replaced by its expectation,

∇L(θ ) = E[∇l(x, y; θ )]. (4.16)

If continuous time is used, these become differential equations:

dθ

dt
=−η∇L(θ ),

dθ

dt
=−ηG−1(θ )∇L(θ ). (4.17)

The solution draws a trajectory in the neuromanifold. The problem is how
the trajectory is influenced by the singular structure.

Kang et al. used a three-layer perceptron with binary weights and found
that the parameters are attracted to the critical set that forms a singularity
and are very slow to move away from it (Kang, Oh, Kwon, & Park, 1993).
Saad and Solla (1995) and Riegler and Biehl (1995) analyzed the dynamics
in a more general case and showed that such a phenomenon is universal.
They argued that the slowness in backpropagation learning, or the plateau
phenomenon, is caused by this singularity.

The natural gradient learning method takes the geometrical structure
into account. It enables the influence of the singular structure to be reduced,
and the trajectory is not trapped in the plateaus. Rattray et al. analyzed the
dynamics of natural gradient learning by means of statistical physics and
showed that it is almost ideal (Rattray & Saad, 1999; Rattray et al., 1998).

To examine the dynamics of learning in more detail, let us consider
perceptrons consisting of two hidden units. The parameter space is M =
{θ}, θ = (w1,w2, v1, v2), and let us consider the subset Q(w, v) specified by
w and v,

Q(w, v) = {w1 = w2 = w, v1 + v2 = v} , (4.18)

which is included in the critical set C . The behavior of each perceptron
in Q is the same and corresponds to that of a perceptron having only
one hidden unit, where the weight vector is w and the output weight is
v, and the behavior is y = vϕ(w · x) + ε. Let the true parameters be θ0 =
{w1,w2, v1, v2}, where w1 �= w2, so two different hidden units are used.
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Let θ̄ = (w̄, v̄) be the perceptron with only one hidden unit that best
approximates the input-output function f (x, θ0) of the true perceptron.
Then all the perceptrons of two hidden units on the line Q(w̄, v̄),

w1 = w2 = w̄, v1 + v2 = v̄ (4.19)

correspond to the best approximation. Let us transform the two weights as

w = 1
2

(w1 + w2) , u = 1
2

(w1 − w2) . (4.20)

The derivative of L(θ ) along the line Q is then 0 because all the perceptrons
are equivalent along the line. The derivatives in the direction of changing w̄

and v̄ are also zero, because they are the best approximators. The derivative
in the direction of u is again 0, because the perceptron having u is equivalent
to that having −u, which is derived by interchanging the two hidden units.
Hence, the line Q forms critical points of the cost function. This implies
that it is very difficult to get rid of it once the parameters are attracted to
Q (w̄, v̄).

Fukumizu and Amari (2000) calculated the Hessian of L on the line.
When it is positive definite, the line is attractive. When it includes negative
eigenvalues, the state eventually escapes in these directions. They showed
that in some cases, part of the line can be truly attractive, although it is not a
usual asymptotically stable equilibrium but has directions of escape (even
though the derivative is 0) in other parts. This is not a usual saddle point
and belongs to the special type called the Milner attractor. In such a case,
the perceptron is truly attracted to the line and stays inside the line Q(w̄, v̄),
fluctuating around it because of random noise, until it finds a place from
which it can escape. This explains the plateau phenomenon. The problem
of plateau cannot be resolved by simply increasing η, because even when
the state goes outside Q because of a large η, it may again return to it.

To show why the natural gradient method works well, we need to eval-
uate its behavior in the neighborhood of the critical points. We can then
prove that the natural gradient has the effect of strong repulsion to escape
from the neighborhood of the critical set, and the plateau phenomenon will
disappear. Computer simulations confirm this observation.

Inoue et al. (2003) investigated the trajectory of learning by using the
committee machine perceptron with two hidden units. They observed the
following behavior of the trajectory. It approaches the singularity and stays
near the singularity for a while before escaping from it. More precisely, they
observed that w1 and w2 first came close to each other, both approaching w̄,
which is the optimal in C , and then they moved away in different directions.
Inoue et al. (2003) also studied the effectiveness of the adaptive natural gra-
dient method, and showed the importance of controlling the two learning
constants η and τ .
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Figure 6: Learning trajectory near the singularities.

What is the trajectory of learning when the true parameters are on the
singularity? Park, Inoue, and Okada (2003) investigated this problem by
using three-layer perceptrons with two hidden units. Once the trajectory
reaches C in Figure 6, all points are equivalent and suboptimal. Where does
the trajectory enter C? To answer this question, we need to examine the
dynamics near C . Because the component of the flow entering C is extremely
slow near C , the flow component parallel to C is relatively strong. Analysis
of the dynamics makes it clear that the trajectory does not stop at any point
in the line where w1 = w2 = w and v1 + v2 = v is constant, v1 �= 0, v2 �= 0,
and that it approaches the point where either v1 or v2 is zero. This is an
interesting observation.

What is the trajectory of learning in the natural gradient method? Since
the metric degenerates in C , its inverse diverges to infinity. However, ∇L =
0 even when the true distribution is outside C . If we consider G−1∇L , it
becomes a multiplication of 0 and ∞. However, if we evaluate G−1∇L near
C , we can see that the infinitely strong repulsive force works in the direction
of escape from C (Fukumizu & Amari, 2000). That is, the force going out
from the plateau is strong, and the trajectory moves away without being
attracted in the natural gradient.

5 Dynamics of Learning: Slow and Fast Manifolds

In this section, we show in detail the effect of singularities in the dynamics
of learning for three simple models: the one-dimensional cone, the simple
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MLP, and the gaussian mixture. Note that the structure of the gaussian
mixture is very similar to that of the multilayer perceptron. We calculate the
average trajectories of the standard and natural gradient learning methods
to show how the trajectories approach the optimal point. We show that a
slow manifold emerges around the critical set to which the state is quickly
attracted by fast dynamics, and then the state escapes toward the optimal
point slowly in the slow manifold. This is a universal feature of the plateau
phenomenon.

5.1 Cone Model. Here, we investigate the dynamics of learning in
the cone model introduced in section 2. The parameter space M is two-
dimensional with coordinates (ξ, θ ). The cost function is defined as the
negative log likelihood

l(x; ξ, θ ) = 1
2

{
(x1 − ξ )2 + (x2 − cξ cos θ )2 + (x3 − cξ sin θ )2} . (5.1)

For the average learning dynamics under the standard gradient learning
method, we can easily obtain

(
ξ̇ (t)

θ̇(t)

)
SGD

= −ηt

(
x̄1 + c(x̄2 cos θ + x̄3 sin θ ) − (1 + c2)ξ

−cξ (x̄2 sin θ − x̄3 cos θ )

)
, (5.2)

where x̄i = E[xi ]. Similarly, the average dynamics of natural gradient learn-
ing can also be obtained as

(
ξ̇ (t)

θ̇(t)

)
NGD

= −ηt

( 1
1+c2

(
x̄1 + c(x̄2 cos θ + x̄3 sin θ ) − (1 + c2)ξ

)
− 1

cξ (x̄2 sin θ − x̄3 cos θ )

)
,

(5.3)

where we calculate the Fisher information matrix as

G(ξ, θ ) =
[

1 + c2 0
0 c2ξ 2

]
. (5.4)

To consider the effect of singularity (i.e., ξ = 0) on the dynamics of learn-
ing, we define two submanifolds satisfying ξ̇ = 0 and θ̇ = 0, respectively.
These are

Mξ = {(θ, ξ ) : x̄1 + c(x̄2 cos θ + x̄3 sin θ ) − (1 + c2)ξ = 0} (5.5)
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Figure 7: Learning trajectories in the cone model. (Left) Standard gradient (the
dotted line is the slow manifold). (Right) Natural gradient.

and

Mθ = {(θ, ξ ) : x̄2 sin θ − x̄3 cos θ = 0}. (5.6)

The intersection of Mξ and Mθ is the equilibrium of the dynamics. From the
standard gradient learning equation, we see that ξ̇ is of order O(1), whereas
θ̇ is of order O(ξ ). Therefore, in the neighborhood of the singularity where
ξ is small, the speed of change in ξ is much faster than that of θ . Therefore,
the state is attracted toward Mξ (the dashed line in Figure 7 (left)) by the
fast dynamics. Then the state moves along the line ∂l/∂ξ = 0 or Mξ , which
is the slow manifold. The dynamics becomes especially slow when ξ is
small (slow dynamics). This explains the plateau phenomenon in leaning
curves. On the other hand, with the natural gradient learning equation 5.3,
one can see that ξ̇ is of order 1 and θ̇ is of order ξ−1, so no slow manifolds
appear. Moreover, the update term around the singularity is large, so that
a strong repulsive force acts from the singularity. This explains why the
plateau disappears in the natural gradient.

In computer simulations, we set c = 1. For the true parameters, we
took ξ ∗ = 1 and θ∗ = 0, so we had (x̄1, x̄2, x̄3) = (1, 1, 0). For the standard
gradient and the natural gradient, we traced a number of trajectories with
different initial values of ξ and θ . The trajectories in the parameter space
are shown in Figure 7 using polar coordinates. Note that the center of the
polar coordinates, (0, 0), is the singular point corresponding to the apex of
the cone.

In Figure 7 (left) for the standard gradient, we can see that the trajectories
were attracted to the singular point or the slow manifold and then finally
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Figure 8: Time evolution of expected loss in the cone model. (Solid line: stan-
dard gradient, dashed line: natural gradient).

were attracted to the optimal point. In contrast, for the natural gradient,
Figure 7 (right), such attraction and retardation did not appear.

Figure 8 shows the time evolution of the expected loss for the initial
condition (ξ, θ ) = (1.5, 5π/6). We can see a clear plateau in the standard
gradient learning curve, whereas there was no plateau in the natural gradi-
ent learning curve.

5.2 Simple MLP. We also investigated the dynamics of learning of the
simple MLP defined by equation 2.29, which is also discussed in section 2.
The loss function, which is the squared error or the negative log likelihood,
is given by

l(y, x; ξ, θ ) = 1
2

{
y − ξϕ(cos θx1 + sin θx2 + b)

}2
. (5.7)

The mathematical analysis is similar, and the fast and slow manifolds are
obtained from θ̇ = 0 and ξ̇ = 0, respectively.

For our computer simulations, we set b = 0.5. For the true parameters,
we took ξ ∗ = 1 and θ∗ = 0. As for the cone model, we traced a number of
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Figure 9: Learning trajectories in the simple MLP model. (Left) Standard gra-
dient. (Right) Natural gradient.

trajectories with different initial values of ξ and θ . The trajectories in the
parameter space are shown in Figure 9 using polar coordinates. Note that
for this MLP model, the center of the polar coordinates is the singular point,
which corresponds to the shrink point of Figure 4.

In Figure 9 (left) for the standard gradient, we can see phenomena sim-
ilar to those for the cone model. That is, the trajectory was attracted to
the plateau near the singular point and then slowly reached the optimal
point. For the natural gradient, Figure 7 (right), we did not see that kind of
attraction and retardation.

Figure 10 shows the time evolutions of the expected loss for the initial
condition (ξ, θ ) = (1.5, 5π/6). We can see a clear plateau in the curve of
standard gradient learning, but none in that of natural gradient learning.

5.3 Gaussian Mixture. Next, we consider a more realistic model, the
gaussian mixture. This is an original study in this article. To investigate
the dynamics of learning of the gaussian mixture model, we begin with
the Taylor expansion, equation 2.16, where v(1 − v) > c should be kept in
mind. In this model, the singularity exists at u = 0, so the Taylor expansion
for small values of u is useful. The cost function, the negative of the log
likelihood, is further expanded as

l(x; u, v) = −
{

log ψ(x) + 1
2

c2(v)H2(x)u2 + 1
6

c3(v)H3(x)u3

+ 1
24

c4(v)H4(x)u4 − 1
8

c2
2(x)H2

2 (x)u4 + O(u5)
}

. (5.8)
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Figure 10: Time evolutions of expected loss in simple MLP. (Solid line: standard
gradient, dashed line: natural gradient).

Let (u∗, v∗) be the true parameter from which the learning data are gen-
erated. We can calculate the average learning dynamics around small u.

Lemma. When u is small, the gradient of l evaluated at the true parameter
(u∗, v∗), is given by

E∗[∂ul] = −c2(v){u∗2c2(v∗) − u2c2(v)}u

− 1
2

c3(v){u∗3c3(v∗) − u3c3(v))}u2 + O(u3) (5.9)

E∗[∂vl] = −1
2

c ′
2(v){u∗2c2(v∗) − u2c2(v)}u2

− 1
6

c ′
3(v){u∗3c3(v∗) − u3c3(v))}u3 + O(u4), (5.10)

where E∗ denotes the expectation with respect to p(x, u∗, v∗) and c ′
i (v) =

dci (v)/dv. The proof is given in the appendix.
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The averaged equation for the standard gradient is given by

(
u̇(t)

v̇(t)

)
SGD

= −η

(
E∗[∂ul]

E∗[∂vl]

)
. (5.11)

We put

f1(u, v) = u∗2c2(v∗) − u2c2(v),

f2(u, v) = u∗3c3(v∗) − u3c3(v).

The averaged learning equations are then given by

(
u̇(t)

v̇(t)

)
SGD

= −η

(
c2(v) f1(u, v)u + 1

2 c3(v) f2(u, v)u2

1
2 c ′

2(v) f1(u, v)u2 + 1
6 c ′

3(v) f2(u, v)u3

)

+
(

O(u3)

O(u4)

)
. (5.12)

We now consider the trajectories of learning in two cases: u∗ = 0 (singu-
larity) and u∗ �= 0 (regular).

Case I: u∗ = 0. By putting u∗ = 0 in equation 5.12 and ignoring higher-order
terms, we have

u̇ =−ηc2(v)2u3,

v̇ =−η
c2(v)c ′

2(v)
2

u4. (5.13)

From this, the trajectory of dynamics is given by

dv

du
= v̇

u̇
= 1 − 2v

2v(1 − v)
u. (5.14)

The equation can be integrated to give

u2 = 1
4

(1 − 2v)2 − 1
2

log(1 − 2v) + c, (5.15)

where c is constant. When u is small, v̇ is of O(u4) and is much smaller than
u̇, which is of order u3. Hence, dv/du ≈ 0, and the trajectories are almost
parallel to the u-axis, as shown in Figure 11. In other words, u converges to
0 without significantly changing v.
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Figure 11: Trajectories of learning in the gaussian mixture model.

Case II: u∗ �= 0. We also evaluate the dynamics when u is small. The equation
is

u̇ = ηc2(v)c2(v∗)u∗2u (5.16)

v̇ = η

2
c ′

2(v)c2(v∗)u∗2u2 (5.17)

and

dv

du
= u

2
c ′

2(v)
c2(v)

(5.18)

irrespective of (u∗, v∗). Incidentally, the equation is the same as that of
equation 5.14; hence, the trajectories are the same (see Figure 11), but the
directions are opposite, and the state is escaping from u = 0 toward u∗ in
this case; that is, the directions in Figure 11 are reversed.

The equilibrium is given by the intersection of the two manifolds,

MF : f2(u, v) = 0,

MS : f1(u, v) = 0.
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Figure 12: Learning trajectories in the simple gaussian mixture model. (Left)
Standard gradient. (Right) Natural gradient.

When u is small, the first term of f1(u, v) dominates, and the state is quickly
attracted to MS. Then it moves in MS slowly to the intersection of MS and
MF . Computer simulations confirm this observation (see Figure 12 left).

We next studied the natural gradient method. Using an approximation,
equation 5.8, we can also obtain an explicit form of the Fisher information
matrix. This is given by

G(u, v) =


 2c2

2(v)u2 + 3
2

c2
2(v)u4 c3(v)u3 + 1

2 c3(v)(2c2(v) + 1)u5

c3(v)u3 + 1
2

c3(v)(2c2(v) + 1)u5 1
2 (c ′

2(v))2u4 + ( 1
6 − c2(v))u6


 .

(5.19)

For the natural gradient method, the dynamics of learning is

(
u̇(t)

v̇(t)

)
NGD

= η

u3

(
c̃1 f2(u, v)u + c̃2 f1(u, v)u2

c̃3 f2(u, v) + c̃4 f1(u, v)u

)
, (5.20)

where c̃i are functions of v. The equilibrium is again the intersection of MS

and MF , but the roles of MS and MF are reversed. Repulsion is strong when
u is small, and no plateau appears.

For our computer simulations, we set the true parameters as u∗ = 0.75
and v∗ = 0.7. Since the analytic expression of the average dynamics given in
equations 5.12 and 5.20 are an approximation around a small u, we cannot
apply this for the whole trajectory. Therefore, we use the Monte Carlo
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Figure 13: Time evolutions of the expected loss in the simple gaussian mixture
model. Solid line: standard gradient, dashed line: natural gradient.

method to get the expectation of ∂l/∂u and ∂l/∂v. At each learning step,
we generate 106 samples according to the true input distribution and take
the sample means. We traced a number of trajectories with different initial
values for u and v. The trajectories in the parameter space are shown in
Figure 12.

In Figure 12 (left), we can see the line (slow manifold) on which the
parameters first converge. Therefore, the state proceeds by learning toward
the line satisfying

u∗2c2(v∗) = u2c2(v),

which is shown as a dashed line in Figure 12 (left). However, for the natural
gradient, Figure 12 (right), the update terms of u̇ and v̇ have terms of
order O(u−2) and O(u−3), respectively, which lead to much faster dynamics
around the singularity.

Figure 13 shows the time evolutions of the expected loss for the initial
condition (u, v) = (0.9, 0.6). We can see the slow convergence in the standard
gradient learning curve, whereas this sort of retardation is not apparent in
natural gradient learning.
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6 Generalization and Training Errors When the True Distribution Is at a
Singular Point

It is important for model selection to evaluate the generalization error rel-
ative to the training error. Since AIC and MDL have been derived from
the asymptotic gaussianity of the estimator, they cannot be applied to the
singular case. In particular, for hierarchical models such as multilayer per-
ceptrons and gaussian mixtures, smaller models are embedded in the larger
models as critical sets. Therefore, we need to find new model selection
criteria for the singular case. In the regular case, the MLE and Bayes pre-
dictive estimators give asymptotically the same estimation performance.
However, these are not guaranteed in the singular case. As a preliminary
study, we analyzed the asymptotic behavior of the MLE and Bayes
predictive distribution by using simple toy models when the true distri-
bution lay at a singular point, that is, in a smaller model.

The behavior of an estimator is evaluated by the relation between
the expected generalization error and the expected training error. Let
D = {x1, . . . , xn} be observed data, or D = {(x1, y1), . . . , (xn, yn)} in the case
of perceptrons. When we have an estimated probability density function
p̂(x; D), the generalization error can be defined by the Kullback-Leibler
divergence from the true probability density po to the estimated density
function,

K L[po(x) : p̂(x; D)] = E po

[
log

po (x)
p̂(x; D)

]
. (6.1)

In the case of perceptrons, the estimated density function is the conditional
probability density p̂(y|x; D), and a similar formulation follows. For the
evaluation, we take an expectation of the generalization error with respect
to the data, and we call it the expected generalization error,

Egen = ED E po

[
log

po (x)
p̂(x; D)

]
, (6.2)

where ED denotes expectation with respect to the observed data D. Simi-
larly, the training error of the estimated density function p̂(x; D) is defined
by the sample average,

1
n

n∑
i=1

log
po(xi )

p̂(xi ; D)
, (6.3)
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which is the expectation of log(p0/ p̂) with respect to the empirical distribu-
tion of data D,

pemp(x) = 1
n

∑
δ(x − xi ). (6.4)

The expected training error is defined as

Etrain = ED

[
1
n

n∑
i=1

log
po (xi )

p̂(xi ; D)

]
. (6.5)

For the MLE, the estimated density function is given by p(x, θ̂ ) where
θ̂ is the MLE. One can also see the relation between the expected training
error and the likelihood ratio statistics λ in equation 3.17,

Etrain = − 1
2n

ED[λ].

For the Bayes estimation, the estimation density function is given by the
Bayes predictive distribution of the form

p̂Bayes(x|D) =
∫

p(x, θ )p(θ |D)dθ . (6.6)

6.1 Maximum Likelihood Estimator

6.1.1 Cone Model. For the cone model defined in equation 2.30, the log
likelihood of data D = {xi }i=1,...,n is written as

L(D, ξ,ω) = −1
2

n∑
i=1

||xi − ξa(ω)||2. (6.7)

The MLE is the one that maximizes L(D, ξ,ω). However, ∂k L/∂ωk = 0
at ξ = 0 for any k, so we cannot analyze the behaviors of the MLE by
Taylor expansion at ξ = 0. Therefore, we first fix ω and search for the ξ that
maximizes L . The maximum ξ̂ is given by

ξ̂ (ω) = argmax
ξ
L(D, ξ,ω) = 1√

n
Yn(ω), (6.8)

where

Yn(ω) = a(ω) · x̃, x̃ = 1√
n

n∑
i=1

xi . (6.9)
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Its limit Y(ω) is a zero-mean gaussian random field with covariance a(ω) ·
a(ω′), because x̃ ∼ N(0, I ) when the true distribution is at ξ = 0. The MLE
ω̂ is given by the maximizer of

ω̂ = argmaxωY2
n (ω). (6.10)

Using the MLE, we obtain the expected generalization and training errors
in the following theorem.

Theorem 1. For the cone model, when the true distribution is at ξ = 0, the
MLE satisfies

Egen = ED E po

[
log

po (x)
p(x|ξ̂ , ω̂)

]
= 1

2n
ED

[
maxωY2(ω)

]
, (6.11)

Etrain = ED

[
1
n

n∑
i=1

log
po (xi )

p(xi |ξ̂ , ω̂)

]
= − 1

2n
ED

[
maxωY2(ω)

]
. (6.12)

A more detailed derivation is given in the appendix. In addition, we can
obtain the explicit value of ED

[
maxωY2(ω)

]
within the limit of large d .

Corollary 1. When d is large, the MLE satisfies

Egen ≈
1 + 2c

√
2
π

√
d + c2(d + 1)

2n(1 + c2)
≈ c2d

2n(1 + c2)
, (6.13)

Etrain ≈−
1 + 2c

√
2
π

√
d + c2(d + 1)

2n(1 + c2)
≈ − c2d

2n(1 + c2)
. (6.14)

The proof is also given in the appendix. Among the results is an inter-
esting one concerning the antisymmetry between Egen and Etrain; that is,
Egen = −Etrain, which is proved in the regular case (Amari & Murata, 1993).
Note also that the generalization and training errors depend on the shape
parameter c as well as the dimension number d . In the regular case, they
depend only on d . As one can easily see, when c is small, the cone looks
like a needle, and its behavior resembles a one-dimensional model. When
c is large, the cone resembles two (d + 1)-dimensional hypersurfaces, so its
behavior is like a (d + 1)–dimensional regular model. Such observations are
confirmed by equations 6.13 and 6.14.
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6.1.2 Simple MLP with One Hidden Unit. For the simple MLP defined in
equation 2.33, we can also apply the same approach. The log likelihood of
data set D = {(xi , yi )}i=1,...,n is written as

L(D; ξ,ω) = −1
2

n∑
i=1

{
yi − ξϕβ (ω · xi )

}2
. (6.15)

Let us define two random variables depending on D and ω,

Yn(ω) = 1√
n

n∑
i=1

yiϕβ (ω · xi ) , (6.16)

An(ω) = 1
n

n∑
i=1

ϕ2
β (ω · xi ). (6.17)

Note that An(ω) converges to A(ω) = Ex[ϕ2
β (ω · x)] as n goes to infinity, but

is not normalized to 1 in the present case. Y(ω) defines a gaussian random
field on 
, with mean 0 and covariance A(ω,ω′) = Ex[ϕβ (ω · x)ϕβ (ω′ · x)].
One should be careful that An(ω, β) of equation 6.17 approaches 0 as β → 0.
This belongs to the non-Donsker class, and our theory does not hold in such
a case. Using the MLE, we get the following theorem.

Theorem 2. For the simple MLP model, when the teacher perceptron is ξ = 0,
the MLE satisfies

Egen = ED E po ,q

[
log

po(y|x)
p(y|x, ξ̂ , ω̂)

]
= 1

2n
ED

[
supω

Y2(ω)
An(ω)

]
, (6.18)

Etrain = ED

[
1
n

n∑
i=1

log
po(y|xi )

p(y|xi , ξ̂ , ω̂)

]
= − 1

2n
ED

[
supω

Y2(ω)
An(ω)

]
. (6.19)

The details of this derivation are given in the appendix. From the re-
sults, we can see a nice correspondence between the cone model and MLP.
However, note that there is no sufficient statistic in the MLP case, while all
the data are summarized in the sufficient statistic x̃ in the cone model. In
addition, due to the nonlinearity of the hidden unit, we cannot easily de-
termine the explicit relation through which the training and generalization
errors depend on the dimension number of the parameters, which we have
for the cone model in corollary 1.
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6.2 Bayes Predictive Distribution

6.2.1 Cone Model. Different from the regular case, the asymptotic behavior
of the Bayesian predictive distribution depends on the prior. Let us define
the prior as π(ξ,ω). The probability density of the observed sample is then
given by

Zn = p(D) =
∫

π (ξ,ω)
n∏

i=1

p(xn|ξ,ω)dξdω. (6.20)

When new data xn+1 are given, we can similarly obtain the joint probability
density p(xn+1, D) as

Zn+1 = p(xn+1, D) =
∫

π (ξ,ω)
n+1∏
i=1

p(xi |ξ,ω)dξdω. (6.21)

From the Bayes theorem, we can easily see that the Bayes predictive distri-
bution is given by

p̂Bayes(x|D) = Zn+1

Zn
, (6.22)

where x = xn+1.
When we assume a specific prior for the parameter ξ and ω, we can

calculate Zn explicitly. When π (ξ ) = 1 and ω is uniform on 
, we can obtain
the Bayes predictive distribution and the generalization error explicitly, as
in the following theorems.

Theorem 3. Under the uniform prior on ξ , the Bayes predictive distribution of
the cone model is given by

p̂BAYES(x|D) = 1

(
√

2π )d+2
exp

{
−1

2
‖x‖2

}

×
{

1 + 1√
n

∇logSU
d (x̃) · x + 1

2n
tr

(∇∇SU
d

SU
d

H2(x)
)}

, (6.23)

where H2(x) = xxT − I and

SU
d (x̃) =

∫
exp

{
1
2

Yn(ω)2

}
dω, Yn = 1√

n

n∑
i=1

a (ω) · xi = a(ω) · x̃.
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Theorem 4. Under the uniform prior on ξ , the generalization and training
errors of the Bayes predictive distribution of the cone model are given by

Egen = ED E po

[
log

po (x)
p(x|D)

]
= 1

2n
ED

[∥∥∇logSU
d (x̃)

∥∥2
]

= 1
2n

, (6.24)

Etrain = 1
n

n∑
i=1

ED

[
log

po (xi )
p(xi |D)

]
= Egen − 1

n
ED

[∇logSU
d (x̃) · x̃

]
. (6.25)

The details of this derivation are given in the appendix.

Remark. For any prior π (ξ,ω) that is positive and smooth, theorems 3
and 4 also hold asymptotically without any change.

The Jeffreys’ prior is given by the square root of the determinant of the
Fisher information matrix,

π(ξ,ω) ∝
√

|G(ξ,ω)|. (6.26)

In this case, π(ξ ) ∝ |ξ |d and ω are uniformly distributed on Sd . The Jeffreys
prior is not smooth and is 0 at ξ = 0. This is completely different from the
regular case. We can conduct a similar analysis and obtain the following
theorems.

Theorem 5. Under the Jeffreys’ prior, the Bayes predictive distribution of the
cone model is given asymptotically by

p̂BAYES(x|D) = 1

(
√

2π )d+2
exp

{
−1

2
‖x‖2

}

×
{

1 + 1√
n

∇logSJ
d (x̃) · x + 1

2n
tr

(∇∇SJ
d

SJ
d

H2(x)
)}

, (6.27)

where

SJ
d (x̃) = ∫

Id (Yn(ω)) exp
{

1
2 Yn(ω)2

}
dω, (6.28)

Id (u) = 1√
2π

∫ |z + u|dexp
{
−1

2 z2
}

dz. (6.29)

Theorem 6. Under the Jeffreys’ prior, the generalization and training errors of
the Bayes predictive distribution of the cone model are given asymptotically by

Egen = 1
2n

ED

[∥∥∇logSJ
d (x̃)

∥∥2
]

= d + 1
2n

(6.30)
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Etrain = Egen − 1
n

ED
[∇logSJ

d (x̃) · x̃
]
. (6.31)

For the proof, the same derivation process as that of the uniform case can
be applied, although the process is fairly complicated.

These results are rather surprising. Under the uniform prior, the general-
ization error is constant and does not depend on d , which is the complexity
of the model. Hence, no overfitting occurs whatever complex models we
use. This is completely different from the regular case. However, this strik-
ing result arises from the uniform prior on ξ . The uniform prior puts a
strong emphasis on the singularity because there are infinitely many equiv-
alent points at ξ = 0, so the prior density is infinitely large if we consider the
space M̃ of the probability distributions or behaviors. Hence, one should be
very careful in choosing a prior when the model includes singularities. In
the case of Jeffreys’ prior, the generalization error increases in proportion
to d , which is similar to the regular case. In addition, the antisymmetric
duality between Egen and Etrain does not hold for both the uniform prior
and Jeffreys’ prior.

6.2.2 Simple MLP with One Hidden Unit. For the simple MLP model, we
conducted a similar analysis for the uniform prior and Jeffreys’ prior, and
obtained the following theorems.

Theorem 7. Under the uniform prior on ξ , the Bayes predictive distribution of
the simple MLP model is given by

p̂BAYES(y|x, D) = 1√
2π

exp
{
−12

y2

}{
1 + y√

n

∫ ∇QU
d (Yn,ω)ϕβ (ω · x)dω

PU
d (Yn)

+ 1
2n

H2(y)

∫ ∇∇QU
d (Yn,ω)An(ω)dω

PU
d (Yn)

+ O
(

1
n2

)}
, (6.32)

where

QU
d (Yn,ω) = 1√

A(ω)
exp

{
1
2

Yn(ω)2

A(ω)

}
, (6.33)

PU
d (Yn) =

∫
QU

d (Yn,ω)dω, (6.34)

Yn(ω) = 1√
n

n∑
i=1

yiϕβ (ω · xi ) = 1√
n

n∑
i=1

yiϕi , (6.35)

A(ω) = Ex
[
ϕ2

β (ω · x)
]
. (6.36)
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Theorem 8. Under the uniform prior on ξ , the generalization and training
errors of the Bayes predictive distribution of the simple MLP model are given by

Egen = ED E po q

[
log

po (y|x)
p(y|x, D)

]

= 1
2n

ED

[∫ ∇QU
d (Yn,ω)∇QU

d (Yn,ω
′)A(ωω′)dωω′(

PU
d (Yn)

)2

]

= 1
2n

(6.37)

Etrain = 1
n

n∑
i=1

ED

[
log

po (yi |xi )
p(yi |xi , D)

]

= Egen − 1
n

ED

[∫ ∇QU
d (Yn,ω)Yn(ω)dω

PU
d (Yn)

]
. (6.38)

Theorem 9. Under Jeffreys’ prior on ξ , the Bayes predictive distribution of the
simple MLP model is given by

p̂BAYES(y|x, D) = 1√
2π

exp
{
−1

2
y2
}{

1 + y√
n

∫ ∇QJ
d (Yn,ω)ϕβ (ω · x)dω

P J
d (Yn)

+ 1
2n

H2(y)

∫ ∇∇QJ
d (Yn,ω)An(ω)dω

P J
d (Yn)

+ O
(

1
n2

)}
, (6.39)

where

QJ
d (Yn,ω) = 1√

A(ω)
d+1

Id

(
Yn(ω)√

A(ω)

)
exp

{
1
2

Yn(ω)2

A(ω)

}
(6.40)

P J
d (D) =

∫
QJ

d (Yn,ω)dω. (6.41)

Id (u) = 1√
2π

∫
|z + u|dexp

{
−1

2
z2

}
dz. (6.42)

Theorem 10. Under Jeffreys’ prior on ξ , the generalization and training errors
of the Bayes predictive distribution of the simple MLP model are given by

Egen = 1
2n

ED

[∫ ∇QJ
d (Yn,ω)∇QJ

d (Yn,ω
′)A(ωω′)dωω′(

P J
d (D)

)2

]

= d + 1
2n

(6.43)



1052 S.-I. Amari, H. Park, and T. Ozeki

Etrain = Egen − 1
n

ED

[∫ ∇QJ
d (Yn,ω)Yn(ω)dω

P J
d (D)

]
. (6.44)

All of these results for the simple MLP correspond well with those for
the cone model. For both the cone and MLP models, we can see that the
generalization error is strongly dependent on the prior distribution of the
parameters. This differs from the classic theory for the regular models.

7 Conclusion

It has long been known that some kinds of statistical model violate ordinary
conditions such as the existence of a regular Fisher information matrix. Un-
fortunately, in classical statistical theories, singular models of this type have
been regarded as pathological and have received little attention. However,
to understand the behavior of hierarchical models such as multilayer per-
ceptrons, singularity problems cannot be ignored. The singularity is closely
related to basic problems regarding these models—such as the slow dynam-
ics of learning in plateaus and a strange relation between generalization and
training errors—and also the criteria of model selection.

It is premature to give a general theory of estimation, testing, Bayesian
inference, and learning dynamics for singular models. In this article, we
have summarized our recent results regarding these problems using simple
toy models. Although the results are preliminary, we believe that we have
succeeded in elucidating various aspects of the singularity and have found
some interesting paths to follow in future studies.

Appendix: Proofs of Theorems

Proof of Theorem 1. The log likelihood of D is given by

L(D, ξ,ω) = −1
2

n∑
i=1

‖xi − ξa(ω)‖2. (A.1)

From the definition of the generalization and training errors, we obtain

Egen = ED E po

[
−ξ̂ (ω̂)a(ω̂) · x + 1

2
ξ̂ 2(ω̂) (a(ω̂) · a(ω̂))

]

= ED

[
1
2
ξ̂ 2(ω̂)

]

= 1
2n

ED
[
maxωY2

n (ω)
]
. (A.2)
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Etrain = ED

[
1
n

n∑
i=1

{
−ξ̂ (ω̂)a(ω̂) · xi + 1

2
ξ̂ 2(ω̂) (a(ω̂) · a(ω̂))

}]

= ED

[
−ξ̂ (ω̂)

(
1√
n

a(ω̂) · x̃
)

+ 1
2
ξ̂ 2(ω̂)

]

= ED

[
−1

2
ξ̂ 2(ω̂)

]

=− 1
2n

ED
[
maxωY2

n (ω)
]
. (A.3)

Proof of Corollary 7. In order to get the final results, we need to calculate
maxωY2

n (ω). Let

a(ω) · x̃ = 1√
1 + c2

(x̃1 + cω · x̃′)

where x̃′ = (x̃2, . . . , x̃d+2)T . Then

Y2
n (ω) = ‖a(ω) · x̃‖2 = 1

1 + c2

{
x̃2

1 + 2cx̃1ω · x̃′ + c2(ω · x̃′)2}
= 1

1 + c2

{
x̃2

1 + 2cx̃1 Ae · ω + c2 A2(e · ω)2} , (A.4)

where x̃′ = ‖x̃′‖e = Ae, ‖e‖ = 1. Then we obtain

ω̂ = argmaxωY2
n (ω) = sgn(x̃1)e,

and

maxωY2
n (ω) = 1

1 + c2

{
x̃2

1 + 2c|x̃1|A+ c2 A2} .

From the fact that

ED[A2] = d + 1,

ED[A] = E
[√

x̃2
2 + · · · + x̃2

d+2

]
= d!!

(d − 1)!!

√
2
π

(−1)d

≈
√

d,

where d!! = d(d − 2)(d − 4) · · ·, we finally get
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ED
[
maxωY2

n (ω)
]= 1

1 + c2

{
1 + 2c ED[|x̃1|]ED[A] + c2(d + 1)

}

≈
1 + 2c

√
2
π

√
d + c2(d + 1)

(1 + c2)
≈ c2d

1 + c2 . (A.5)

Proof of Theorem 2. The log likelihood of D is given by

L(D, ξ,ω) = −1
2

n∑
i=1

{yi − ξϕβ (ω · xi )}2

= −1
2

n∑
i=1

y2
i + ξ

n∑
i=1

yiϕβ (ω · xi ) + −1
2
ξ 2

n∑
i=1

ϕ2
β (ω · xi ). (A.6)

By using

L(ξ̂ (ω),ω) = −1
2

n∑
i=1

y2
i + 1

2
Y2

n (ω)
An(ω)

, (A.7)

ω̂ = argmaxω

Y2
n (ω)

An(ω)
, (A.8)

Egen = ED Ey,x

[
−ξ̂ (ω̂)yϕβ (ω̂ · x) + 1

2
ξ̂ 2(ω̂)ϕ2

β (ω̂ · x)
]

= ED Ex

[
1
2
ξ̂ 2(ω̂)An(ω̂)

]
= 1

2n
ED

[
supω

Y2(ω)
An(ω)

]
, (A.9)

Etrain = ED

[
1
n

n∑
i=1

{
−ξ̂ (ω̂)yiϕβ (ω · xi ) + 1

2
ξ̂ 2(ω̂)ϕ2

β (ω̂ · xi )
}]

= ED

[
−ξ̂ (ω̂)

(
1√
n

Y(ω̂)
)

+ 1
2
ξ̂ 2(ω̂)An(ω̂)

]

= ED

[
−1

2
ξ̂ 2(ω̂)An(ω̂)

]
= − 1

2n
ED

[
supω

Y2(ω)
An(ω)

]
. (A.10)

Proof of Theorem 3. Let us define

Zn = p(D) =
∫

π (ξ,ω)
n∏

i=1

p(xi |ξ,ω)dξdω, (A.11)
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Zn+1 = p(x, D) =
∫

π (ξ,ω)
n+1∏
i=1

p(xi |ξ,ω)dξdω. (A.12)

Then the Bayesian predictive distribution can be written by

p̂BAYES(x|D) = Zn+1

Zn
. (A.13)

Under the uniform prior, we can easily get

Zn = 1

(
√

2π)n(d+2)

∫
exp

{
−1

2

∑
‖xi‖2 + ξa(ω) ·

∑
xi − n

2
ξ 2

}
dξdω

=
√

2π

(
√

2π)n(d+2)
√

n
exp

{
−1

2

∑
‖xi‖2

}∫
exp

{
1
2

Yn(ω)2
}

dω. (A.14)

From equations A.14 and A.13, we obtain

p̂BAYES(x|D) = 1

(
√

2π )d+2

√
n

n + 1
exp

{
−‖x‖2

2

}
SU

d (x̃n+1)
SU

d (x̃)
, (A.15)

where

x̃n+1 = 1√
n + 1

(
x +

∑
xi

)
, SU

d (x̃) =
∫

exp
{

1
2

Yn(ω)2
}

dω.

Using the approximation of the form,

x̃n+1 ≈ x̃ +
(

x√
n

− 1
2n

x̃
)

= x̃ + δx,

and from equation A.15, we obtain
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p̂BAYES(x|D) = 1

(
√

2π )d+2
exp

{
−1

2
‖x‖2

}{
1 − 1

2n

}

×
{

1 + ∇SU
d (x̃)

SU
d (x̃)

· δx + 1
2

tr
(∇∇SU

d (x̃)
SU

d (x̃)
δxδxT

)}

= 1

(
√

2π )d+2
exp

{
−1

2
‖x‖2

}{
1 + 1√

n
∇SU

d (x̃)
SU

d (x̃)
· x

+ 1
2n

(
tr
(∇∇SU

d

SU
d

xxT
)

− ∇SU
d

SU
d

· x̃ − 1
)}

. (A.16)

Using the fact that ∇SU
d (x̃) · x̃ + SU

d (x̃) = tr{∇∇SU
d (x̃)}, we can obtain the

final result.

Proof of Theorem 4. From equation A.16,

Egen = ED E po

[
− log

{
1 + 1√

n
∇ log SU

d (x̃) · x + 1
2n

tr
(∇∇SU

d

SU
d

H2(x)
)}]

= ED E po

[
− 1√

n
∇ log SU

d (x̃) · x − 1
2n

tr
(∇∇SU

d

SU
d

H2(x)
)

+ 1
2n

(∇ log SU
d (x̃) · x

)2
]

= 1
2n

ED

[∥∥∇ log SU
d (x̃)

∥∥2
]

(A.17)

Similarly, for the training error, we get

Etrain = 1
n

n∑
i=1

ED

[
− log

{
1 + 1√

n
∇ log SU

d (x̃) · xi + 1
2n

(∇∇SU
d

SU
d

H2(xi )
)}]

= 1
n

n∑
i=1

ED

[
− 1√

n
∇ log SU

d (x̃) · xi − 1
2n

tr
(∇∇SU

d

SU
d

H2(xi )
)

+ 1
2n

(∇ log SU
d (x̃) · xi

)2
]

=− 1
n

ED
[∇ log SU

d (x̃) · x̃
]

+ 1
n

n∑
i=1

ED

[
− 1

2n
tr
(∇∇SU

d

SU
d

H2(xi )
)

+ 1
2n

(∇ log SU
d (x̃) · xi

)2
]

.
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Here, we use the expansion

x̃ ≈ x̃i + 1√
n

xi , (A.18)

f (x̃) ≈ f (x̃i ) − 1√
n

∇ f (x̃i ) · xi , (A.19)

where x̃i = 1√
n

∑
j �=i x j , and we finally get

Etrain =− 1
n

ED
[∇ log SU

d (x̃) · x̃
] + 1

n

n∑
i=1

ED

[
1

2n

(∇ log SU
d (x̃i ) · x

)2
]

= Egen − 1
n

ED
[∇ log SU

d (x̃) · x̃
]
. (A.20)

On the other hand, since Yn(ω) and Yn+1(ω) have the same distributions,
we easily get

Egen = H0 + 1
n

,

where H0 is the entropy of the distribution p0(x).

Proof of Theorem 5. Let us define

ZJ
n = p(D) = ∫ |ξ |d∏n

i=1 p(xi |ξ,ω)dξdω, (A.21)

ZJ
n+1 = p(x, D) = ∫ |ξ |d∏n+1

i=1 p(xi |ξ,ω)dξdω. (A.22)

Then the Bayesian predictive distribution can be written as

p̂BAYES(x|D) = ZJ
n+1

ZJ
n

. (A.23)

Under Jeffreys’ prior, we get

ZJ
n = 1

(
√

2π)n(d+2)

∫
|ξ |d exp

{
−1

2

∑
‖xi‖2 + ξa(ω) ·

∑
xi − n

2
ξ 2

}
dξdω

= 1

(
√

2π)n(d+2)
exp

{
−1

2

∑
‖xi‖2

}

×
∫

|ξ |d exp
{
−n

2
ξ 2 + √

n(a(ω) · x̃)ξ
}

dξdω
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= 1

(
√

2π)n(d+2)
exp

{
−1

2

∑
‖xi‖2

}

×
∫

|ξ |d exp

{
−n

2

(
ξ − a(ω) · x̃√

n

)2
}

exp

{
(a(ω) · x̃)

2

2
}

dξdω

= 1

(
√

2π)n(d+2)
√

nd+1 exp
{
−1

2

∑
‖xi‖2

}

×
∫ ∣∣z + a(ω) · x̃

∣∣d exp
{
− z2

2

}
exp

{
(a(ω) · x̃)

2

2
}

dzdω

=
√

2π

(
√

2π)n(d+2)
√

nd+1 exp
{
−1

2

∑
‖xi‖2

}

×
∫

Id (a(ω) · x̃) exp

{
(a(ω) · x̃)

2

2
}

dω.

Therefore, the predictive distribution is given from equation A.14 as

p̂BAYES(x|D) = 1

(
√

2π )d+2

√
n

n + 1

d+1

exp
{
−‖x‖2

2

}
SJ

d (x̃n+1)
SJ

d (x̃)
. (A.24)

By again using the same expansion as for the uniform case, we obtain

p̂BAYES(x|D) = 1

(
√

2π)d+2
exp

{
−1

2
‖x‖2

}{
1 + d

2n

}

×
{

1 + ∇SJ
d (x̃)

SJ
d (x̃)

· δx + 1
2

tr
(∇∇SJ

d (x̃)
SJ

d (x̃)
δxδxT

)}

= 1

(
√

2π)d+2
exp

{
−1

2
‖x‖2

}

×
{

1 + 1√
n

∇ log SJ
d (x̃) · x + 1

2n
tr
(∇∇SJ

d

SJ
d

H2(x)
)}

. (A.25)

Proof of Theorem 7. Let us define

Zn =
∫ n∏

i=1

p(yi |xi , ξ,ω)dξdω, (A.26)

Zn+1 =
∫ n+1∏

i=1

p(yi |xi , ξ,ω)dξdω. (A.27)
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Then the Bayesian predictive distribution can be written as

p̂BAYES(y|x, D) = Zn+1

Zn
. (A.28)

Under the uniform prior, we can easily get

Zn = 1√
2π

n

∫
exp

{
−1

2

∑
y2

i + ξ
∑

yiϕi − 1
2

∑
ϕ2

i

}
dξdω

=
√

2π√
2π

n√
n

exp
{
−1

2

∑
y2

i

}∫
1
An

exp
{

1
2

Yn(ω)2

An(ω)

}
dω. (A.29)

Therefore, the predictive distribution can be written as

p̂BAYES(y|x, D) = 1√
2π

√
n

n + 1
exp

{
−1

2
y2
}

PU
d (Dn+1)
PU

d (Dn)
, (A.30)

where

PU
d (Dn) =

∫
1
An

exp
{

1
2

Yn(ω)2

An(ω)

}
dω

An(ω) = 1
n

n∑
i=1

ϕ2
β (ω · xi ).

Noting that An(ω) converges to A(ω) within the limit of large n, we substitute
PU

d (Dn) = PU
d (Yn). Using the approximation of the form,

Yn+1 ≈ Yn +
(

yϕ√
n

− 1
2n

Yn

)
, (A.31)

Q(Yn+1,ω) ≈ Q(Yn,ω) + 1√
n

∇Q(Yn,ω)yϕ

+ 1
2n

(∇∇Q(Yn,ω)y2ϕ2 − ∇Q(Yn,ω)Yn
)
, (A.32)

P(Yn+1) ≈ P(Yn) + y√
n

∫
∇Q(Yn,ω)ϕdω

+ 1
2n

(
y2

∫
∇∇Q(Yn,ω)ϕ2dω −

∫
∇Q(Yn,ω)Yndω

)
, (A.33)
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we obtain

p̂BAYES(y|x, D) = 1√
2π

exp
{
−1

2
y2
}(

1 − 1
2n

)
PU

d (Yn+1)
PU

d (Yn)

= 1√
2π

exp
{
−1

2
y2
}{

1 + y√
n

∫ ∇Q(Yn,ω)ϕdω

P(Yn)

+ 1
2n

(
y2

∫ ∇∇Q(Yn,ω)ϕ2dω

P(Yn)

−
∫ ∇Q(Yn,ω)Yndω

P(Yn)
− P(Yn)

P(Yn)

)}
. (A.34)

By using the fact that

∂2

∂Y2 Q(Y)A(ω) = ∂

∂Y
Q(Y)A(ω) + Q(Y),

we can finally obtain the result.

Proof of Theorem 8. From equation 6.39 and the definition of the gener-
alization error, we get

Egen =−ED Ey,x

[
log

{
1 + y√

n

∫ ∇QU
d (Yn,ω)ϕβ (ω · x)dω

PU
d (Yn)

+ 1
2n

H2(y)

∫ ∇∇QU
d (Yn,ω)An(ω)dω

PU
d (Yn)

}]

≈−ED Ey,x

[
y√
n

∫ ∇QU
d (Yn,ω)ϕβ (ω · x)dω

PU
d (Yn)

+ 1
2n

H2(y)

∫ ∇∇QU
d (Yn,ω)An(ω)dω

PU
d (Yn)

− y2

2n

(∫ ∇QU
d (Yn,ω)ϕβ (ω · x)dω

PU
d (Yn)

)2]

= 1
2n

ED

[∫ ∇QU
d (Yn,ω)∇QU

d (Yn,ω
′)A(ωω′)dωω′(

PU
d (Yn)

)2

]
. (A.35)

Similarly, for the training error, we get

Etrain =− 1
n

n∑
i=1

ED

[
log

{
1 + yi√

n

∫ ∇QU
d (Yn,ω)ϕβ (ω · xi )dω

PU
d (Yn)
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+ 1
2n

H2(yi )

∫ ∇∇QU
d (Yn,ω)An(ω)dω

PU
d (Yn)

}]

≈ − 1
n

n∑
i=1

ED

[
yi√
n

∫ ∇QU
d (Yn,ω)ϕβ (ω · xi )dω

PU
d (Yn)

+ 1
2n

H2(yi )

∫ ∇∇QU
d (Yn,ω)An(ω)dω

PU
d (Yn)

− y2
i

2n

(∫ ∇QU
d (Yn,ω)ϕβ (ω · xi )dω

PU
d (Yn)

)2]

= Egen − 1
n

ED

[∫ ∇QU
d (Yn,ω)Yn(ω)dω

PU
d (Yn)

]
. (A.36)

On the other hand, from equation A.30, the generalization error is written
as

Egen = 1
2

log
(

n + 1
n

)
+ ED E po q

[
log PU

d (Dn)
] − ED E po q

[
log PU

d (Dn+1)
]
.

From the fact that

lim
n→∞ ED E po q

[
log PU

d (Dn)
]

< ∞,

we finally get

Egen = 1
2n

.

Proof of Theorem 9. Let us define

Zn = p(D) =
∫

|ξ |d
n∏

i=1

p(yi |xi , ξ,ω)dξdω, (A.37)

Zn+1 = p(y, x, D) =
∫

|ξ |d
n+1∏
i=1

p(yi |xi , ξ,ω)dξdω. (A.38)

The Bayesian predictive distribution can then be written as

p̂BAYES(x|D) = Zn+1

Zn
. (A.39)
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Similar to the cone model, we get

Zn = 1√
2π

n

∫
|ξ |d exp

{
−1

2

∑
y2

i + ξ
∑

yiϕi − 1
2

∑
ϕ2

i

}
dξdω

=
√

2π√
2π

n√
nd+1 exp

{
−1

2

∑
y2

i

}

×
∫

1
√

An
d+1 Id

(
Yn(ω)√
An(ω)

)
exp

{
1
2

Yn(ω)2

An(ω)

}
dω. (A.40)

Therefore, the predictive distribution can be written as

p̂BAYES(y|x, D) = 1√
2π

√
n

n + 1

d+1

exp
{
−1

2
y2
}

P J
d (Dn+1)
P J

d (Dn)
. (A.41)

By using the same approaches as for the uniform prior, we can easily obtain
the final results.

Proof of Theorem 10. From equation A.14, the generalization error is
written as

Egen = d + 1
2

log
(

n + 1
n

)
+ ED E po q

[
log P J

d (Dn)
]

− ED E po q
[
log P J

d (Dn+1)
]
. (A.42)

From the fact that

lim
n→∞ ED E po q

[
log P J

d (Dn)
]

< ∞, (A.43)

we finally get

Egen = d + 1
2n

(A.44)

For the proof, the same derivation process as for the uniform case can be
applied.
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