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In this letter, we analyze a two-stage cluster-then-l1-optimization approach
for sparse representation of a data matrix, which is also a promising ap-
proach for blind source separation (BSS) in which fewer sensors than
sources are present. First, sparse representation (factorization) of a data
matrix is discussed. For a given overcomplete basis matrix, the corre-
sponding sparse solution (coefficient matrix) with minimum l1 norm is
unique with probability one, which can be obtained using a standard
linear programming algorithm. The equivalence of the l1−norm solution
and the l0−norm solution is also analyzed according to a probabilistic
framework. If the obtained l1−norm solution is sufficiently sparse, then
it is equal to the l0−norm solution with a high probability. Furthermore,
the l1−norm solution is robust to noise, but the l0−norm solution is not,
showing that the l1−norm is a good sparsity measure. These results can
be used as a recoverability analysis of BSS, as discussed. The basis ma-
trix in this article is estimated using a clustering algorithm followed by
normalization, in which the matrix columns are the cluster centers of nor-
malized data column vectors. Zibulevsky, Pearlmutter, Boll, and Kisilev
(2000) used this kind of two-stage approach in underdetermined BSS. Our
recoverability analysis shows that this approach can deal with the situa-
tion in which the sources are overlapped to some degree in the analyzed
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domain and with the case in which the source number is unknown. It is
also robust to additive noise and estimation error in the mixing matrix.
Finally, four simulation examples and an EEG data analysis example are
presented to illustrate the algorithm’s utility and demonstrate its perfor-
mance.

1 Introduction

Some learning problems can be expressed in terms of matrix factorization
(e.g., Zibulevsky, Pearlmutter, Boll, & Kisilev, 2000; Lee & Seung, 1999; Ci-
chocki & Amari, 2002). Different cost functions and imposed constraints
may lead to different types of factorization. Sparse representation or sparse
coding of signals, which can be modeled using matrix factorization, has
received a great deal of attention in recent years. Sparse representation of
signals using large-scale linear programming under given overcomplete
bases (e.g., wavelets) was discussed by Chen, Donoho, and Saunders (1998).
A sparse image coding approach using the wavelet pyramid architecture
was also presented (Olshausen, Sallee, & Lewicki, 2001). The wavelet bases
were adopted to best represent natural images in terms of sparse coefficients.
From the simulation presented in the letter, we find that the algorithm is
time-consuming, and convergence of the algorithm is not discussed. The al-
gorithms of Olshausen and Field (1997) are easy to implement; however, like
that of Olshausen et al. (2001), no convergence of the algorithm is given. Sev-
eral improved FOCUSS-based algorithms (Delgado et al. 2003) have been
designed to solve underdetermined linear inverse problems in cases when
both the dictionary and the sources are unknown; however, generally a
locally optimal solution can be obtained.

Recently, Donoho and Elad (2003) discussed optimally sparse represen-
tation in general (nonorthogonal) dictionaries via l1 minimization. Using
a deterministic approach, many interesting results have been obtained,
for example, less than 50% concentration implies equivalence between the
l0−norm solution and l1−norm solution. And two sufficient conditions are
proposed under which the equivalence holds. For instance, a result is that
(theorem 12 given by Donoho & Elad, 2003) if the nonzero entry number
of the l0−norm solution is less than M+1

2M , then the l0−norm solution is the
unique l1−norm solution, where M is a bound of all off-diagonal entries
of the Gram matrix (G = DTD) of the dictionary D. If all columns of the
basis matrix (dictionary) are close to orthogonal and the parameter M is
very small, then this is a good, strong result. However, if the basis is arbi-
trary and the number of basis vectors is large, M could be not so small as
expected (e.g., larger than 0.5); this implies that only one or two entries of
the l0−norm solution can be nonzero. For this reason, it is not convenient
for the above results to be used unless the basis matrix is very sparse or its
columns are close to orthogonal. For instance, in example 1 in this letter,
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the 10 × 15–dimensional mixing matrix (which Donoho & Elad, 2003 refer
to as a dictionary) A is selected randomly as a uniform distribution, and its
columns are normalized; then the bound M+1

2M < 1.5 generally. This means
that if the l0−norm solution has only one nonzero entry, then it is equivalent
to the l1−norm solution. In fact, from example 1, we see that the equivalence
still holds with a probability higher than 0.97, even if the l0−norm solution
has five nonzero entries. In this letter, different results are obtained, using a
probabilistic approach.

Sparse representation can be used for blind source separation (BSS). In
several references, the mixing matrix and sources were estimated using
the maximum posterior approach and the maximum likelihood approach
(Zibulevsky & Pearlmutter, 2001; Zibulevsky et al., 2000; Lee, Lewicki, Giro-
lami, & Sejnowski, 1999). A variational expectation maximization algorithm
for sparse presentation was proposed by Girolami (2001), which can also be
used in overcomplete BSS, especially in a noisy environment. Jang and Lee
(2003) presented a technique of maximum likelihood subspace projection
for extracting multiple sources in cases when only a single channel obser-
vation is available. However, these kinds of algorithms are limited by local
minima.

Furthermore, a two-step approach was proposed for underdetermined
BSS in which the mixing matrix and the sources are estimated separately
(Bofill & Zibulevsky, 2001). Bofill and Zibulevsky (2001) performed the
BSS in the transformed domain. A potential-function-based method was
presented for estimating the mixing matrix, which was very effective in
the two-dimensional observable data space. The sources were then esti-
mated by minimizing 1-norm (shortest path separation criterion). Blind
source separation was also performed using multinode sparse represen-
tation (Zibulevsky, Kisilev, Zeevi, & Pearlmutter, 2001). Based on several
subsets of wavelet packets coefficients, the mixing matrix was estimated
using the fuzzy C-means clustering algorithm, and the sources were recov-
ered using the inverse of the estimated mixing matrix.

The above approach is promising; however, several fundamental prob-
lems are still open. In this letter, we discuss the following issues:

1. Why and when can l1 norm solution be taken as the true source vector?
This is a recoverability problem. If sources are nonoverlapped (in the time
domain or transformed domain), the answer is obvious. But if sources are
overlapped (i.e., some source vectors have more than one nonzero entry),
the answer is not obvious, and we need to investigate further. Sparse repre-
sentation of a known data matrix is discussed first in this letter, and several
results on equivalence of l0 norm solution and l1 norm solution are obtained
from the viewpoint of probability. Based on these results, the recoverabil-
ity analysis in BSS has been established. A simulation example is given to
illustrate our recoverability analysis.
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2. According to our recoverability analysis, the sparser the sources are in
the time or transformed domain, then the higher the probability is that each
source vector can be recovered correctly. In fact, the original sources must be
sufficiently sparse in order to estimate or identify the mixing matrix using
clustering methods. Thus, sparsity of sources in the time or the transformed
domain plays an important role in the performance of the two-stage BSS
approach. This fact has not been investigated deeply until now.

3. How should we deal with the case in which the source number is also
unknown? In contrast to other publications, in our method we assume that
the number of sources is generally unknown and only the upper limit of
sources number should be roughly known. The estimated mixing matrix in
our approach is overestimated; it contains more columns than the original
mixing matrix. The effectiveness of this kind of overestimated mixing matrix
has been proved theoretically and demonstrated by simulations.

4. We consider the case when the number of observations (sensor sig-
nals) is arbitrary, generally more than two. According to our recoverability
analysis, more sensor signals are helpful in dealing with the case of more
sources and more overlapped (less sparse) sources.

5. We analyze the robustness of this kind of approach to additive noise
and the estimation errors of the mixing matrix.

This letter first considers sparse representation (factorization) of a data
matrix based on the following model,

X = BS, (1.1)

where the X = [x(1), . . . , x(K)] ∈ Rn×K (K � 1) is an known data matrix,
and B = [b1 · · · bm] is an n × m basis matrix, and S = [s1, . . . , sK] = [sij]m×K
is a coefficient matrix, also called a solution corresponding to basis matrix
B. Generally, m > n, which implies that the basis is overcomplete.

To find a reasonable overcomplete basis of equation 1.1, such that the
coefficients are as sparse as possible, the following two trivial cases should
be removed from consideration in advance: (1) the number of basis vectors
is arbitrary and (2) the norms of basis vectors are unbounded. In case 1, we
can set the number of basis vectors to be that of the data vectors, and the
basis is composed of data vectors themselves. In case 2, if the norms of basis
vectors tend to infinity, the coefficients will tend to zero. Thus, we begin
with two assumptions:

Assumption 1: The number of basis vectors m is assumed to be fixed in
advance and satisfies the condition n ≤ m << K.

Assumption 2: All basis vectors are unit vectors with their 2−norms being
equal to 1.

It is well known that there exists an infinite number of solutions of the
factorization equation 1.1 generally. For a given basis matrix, under the
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sparsity measure of the l1 norm, the uniqueness result of a sparse solution
is obtained in this letter. The equivalence of the l1 and l0 norm solutions and
their robustness to noise are also discussed. The results can be used as a re-
coverability analysis in blind sparse source separation. Theoretically, among
all the basis matrices, there exists the best basis, such that the corresponding
coefficient matrix is the sparsest. Although finding the best basis remains
an open problem, we find that the basis, of which the column vectors are
composed of cluster centers of X, is a suboptimal basis. This can be obtained
using the K-means clustering algorithm followed by normalization. Using
this kind of basis matrix, the corresponding coefficient matrix will be very
sparse, a result that is evident in simulation. Additionally, as will be evi-
dent in this letter, the basis matrix can be used as an estimation of mixing in
BSS.

In the next section, this kind of sparse representation approach is used
in blind sparse source separation of problems having fewer sensors than
sources and an unknown number of sources. The clustering algorithm and
minimum l1 norm criterion are used for estimating the mixing matrix and
sources, respectively. From the equivalence analysis of the l1 and l0 norm so-
lutions, we can obtain the recoverability result; that is, if the source vector is
sufficiently sparse, then it can be successfully recovered with a high proba-
bility. Thus, if this were the case, blind separation can be carried out directly.
Otherwise, blind separation can be implemented in the time-frequency do-
main after wavelet packets transformation preprocessing of the mixture
signals. The noise in blind sparse source separation is from two categories:
additive noise and the estimation error of the mixing matrix. If the additive
noise is sufficiently low and the estimated matrix contains a submatrix that
is sufficiently close to the original mixing matrix, then we can recover the
sources efficiently, even if the estimated matrix has more columns than the
original mixing matrix. Thus, the approach in this letter can be used to deal
with the cases in which more sources exist than sensors and in which the
number of sources is unknown.

The remainder of this letter is organized as follows. Section 2 analyzes
the sparse representation of a data matrix based on the l1 norm sparsity
measure. Section 3 discusses BSS in which fewer sensors are present than
sources via sparse representation. Simulation results are presented in section
4. Concluding remarks in section 5 review the advantages of the proposed
algorithm and state the remaining aspects to study.

2 Sparse Representation of Data Matrix

In this section, the two-stage cluster-then-l1 optimization approach is ana-
lyzed for sparse representation of a data matrix. Two algorithms are used:
a linear programming algorithm for estimating the coefficient matrix and a
K-means algorithm for estimating the basis matrix. Several results are ob-
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tained on the equivalence of the l1 norm solution and l0 norm solution and
on the robustness of these kinds of solutions to noise. These results can be
used as a recoverability analysis of BSS, as will be explained.

2.1 Linear Programming Algorithm for Estimating a Coefficient Ma-
trix for a Given Basis Matrix. For a given basis matrix B in equation 1.1,
the coefficient matrix can be found by maximizing the posterior distribution
P(S|X, B) of S (Lewicki & Sejnowski, 2000). Under the assumption that the
prior of S is Laplacian, maximizing the posterior distribution can be imple-
mented by solving the following optimization problem (Chen et al., 1998;
Zibulevsky et al., 2000),

min
m∑

i=1

K∑
j=1

|sij|, subject to BS = X. (2.1)

Thus, the l1 norm,

J(S) =
m∑

i=1

K∑
j=1

|sij|, (2.2)

is used as the sparsity measure in this article.
To facilitate the discussion, we first present a definition.

Definition 1. For a given basis matrix B, denote the set of all solutions of equation
1.1 as D. The solution SB = arg min

S∈D
J(S) is called a sparse solution with respect

to the basis matrix B. The corresponding factorization (1.1) is said to be a sparse
factorization or sparse representation.

For a given basis matrix B, the sparse solution of equation 1.1 can be
obtained by solving the linear programming problem, equation 2.1. It is not
difficult to prove that the linear programming problem is equivalent to the
following K smaller-scale linear programming problems,

min
m∑

i=1

|sij|, subject to Bsj = x(j), (2.3)

where j = 1, . . . , K.
Setting S = U − V, where U = [uij]m×K and V = [vij]m×K are nonneg-

ative, equation 2.3 can be converted to the following linear programming
problems with nonnegative constraints,

min
m∑

i=1

(uij + vij), subject to [B, −B][uT
j , vT

j ]T = x(j),

uj ≥ 0, vj ≥ 0, (2.4)

where j = 1, . . . , K, uj = [uij, uzj, . . . , umj]T.
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Theorem 1. For almost all bases B, the sparse solution of equation 1.1 is unique.
That is, the set of bases B, under which the sparse solution of equation 1.1 is not
unique, is of measure zero. And there are at most n nonzero entries of the solution.

The proof is in appendix A.

In some references, l0 norm J0(S) =
n∑

i=1

K∑
j=1

|sij|0 is used as a sparsity mea-

sure of S, which is the number of nonzero entries of S. Under this measure,
the sparsest solution is obtained by solving the problem

min
m∑

i=1

K∑
j=1

|sij|0, subject to BS = X. (2.5)

In the next section, we discuss the equivalence of the l0 norm solution
and l1 norm solution.

2.2 Equivalence of the l0 Norm Solution and l1 Norm Solution. First,
we introduce the two optimization problems:

(P0) min
m∑

i=1

|si|0, subject to As = x,

(P1) min
m∑

i=1

|si|, subject to As = x.

where A ∈ Rn×m, x ∈ Rm are a known coefficient matrix and a data vector,
respectively, and s ∈ Rm, n ≤ m.

Suppose that s0 is a solution of (P0), and s1 is a solution of (P1). Although
the solution of (P0) is the sparsest, it is not an efficient way of finding the
sparsest solution by solving the problem (P0) for three reasons:

1. If ||s0||0 = n, then the solution of (P0) is not unique generally, since any
solution satisfying the constraint equations with n nonzero entries is
a solution of (P0).

2. Until now, an effective algorithm to solve the optimization problem
(P0) did not exist.

3. As will be seen in section 2.3, the solution of (P0) is not robust to noise.

However, the solution of (P1) is unique with a probability of one and has
at most n nonzero entries from theorem 1. It is well known that there are
many strong tools to solve the problem (P1). The following problem arises:
What is the condition under which the solution of (P1) is one of the sparsest
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solutions, that is, the solution has the same number of nonzero entries as
the solution of (P0)? In the following, we will discuss the problem.

Lemma 1. Suppose that x ∈ Rn and A ∈ Rn×m are selected randomly. If x is
represented by a linear combination of k column vectors of A, then k ≥ n generally,
that is, the probability that k < n is zero.

Proof. Since A ∈ Rn×m is selected randomly, any n columns of A are lin-
early independent with a probability of one. Given that x is selected ran-
domly, it is linearly independent with any n − 1 columns of A with a prob-
ability of one. Thus the result of the lemma holds.

From the results of Donoho and Elad (2003), we can see that if ||s0||0 <
n+1

2 , then s0 is the unique solution of (P0). Furthermore, if ||s1||0 < n+1
2 , then

s0 = s1. Furthermore, we have the following result:

Theorem 2. If ||s0||0 < n, then s0 is the unique solution of (P0) with probability
of one. And if ||s1||0 < n, then s0 = s1 with a probability of one.

Proof. Given ||s0||0 < n, s0 not being unique implies that x has another
representation that is a linear combination of column vectors of A smaller
than n in number. From lemma 1, its probability is zero. Hence, s0 is unique
with a probability of one.

Similarly, from lemma 1, if ||s1||0 < n, then x = As1 is a unique represen-
tation with probability one by using columns of A smaller than n in number.
Thus, s0 = s1 with probability one.

Now we introduce four models and then define several related proba-
bilities.

The first model is

x = Alsl, (2.6)

where Al ∈ Rn×l, sl ∈ Rl, l ≤ n, and all entries of Al and sl are selected ran-
domly according to a distribution (e.g., uniform distribution). All columns
of Al are normalized to unit length.

The second model,

x = A(i1,...,ik)
l s(i1,...,ik)

l , (2.7)

where x is generated in equation 2.6, A(i1,...,ik)
l ∈ Rn×n is composed of l − k

columns of Al with indices {1, . . . , l} − {i1, . . . , ik}, and n − l + k normalized
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column vectors are newly selected randomly according to the same distri-
bution as in equation 2.6, 1 ≤ k ≤ l. s(i1,...,ik)

l ∈ Rn is the solution of the
equations.

The third model,

x = Āls̄l, (2.8)

where x is generated in equation 2.6, Āl ∈ Rn×n is composed of at most
l columns of Al, and the other normalized column vectors newly selected
randomly according to the same distribution as in equation 2.6. s̄l ∈ Rn is
the solution of the equations.

Suppose that Ām−l ∈ Rn×(m−l) are selected randomly according to the
same distribution as in equation 2.6 with its columns being normalized. We
have the fourth model,

x = A(i1,...,ik,j1,...,jn−l+k)s(i1,...,ik,j1,...,jn−l+k), (2.9)

where x is generated in equation 2.6, A(i1,...,ik,j1,...,jn−l+k) ∈ Rn×n is obtained by
using n − l + k columns of Ām−l with indices (j1, . . . , jn−l+k) to replace the k
columns of Al with indices (i1, . . . , ik). s(i1,...,ik,j1,...,jn−l+k) is the corresponding
solution of equation 2.9.

Define the probabilities:

β(k, l, n) = P(||sl||1 < ||s(i1,...,ik)
l ||1}, (2.10)

where 1 ≤ i1 < · · · < ik ≤ l are k indices selected randomly.

P(k, l, n) = P(||sl||1 < min{||s(i1,...,ik)
l ||1, 1 ≤ i1 < · · · < ik ≤ l}), (2.11)

where k = 1, . . . , l. And denote sk
l to be the solution of equation 2.7 satisfying

that ||sk
l ||1 = min{||s(i1,...,ik)

l ||1, 1 ≤ i1 < · · · < ik ≤ l}.

P(k, l, n, m) = P(||sl||1 < min{||s(i1,...,ik,j1,...,jn−l+k)||1,
1 ≤ i1 < · · · < ik ≤ l, 1 ≤ j1 < · · · < jn−l+k ≤ m − l}), (2.12)

where k = 1, . . . , l.
Now we consider the optimization problem (P0). If l denotes ||s0||0 and

l < n, then by theorem 2, s0 is the unique solution of (P0) with a probability
of one. The data vector x can be seen as generated by the model 2.6, where
sl is composed of the nonzero entries of s0 and Al is composed of the col-
umn vectors of A with the same indices as entries of sl. From theorem 1,
the solution s1 of the problem (P1) has at most n nonzero entries; thus we
consider only the solutions of the constraint equation of (P0), which have
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at most n nonzero entries (s1 is one of these solutions). A solution of the
constraint equation of (P0) can be seen as generated by the model 2.9 for a
k, where Ām−l = A\Al. In view of the definition of P(k, l, n, m), we have the
following probability equality,

P(s0 = s1) = P(

l⋂
k=1

{||sl||1 ≤ min{||s(i1,...,ik,j1,...,jn−l+k)||1,

1 ≤ i1 < · · · < ik ≤ l, 1 ≤ j1 < · · · < jn−l+k ≤ m − l}}

≥
l∏

k=1

P(k, l, n, m). (2.13)

Thus, the probability P(k, l, n, m) plays an important role in the equiva-
lence analysis of the l0 norm solution and l1 norm solution. In the following,
several results with regard to the probability P(k, l, n, m) will be obtained
after some necessary preparations are made.

For l = n, we first present two lemmas about the probabilities β(j, n, n)

and P(j, n, n).

Lemma 2.

1. β(1, n, n) ≤ β(2, n, n) ≤ · · · ≤ β(n, n, n) ≤ 1.

2. lim
n→+∞ β(n, n, n) = 1.

The proof is in appendix B.

Lemma 3.

1. P(1, n, n) ≤ P(2, n, n) ≤ · · · ≤ P(n, n, n) ≤ 1.

2. For fixed k ≥ 0, lim
n→+∞ P(n − k, n, n) = 1.

The proof is in appendix C.
Figure 1 shows several simulation results illustrating the two results of

lemma 3. For the models 2.6 and 2.7, all coefficient matrices and sl are taken
as uniform distribution. All probabilities are estimated from 1000 indepen-
dent, repeated experiments. In the first subplot, the probability curve of
P(k, 12, 12) is presented with k = 1, . . . , 12. In the second subplot, two prob-
ability curves are presented, in which the curve with stars corresponds to
P(4n, 4n, 4n), and the curve with points corresponds to P(4n − 1, 4n, 4n),
where n is from 1 to 30.

Now we present several conclusions about P(k, l, n).
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Figure 1: (Left) First subplot: Probability curve P(k, 12, 12). (Right) Second sub-
plot: Two probability curves: curve with stars refers to P(4n, 4n, 4n), and curve
with points refers to P(4n − 1, 4n, 4n).

Theorem 3.

1. P(1, l, n) ≤ P(2, l, n) ≤ · · · ≤ P(l, l, n) ≤ 1.

2. 1 = P(1, 1, n) ≥ P(1, 2, n) ≥ · · · ≥ P(1, n, n).

3. For fixed l, lim
n→+∞ P(k, l, n) = 1, 1 ≤ k ≤ l.

4. For the solution s̄l of equation 2.8, the probability P(||sl||1 ≤ ||s̄l||1) ≥
(P(1, l, n))l. And for fixed l, lim

n→+∞ P(||sl||1 ≤ ||s̄l||1) = 1.

The proof is in appendix D.
We also have several conclusions about the probability P(k, l, n, m) in

equation 2.12.

Theorem 4.

1. P(1, l, n, m) ≤ P(2, l, n, m) ≤ · · · ≤ P(l, l, n, m) ≤ 1.

2. 1 = P(1, 1, n, m) ≥ P(1, 2, n, m) ≥ · · · ≥ P(1, n, n, m).

3. For fixed l, m − n, and 1 ≤ k ≤ l, lim
n→+∞ P(k, l, n, m) = 1.

4. For fixed k, l, n, lim
m→+∞ P(k, l, n, m) = 0.

5. Considering (P1)with A = [Al, Ām−l], we have P(ŝl = s1) ≥(P(1, l, n, m))l,
where ŝl = [sT

l , 0, . . . , 0]T ∈Rm. Furthermore, for fixed l, m−n, lim
n→+∞ P(ŝl =

s1) = 1.

6. For the optimization problems (P0) and (P1), set l = ||s0||0. Then P(s0 =



1204 Y. Li, A. Cichocki, and S. Amari

s1) ≥ (P(1, l, n, m))l. Furthermore, for given positive integers l0 and n0, if
l ≤ l0, and m − n ≤ n0, then lim

n→+∞ P(s0 = s1) = 1.

The proof is in appendix E.

Remark 1.

1. From the fifth result of theorem 4, for fixed l and m−n, if n is sufficiently
large, then sl can be recovered correctly with a high probability by
solving the optimization problem (P1).

2. From the second and fifth results, if n and m are fixed and l is suf-
ficiently small, then sl also can be recovered correctly with a high
probability by solving the optimization problem (P1). These results
can be seen in simulation example 1.

3. The sixth result of this theorem is the equivalence result of the l0 norm
solution and l1 norm solution. We can see that if l0 norm solution is
sufficiently sparse (i.e., ||s0||0 is sufficiently small), then s0 = s1 with a
high probability (e.g., larger than 0.95). However, if the assumption is
not satisfied for analyzed data, a preprocessing (e.g., Fourier transfor-
mation, wavelet transformation and wavelet packets transformation)
to the known data matrix X is necessary in order that the assumption
holds in the transform domain (see section 3 and simulation example
3). The applied preprocessing depends on the nature of analyzed data.

4. Theorem 4 will be used as a recoverability analysis in blind sparse
source separation of this article.

An interesting problem is if only the ratios γ1 = l
n , γ2 = n

m are fixed (it
implies that l tends to +∞ as n tends to +∞), how does the probability
P(ŝl = s1) change when n → +∞? Set P(γ1, γ2, n) = P(ŝl = s1). We present
a conjecture and its variant next.

Conjecture. There exists a θ1(γ2) ∈ (0, 1], such that for γ1 < θ1(γ2),

lim
n→+∞ P(γ1, γ2, n) = 1. (2.14)

There is another version of the conjecture:

Conjecture. There exists a θ2(γ1) ∈ (0, 1], such that for γ2 ≥ θ2(γ1),

lim
n→+∞ P(γ1, γ2, n) = 1. (2.15)

Note that if l < n, then ŝl is equal to the solution s0 of (P0) with a proba-
bility of one from theorem 2, where A = [Al, Ām−l].
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Figure 2: (Left) First subplot, three probability curves P(γ1, γ2, l) with γ2 = 0.5,

γ1 = 1
3 , 0.5 and 0.8 from top to bottom, respectively. (Right) Second subplot,

three probability curves P(γ1, γ2, l) with γ1 = 0.5, γ2 = 0.7, 0.5 and 0.25 from top
to bottom, respectively, where l is the nonzero entry number of source vector sl.

Now we present several simulation results to illustrate the two conjec-
tures. For the problem (P1), the coefficient matrix A = [Al, Ām−l] and the
vector sl composed of nonzero entries of the original source vector are se-
lected randomly according to the uniform distribution. All the probabilities
are estimated from 300 independent repeated experiments. Figure 2 shows
the estimated probability curves as a function of the nonzero entry number
of source vectors. In the first subplot, γ2 = 0.5; the three curves with ·, ∗, and
+ correspond to γ1 = 1

3 , 0.5, and 0.8, respectively. In the second subplot,
γ1 = 0.5; the three curves with ·, ∗ and + correspond to γ2 = 0.7, 0.5 and
0.25, respectively.

2.3 Robustness Analysis of the l1 and l0 Norm Solutions Under Noise
Conditions. In this section, we reconsider the optimization problems (P0)

and (P1) in the case of noise and present the robustness analysis. Rewrite
the models (P0) and (P1) with a noise term as follows,

(P′
0) min

m∑
i=1

|si|0, subject to As + v = x,

(P′
1) min

m∑
i=1

|si|, subject to As + v = x.

where v ∈ Rn is a noise vector.



1206 Y. Li, A. Cichocki, and S. Amari

For a basis matrix A and a data vector x, denote the solutions of (P′
0) and

(P′
1) as sv

0 and sv
1, respectively.

First, we discuss the robustness of the solution to noise for (P′
0). There

exist two cases: (1) ||s0||0 < n and (2) ||s0||0 = n. Consider the two cases in
the following.

In case 1, ||s0||0 < n. This implies that x can be represented by a com-
bination of fewer than n columns of A, and the solution s0 is unique with
probability of one from theorem 2. From the equations of (P′

0), we have

x − v = Asv
0. (2.16)

Noting that v is a noise vector and that equation 2.16 is a representation of
the vector x − v, we have ||sv

0||0 = n with a probability of one from lemma
1. There exists another obvious fact: if ||sv

0||0 = n, then sv
0 is not unique to

the problem (P′
0).

In case 2 ||s0||0 = n. In this case, ||sv
0||0 = n with a probability of one, and

sv
0 is not a unique solution of the problem (P′

0).
It follows from the preceding discussion that the solution of (P0) is not

robust with respect to additive noise.
Now we analyze the robustness of the solution of (P1). From theorem 1,

||s1||0 ≤ n. We consider only the case of ||s1||0 = n. (The case of ||s1||0 < n
can be discussed similarly.)

Suppose that the indices of nonzero entries of s1 are (i1, . . . , in), the ma-
trix Ã1 is composed of n columns of A with indices (i1, . . . , in), and the
n-dimensional column vector s̃1 is composed of all nonzero entries of s1.
Thus, we have

x = Ã1s̃1. (2.17)

Considering the determined equations,

x = Ã1s̃v + v, (2.18)

we have

s̃v = Ã−1
1 x − Ã−1

1 v. (2.19)

Thus,

||s̃v||1 ≤ ||Ã−1
1 x||1 + ||Ã−1

1 v||1
≤ ||s1||1 + ||Ã−1

1 ||1||v||1. (2.20)

Define

α0 = min
Ã

{||s̃||1 − ||s1||1, x = Ãs̃, Ã �= Ã1}, (2.21)
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where Ã is an n × n submatrix of A. Since there are only Cn
m − 1 minor

matrices of A, except Ã1, and the solution s1 is unique with probability of
one from theorem 1, it follows that α0 > 0 with probability of one.

Furthermore, consider the determined equations,

x = Ãs̄v + v; (2.22)

we have

s̄v = Ã−1x − Ã−1v. (2.23)

In view of equation 2.23, 2.21, and 2.20, we have

||s̄v||1 ≥ ||Ã−1x||1 − ||Ã−1v||1
≥ (||s1||1 + α0) − ||Ã−1||1||v||1
≥ (||s̃v||1 − ||Ã−1

1 ||1||v||1 + α0) − ||Ã−1||1||v||1
≥ ||s̃v||1 + α0 − 2M||v||1, (2.24)

where M = max
Ã

{||Ã−1||1, Ã is a n × n submatrix of A}.
From equation 2.24, if ||v||1 < α0

2M , then

||s̃v||1 < ||s̄v||1, (2.25)

that is, s̃v = s̃v
1, which is composed of all nonzero entries of sv

1. This implies
that sv

1 has the same nonzero entry indices as s1.
From equation 2.19 and 2.17,

||s̃v − s̃1||1 ≤ ||Ã−1
1 ||1||v||1 ≤ M||v||1, (2.26)

that is,

||sv
1 − s1||1 ≤ M||v||1. (2.27)

From the analysis above, we find that the solution of (P1) has robustness
to noise. Thus, we have the following result:

Theorem 5. The solution of (P0) is not robust to noise, while the solution of (P1)

is robust to noise, at least to some degree.

2.4 The Algorithm for Estimating a Suboptimal Basis Matrix. It fol-
lows from theorem 1 that for any given basis, there exists a unique sparse
solution of equaiton 2.1 with a probability of one. Among all basis matrices
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that satisfy assumptions 1 and 2, there exists at least one basis matrix such
that the corresponding solution of equation 2.1 is the sparsest. It is very dif-
ficult to find the best basis. We will use a gradient-type algorithm presented
in the following or the typical K−means clustering algorithm to estimate a
suboptimal basis matrix that is composed of the cluster centers of the nor-
malized, known data vectors as in Zibulevsky et al. (2000). With this kind of
cluster center basis matrix, the corresponding coefficient matrix can become
very sparse, although it is not the sparsest generally. This can be proved if
data vectors are two-dimensional, and this is evident in simulations.

First, we introduce an objective function,

J2(b1, . . . , bm) =
m∑

j=1

∑
x(i)∈θ ′

j (bj)

d(x(i), bj)

=
m∑

j=1

∑
x(i)∈θ ′

j (bj)

√
(x1i − b1j)2 + · · · + (xni − bnj)2, (2.28)

where θ ′
j (bj) is a data column vector set with the center bj, x(i) ∈ θ ′

j (bj) if
and only if d(x(i), bj) = min{d(x(i), bk), k = 1, . . . , m}.

By solving the following optimization problem, we can obtain the sub-
optimal basis matrix:

min J2, s.t. b2
1j + · · · + b2

nj = 1, j = 1, . . . , m. (2.29)

The gradients of J2 with respect to blj can be obtained by

∂ J2

∂blj
= −

∑
x(i)∈θ ′

j (bj)

((x1i − b1j)
2 + · · · + (xni − bnj)

2)−
1
2 (xli − blj), (2.30)

where l = 1, . . . , n, j = 1, . . . , m.
We have the following gradient-type algorithm followed by normaliza-

tion,



b′
lj(k + 1) = blj(k) + η

∑
x(i)∈θ ′

j (bj)

((x1i − b1j)
2 + · · · +

(xni − bnj)
2)−

1
2 (xli − blj), l = 1, . . . , n,

bj(k + 1) = b′
j(k+1)

||b′
j(k+1)|| ,

(2.31)

where η is the step size, j = 1, . . . , m.
Also we can use a K−means clustering algorithm to estimate the ideal

basis matrix. Thus, we have the following algorithm steps:
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Algorithm Outline 1

Step 1. Normalize the data vectors,

X′ =
[

x(1)

||x(1)|| , . . . ,
x(K)

||x(K)||
]

= [x′
1, . . . , x′

K],

where x(i), i = 1, . . . , k are column vectors of the data matrix X.

Step 2. Determine the starting points of iteration. For the i = 1, . . . , n,
determine the maximum and minimum of the ith row of X′, de-
noted as Mi and mi. Choose a sufficiently large positive integer
N, and divide the set [m1, M1] × · · · × [mn, Mn] into N subsets.
The centers of the N subsets can be used as the initial values.

Step 3. Begin a K−means clustering iteration followed by normalization
or the iteration of equation 2.31 to estimate the suboptimal basis
matrix.
End

3 Blind Source Separation Based on Sparse Representation

In this section, we discuss an application of sparse representation in BSS.
The mixing matrix and source matrix are taken as the basis matrix and the
coefficient matrix in the sparse factorization of an mixture signal matrix,
respectively. If the sources are sufficiently sparse, the normalized mixture
vectors will form several clusters, of which the center vectors are close to the
column vectors of the mixing matrix in direction. Thus, the mixing matrix
can be estimated as in the estimation of basis matrix in the previous section.
After the mixing matrix is estimated correctly, a sparse source vector (its
nonzero entry number is sufficiently small) is corresponding to an l0−norm
solution in the sparse representation. According to our discussion above, it
is equivalent to the l1-norm solution with a high probability, which can be
obtained using a linear programming algorithm. The proposed approach is
suitable for the case in which the number of sensors is less than or equal
to the number of sources and for the case in which the number of source
is unknown. We will consider the following noise-free model and noisy
model,

X = AS, (3.1)

X = AS + V, (3.2)

where the mixing matrix A ∈ Rn×m is unknown, the matrix S ∈ Rm×K is
composed by the m unknown sources, and the only observable X ∈ Rn×K is
a data matrix that has rows containing mixtures of sources, n ≤ m. V ∈ Rn×K

is a gaussian noise matrix.
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The task of BSS is to recover the sources using only the observable mixture
matrix X.

3.1 Blind Sparse Source Separation. If the sources are sufficiently sparse,
the sparse representation approach presented in this letter can be used di-
rectly in blind separation. The process is divided into two steps.

Step 1 is to estimate the mixing matrix using algorithm outline 1, which
was presented in section 2.4. When the iteration is terminated, the obtained
matrix is denoted as Ā, which is the estimation of the original mixing matrix
A. Note that the Ā contains more columns than A.

Intuitively, if all source column vectors have only one nonzero entry,
that is, all sources are nonoverlapped, then every mixture vector is parallel
to one of the column vectors of the mixing matrix. Practically, although the
sources are overlapped sometimes, if there exists a fraction of source vectors
with only one nonzero entry (single entry dominant for noisy data), then
the mixing matrix can be estimated.

In the following, we present a simulation in which the mixing matrix
is estimated using a K-means algorithm followed by a normalization of
columns to unit length (see algorithm outline 1).

In the simulation, the mixing matrix A ∈ R5×10 is taken randomly from a
uniform distribution on [0, 1], of which all columns are normalized to unit
length. Source matrix S ∈ R10×1000 contains two classes of column vectors
(source vectors). The first class source vectors contain only one nonzero
entry; however, the index of the nonzero entry is chosen randomly. All
entries of the second class of column vectors are drawn randomly from a
uniform distribution on [0, 1]. The simulation are carried out for six different
but fixed ratios of the first class of columns versus the whole population of
source vectors (the total column number is 1000).

For an estimated mixing matrix Ā, the estimation error is calculated as
follows,

er =

10∑
i=1

||āi − ai||2
10

,

where the column vector āi of Ā is the closest to the column ai of A.
Under every ratio in {0, 0.1, 0.2, 0.3, 0.4, 0.5}, we have 20 independent

repeated experiments for estimating the mixing matrix, and calculate the
corresponding mean estimation error. Figure 3 shows the curve of mean
estimation error with respect to the ratio of single nonzero entry source
vectors. In fact, we find that if the error of an estimated mixing matrix is
less than 0.1, then it will be very close to the original mixing matrix.

After the mixing matrix is estimated, step 2 is to estimate the source
matrix by solving linear programming problem 2.4.

Although Ā has more columns than A generally, the sources can be ob-
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Figure 3: Mean estimation error of mixing matrix versus the ratios of single
nonzero entry source vectors.

tained effectively provided that Ā contains a submatrix that is sufficiently
close to A. This can be seen in the following analysis and the simulation
examples in section 4.

There is a potential recoverability problem occurred here: Are the esti-
mated sources equal to the true sources, even if the mixing matrix is esti-
mated correctly?

From theorem 4, for fixed n (sensor number) and m, if the nonzero entry
number l of the source vector is sufficiently small compared to n (that is, the
source vector is sufficiently sparse), then the source can be recovered with
a high probability. For instance, the mixing matrix in simulation example
1 is 10 × 15 dimensional, and the source vector is uniformly distributed.
If l ≤ 5, then the source can be recovered with a probability higher than
0.97. The implication is that the sparser the sources are, the higher is the
recoverability (higher probability) of the sources.

Furthermore, if the sources are sparser, it is easier to estimate the mixing
matrix (i.e., it is easier to obtain the cluster centers of data column vectors).
Thus, the sparsity of the sources plays an important role in the approach
presented in this letter.

3.2 Blind Sparse Source Separation for the Noisy Case. Now we con-
sider blind sparse source separation in the case of noise. The noise emerges
due to two categories: (1) the estimation error of the mixing matrix and (2)
additive noise. Thus, we consider the model

(P2) min
m1∑
i=1

|s̄i|, subject to Ās̄ + v = x,
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where Ā ∈ Rn×m1 (m1 ≥ m) is the estimation of the mixing matrix A and
v ∈ Rn is the additive noise vector.

Since the case of additive noise has already been discussed in section 2.3,
we discuss only the following problem here:

(P3) min
m1∑
i=1

|s̄i|, subject to Ās̄ = x.

There exist two cases. In case 1, m1 = m. That is, Ā ∈ Rn×m. Denote
Ā = A +�A. Using the notations in sections 2.2 and 2.3, and from equation
2.17, we have

s̃1 = Ã−1
1 x. (3.3)

Now considering the equations

(Ã1 + �Ã1)s̄1 = x, (3.4)

we have

s̄1 = (Ã1 + �Ã1)
−1x = (Ã1 + �Ã1)

∗

det(Ã1 + �Ã1)
x, (3.5)

where (Ã1 + �Ã1)
∗ is the adjacent matrix of Ã1 + �Ã1. Noting that s̄1 also

can become a solution of the constraint equation of (P3) by adding m−n zero
entries, thus it is also taken as a solution of the constraint in the following.

From equation 3.5, if ||�Ã||1 tends to zero, then s̄1 tends to s̃1.
Furthermore, consider the two sets of equations,

Ãs̄n = x,

(Ã + �Ã)s̄v
n = x,

where Ã is an n × n minor of A different from Ã1, and �Ã is an n × n minor
of �A with the same row and column indices as Ã.

We have s̄n = Ã−1x, ||s̄n||1 > ||s1||1. If ||�A||1 tends to zero, then s̄v
n tends

to s̄n, and ||s̄v
n||1 > ||s1||1. Thus, s̄1 is the solution of the problem (P3) if

||�A||1 is sufficiently small.
From the discussion above, if ||�Ã||1 is sufficiently small, then ||s̄1 −

s1||1 is sufficiently small. Furthermore, if s1 = s, we can obtain the ideal
estimation of the original source vector s by solving (P3).

In case 2, m1 > m. That is, Ā has more columns than A. Denote �A1 =
Ā(:, [1 : m]) − A, �A2 = Ā(:, [m + 1 : m1]). Set A0 = [A, �A2], �A0 =
[�A1, 0] ∈ Rn×m1 . Obviously, Ā = A0 + �A0.
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Consider the problem

(P4) min
m1∑
i=1

|qi|, subject to A0q = x,

and denote the solution of (P4) as q1.
From the discussion in section 2.2, if the source vector is sufficiently

sparse, the following result holds with a high probability:

q1([1 : m]) = s1 = s, qm+1 = · · · = qm1 = 0. (3.6)

Now we consider the problem that is a variant of (P3),

(P5) min
m1∑
i=1

|q̄i|, subject to (A0 + �A0)q̄ = x,

and denote the solution of (P5) as q̄1.
From the discussion in case 1, if ||�A0||1 is sufficiently small, then q̄1

.=
q1. In view of equation 3.6, the following result is satisfied with a high
probability:

q̄1([1 : m]) .= s1 = s, q̄m+1 = · · · = q̄m1 = 0, (3.7)

Thus, if ||�A0||1 is sufficiently small, we can estimate the original sources
efficiently by solving the problem (P5), provided that the sources can be
recovered by solving the problem (P1).

Combining the discussion in section 3.3, we have the following theorem:

Theorem 6. If the source vector is sufficiently sparse, the estimated matrix con-
tains a submatrix sufficiently close to the mixing matrix, and if the additive noise is
sufficiently small, then the source vector can be recovered by estimating the mixing
matrix and solving the problem (P2), even if the number of sources is unknown.

3.3 Preprocessing of Wavelet Packets Transformation and Blind Sepa-
ration for Dense Sources. Generally, sources cannot be recovered directly
using sparse factorization if the sources are not sufficiently sparse. In this
section, a blind separation algorithm based on preprocessing wavelet pack-
ets transformation is presented for dense sources.
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Algorithm Steps 2

Step 1. Transform the time domain signals xi, the ith row of X , i =
1, . . . , n, to time frequency signals by a wavelet packets trans-
formation, and make sure that n wavelet packets trees have the
same structure.

Step 2. Select these nodes of wavelet packets trees, of which the coef-
ficients are as sparse as possible. The selected nodes of different
trees should have the same indices. Based on these coefficient vec-
tors, estimate the mixing matrix Ā using algorithm 1 presented
in section 2.2. If there exists noise in the mixing model, we can
estimate the mixing matrix for several times, and then take the
mean of these estimated matrices.

Step 3. Based on the estimated mixing matrix Ā and the coefficients of
all nodes obtained in step 1, estimate the coefficients of all the
nodes of the wavelet packets trees of sources by solving the linear
programming problems equation 2.4.

Step 4. Reconstruct sources using the inverse wavelet packets transfor-
mation. Among the reconstructed sources, m signals are the esti-
mations of original sources up to a permutation and a scale.

Step 5. Denoise to the estimated sources using the wavelet transforma-
tion if noise exists in the mixtures.
End.

Remark 2.

1. We find in simulations that the coefficients of wavelet transformation
or Fourier transformation are often not sufficiently sparse to estimate
the mixing matrix and sources. Thus, wavelet packets transformation
is used in this letter.

2. From simulation example 4, we find that the denoising step should
be carried out last. If we implement denoising preprocessing to the
mixture signals before blind separation, we fail to obtain good results.

4 Simulation Examples

The simulation results presented in this section are divided into five cat-
egories. Example 1 is concerned with the recoverability of sparse sources
using a linear programming method. Example 2 considers blind separation
of sparse images of faces. In this example, six observable signals are mix-
tures of 10 sparse images of faces. Example 3 considers BSS in the context
of wavelet packets preprocessing and sparse representation. In this exam-
ple, eight speech sources and five observable mixtures are analyzed in the
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simulation. A noisy mixing model is considered in example 4 with the same
sources as in example 3. Finally, in example 5, a 14-channel EEG data matrix
is analyzed using the sparse component analysis approach presented in this
letter.

4.1 Example 1. In this example, consider the mixing model

x0 = As0, (4.1)

where A ∈ Rn×m is a known mixing matrix with n ≤ m , s0 ∈ Rm is a source
vector, and x0 ∈ Rn is the mixture vector.

Based on the known mixture vector and mixing matrix, the source vector
is estimated by solving the following linear programming problem:

min
m∑

i=1

|si|, s.t. As = x0. (4.2)

The task of this example is to determine whether the estimated source vector
is equal to the true source vector.

There are three simulations in this example. In the first simulation, n
and m are fixed to be 10 and 15, respectively. Fifteen loop experiments are
completed, each of which contains 1000 optimization experiments. In each
of the 1000 experiments of the first loop experiment, the mixing matrix A
and the source vector s0 are selected randomly; however, s0 has only one
nonzero entry. After 1000 optimization experiments, the ratio is calculated
measuring whether the source vectors are estimated correctly. The kth loop
experiment is carried out similarly, except that the source vector has only k
nonzero entries.

The first subplot of Figure 4 shows the ratio curve with respect to nonzero
entry number k of the source vector. These ratios were obtained in 15 loop
experiments. The source can be estimated correctly when k = 1, 2, and the
ratios are greater than 0.95 when k ≤ 5.

The second simulation contains 11 loop experiments. All source vectors
have five nonzero entries, that is, k = 5 and m = 15. The dimension n of the
mixture vectors varies from 5 to 15. As above, each loop experiment contains
1000 experiments, and the ratio for correctly estimated source vectors is
calculated. The second subplot of Figure 4 shows the ratio curve, and it
is evident that when n ≥ 10, the source can be estimated correctly with a
probability higher than 0.95.

In the third simulation, 15 loop experiments are conducted. The nonzero
entry number k of source vectors and the dimension n of mixture vectors
are fixed at 5 and 10, respectively. The source number m varies from 11 to
25. Other experimental parameters and calculations are the same as in the
other two simulations. The third subplot of Figure 4 shows the ratio curve
with respect to the source number m. From this simulation, we see that for
fixed k and n, the ratio decreases as m increases.
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Figure 4: (Left) First subplot: Curve of ratios measuring whether the source
vectors are estimated correctly in the first simulation of example 1. (Middle)
Second subplot: Curve of ratios for source vector estimation for the second
simulation. (Right) Third subplot: Curve of ratios for source vector estimation
for the third simulation.

4.2 Example 2. In this example, we consider the linear mixing model 3.1
that has nonnegative sources and a mixing matrix. The source matrix S is
composed of 10 sparse images of faces; the nonnegative 6×10 mixing matrix
is selected randomly, and every column is normalized. Figure 5 shows 10
sparse face images in the subplots of the first and second rows and six
mixtures in the subplots of the third and fourth rows.

Using algorithm 1, we obtain an estimated 6 × 14 nonnegative mixing
matrix, denoted as Ā. To guarantee that the linear programming problems
2.3 with additional nonnegative constraints are feasible, we use the matrix
[Ā, E] as a basis matrix, where E is a 6 × 6 unitary matrix. Solving the linear
programming problem 2.3, we obtain 20 outputs, of which 15 are shown in
Figure 6. Obviously, the first 10 outputs are the recovered sources.

4.3 Example 3. Consider the linear mixing model 3.1, where source ma-
trix S is composed of eight speech signals shown in Figure 7. A 5×8 mixing
matrix is selected randomly, and every column is normalized. Only five
mixtures are observable, shown in the subplots of the first row of Figure 8.

Using algorithm outline 2, an estimated 5×10 dimensional mixing matrix
and 10 estimated sources are obtained. The subplots in the second and third
rows of Figure 8 show the 10 estimated signals, from which we can see that
all eight sources have been recovered favorably. The other two estimated
sources, which are close to zero, can be seen as a kind of estimation error of
sources. There are several potential methods for reducing this kind of error:
develop algorithms that are “better” than the K-means clustering algorithm
in estimating the mixing matrix, find a more suitable transformation such
that the signals are as sparse as possible in the transformed domain, increase
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Figure 5: Ten subplots of the first two rows: 10 sparse images of faces. Six sub-
plots in the third and fourth rows: 6 mixtures. All are from simulation example 2.

the number of sensors if possible, and others. Generally, if the sources are
overlapped to some degree in the analyzed domain, this kind of error cannot
be eliminated even if the overcomplete mixing matrix is known.

4.4 Example 4. Consider the noisy mixing model, equation 3.2, where
the source matrix S is composed of the same eight speech signals as those
in example 3 (see Figure 7). The 5 × 8 mixing matrix is selected randomly,
and every column is normalized.

Using algorithm 2, an estimated 5 × 9-dimensional mixing matrix and 9
estimated sources are obtained. The subplots in the second and third rows
of Figure 9 show the nine estimated signals, from which we can see that all
eight sources have been recovered favorably, and the last estimated signal
is close to zero.

Recently, many researchers have used independent component analysis
(ICA) in EEG data analysis and have obtained many promising results (e.g.,
Makeig et al., 2002). Compared with the general class of ICA algorithms
based on the independence principle, there exist two obvious advantages of
the sparse representation in EEG data analysis: (1) there exist several sources
that are dependent, and several that are not stationary sometimes, and (2)
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Figure 6: Blind sparse source separation results of example 2. The 15 outputs,
of which the first 10 are recovered sources.
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Figure 7: Eight sources in example 3.

the source number can be bigger than the number of EEG channels. Thus,
we believe that sparse representation is an alternative and very promising
approach in EEG data analysis. In the following, we present an example for
EEG data analysis based on sparse representation.

4.5 Example 5. In this example, a set of EEG data is analyzed using
the sparse component analysis (SCA) set out in this letter. The data matrix
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Figure 8: Blind source separation results of example 3. (Top) Five observable
mixtures. (Middle, bottom) Estimated signals of which eight are recovered
sources; two other signals are close to zero.

X ∈ R10×20,000 was obtained from 10 channels (filtered in 1–50 Hz range),
and the sampling rate was 1000 Hz.

We assume that the 10 EEG signals are linear mixtures of brain sources,
artifacts, and noise; that is, they are generated according to the model 3.1.
Using algorithm 2, an estimated 10 × 18–dimensional mixing matrix and 18
estimated signals are obtained, including brain sources, artifacts, and noise
(there also may be several new mixtures).

Figure 10 shows the 10 filtered EEG mixture signals from 3 seconds of
recording, and Figure 11 shows their power spectral density estimations.
The 18 estimated components are shown in Figure 12, with the power spec-
tral densities shown in Figure 13.

From Figures 10 and 11, we can see that all EEG channel signals contain
strong α components in long time intervals and that many power spectral
density functions are very similar. This can be viewed as evidence that these
EEG channel signals contain common components.

From Figures 12 and 13, we can see that the α component still appears
in many estimated components, but in shorter time intervals for example,
s08 contains α components in the time interval (0, 1) and s12 contains α

component in (1.8, 2.4). We can also see that the power spectral density of
s2 has a peak around 20 Hz, s4 contains mainly low-frequency components
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Figure 9: Blind source separation results of Example 4. (Top) Five observable
mixtures. (Middle, bottom) Estimated signals of which eight are recovered
sources and the sixth is close to zero.

of less than 5 Hz and around 10 Hz, and so does s11. The time courses of the
three components are very special.

We also calculated the correlation coefficient matrices of EEG channel
data and estimated components, denoted by Rx and Rs, respectively. We
found that Rx

i,j ∈ (0.14, 1] (the median of |Rx
i,j| is 0.49). The correlation coeffi-

cients for estimated components are considerably lower (the median of |Rs
i,j|

is 0.26) than for raw EEG data. There exist many pairs of components with
small correlation coefficients, for example, Rs

2,4 = 0.03, Rs
2,11 = 0.006, Rs

3,4 =
0.0018, and so forth. Furthermore, we found that the higher-order correla-
tion coefficients of these pairs are also very small (e.g., fourth-order cor-
relation coefficients of the pairs s2 and s4, s2 and s1 are 0.018, and 0.003,

respectively, and the median of absolute value of the fourth-order correla-
tion of all components is 0.20). We would like to emphasize that although
the independence principle was not used, many pairs of components were
almost independent.

5 Concluding Remarks

Sparse representation of a data matrix and its application to blind source
separation were discussed in this letter. A data matrix can be represented
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Figure 10: One-second EEG data (1000 sample points) obtained from 10 chan-
nels (filtered from 1 to 50 Hz) and analyzed in example 5.

by a product of two matrices, one of which is called a basis matrix, and
the other is called a coefficient matrix or a solution. Sparse representation
implies that the coefficients are sparse. In this article, the l1 norm is used
as a sparsity measure, whereas the l0 norm sparsity measure is considered
for comparison and recoverability analysis of BSS. For a given basis matrix,
although there exist infinite solutions (factorizations) generally, the sparse
solution with a minimum l1 norm is proved to be unique with a probability of
one. This can be obtained using the standard linear programming algorithm.

The l1 norm solution has several important advantages. One is that there
have been many strong tools (e.g., interior point algorithm) for solving
linear programming problems; another is that the l1 norm solution is almost
unique and is robust to noise. The situation is different, however, for the l0

norm solution; we think that the l1 norm sparseness measure is better than
the l0 norm sparseness measure. However, the l0 norm solutions are the
sparsest, and it is natural to hope that the l1 norm solution is one of the
l0 norm solutions. From equivalence analysis of the l1 norm solution and
l0 norm solution presented in this letter, it is evident that if a data vector
(observed vector) is generated from a sufficiently sparse source vector, then
with a high probability, the l1 norm solution is equal to the l0 norm solution,



1222 Y. Li, A. Cichocki, and S. Amari

Figure 11: Power spectral density estimations for 10 EEG channel data in exam-
ple 5.

which is equal to the source vector. This result still holds even if additive
noise is present, which can be used as a recoverability result for blind sparse
source separation.

Among the different basis matrices, there should be the best basis ma-
trix such that the corresponding coefficient matrix is the sparsest. How to
discover the best basis matrix remains an open problem. In this letter, the
basis matrix is composed of cluster centers of normalized data vectors, as
in Zibulevsky, et al. (2000). The reasoning for applying this kind of basis
derives from two considerations: the corresponding coefficient matrix ob-
viously can become sparse, and the basis matrix can represent the mixing
matrix in BSS with sparse sources.

It is known that this kind of construct that employs sparse representa-
tion can be used in BSS, especially in cases in which fewer sensors exist than
sources and while the source number is unknown. Our analysis shows that
this approach is robust to additive noise and to estimation error of mixing
matrix. If the sources are sufficiently sparse (i.e., they overlap to some de-
gree), blind separation can be carried out directly. Otherwise, preprocessing
of wavelet packets transformation is necessary, and the blind separation is
implemented in the time-frequency domain. Four simulation examples and
an EEG data analysis example support the validity and performance of the
algorithm detailed in this letter.
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Figure 12: Eighteen estimated signals using the SCA approach proposed in this
letter and detailed in example 5.

We tried to use sparse representation in EEG data analysis in this article,
and obtained some results. Obviously, our EEG data analysis results are very
initial; extensive investigation will appear in our other articles. Compared
with general ICA algorithms based on independence principle, there exist
two obvious advantages of the sparse representation in EEG data analysis:
(1) several sources are dependent, and some are not stationary sometimes,
and (2) the source number can be bigger than the number of EEG channels.

Further work that needs to be done includes study of the algorithm for
estimating the best basis matrix of sparse representation, estimation of the
probability that differently distributed sources can be recovered, and ap-
plication extensions, specifically, applications in image processing, visual
computation and EEG data analysis.

Appendix A: Proof of Theorem 1

First, define a set of B in Rn×m, G1 = {B ∈ Rn×m| there exists at least one n×n
square submatrix of B that is deficient of rank}. Obviously, the measure of
G1 is zero.
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Figure 13: Power spectral density estimations for 18 estimated signals in exam-
ple 5.

In the following, suppose that B∈ Rn×m \ G1, that is, all the n × n square
minor matrices of B are of full rank.

Without loss of generality, we consider only a column vector of X denoted
by x. The sparse solution is obtained by solving the optimization problem,

min J1 =
m∑

i=1

|si|, subject to x = s1b1 + · · · + smbm. (A.1)

Take an n × n submatrix of B denoted as B̃ = [bl1 , . . . , bln ], and set the
index set {j1, . . . , jm−n} = {1, . . . , m} \ {l1, . . . , ln}.

In equation A.1, solutions of the constraint equations can be represented
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by

[sl1 , . . . , sln ]T = B̃−1[x − sj1 bj1 − · · · − sjm−n bjm−n ], (A.2)

which is denoted by [x̃1, . . . , x̃n]T − [b̃1j1 , . . . , b̃nj1 ]Tsj1 − · · · − [b̃1jm−n , . . . ,

b̃njm−n ]Tsjm−n , where sj1 , . . . , sjm−n are arbitrary.
And J1 becomes,

J1 =
n∑

i=1

|x̃i − b̃ij1 sj1 − · · · − b̃ijm−n sjm−n | + |sj1 | + · · · + |sjm−n |.

The possible minimum points of J1 are in the following two sets:

1. D1 = {(s1, . . . , sm)T| (s1, . . . , sm)T satisfies the constraints of equation
A.1 at which J1 is differentiable, and ∂ J1

∂sj1
= · · · = ∂ J1

∂sjm−n
= 0}.

2. D2 = {(s1, . . . , sm)T|(s1, . . . , sm)Thas at least one si = 0}.
Note that the function J1 is not differentiable at the points of D2.

For the first class points, we have

∂ J1

∂sj1
= sign(sj1) − sign(sl1)b̃1j1 − · · · − sign(sln)b̃nj1 ,

...

∂ J1

∂sjm−n

= sign(sjm−n) − sign(sl1)b̃1jm−n − · · · − sign(sln)b̃njm−n . (A.3)

Thus, if

[1 ± b̃1j1 ± · · · ± bnj1 , . . . , 1 ± b̃1jm−n ± · · · ± b̃njm−n ]T �= 0, (A.4)

then D1 is an empty set, and J1 has minima only in the second class point
set D2.

Choosing a p ∈ {1, . . . , m − n} and setting sjp = 0, we obtain a new
optimization problem:

min J̄1 = min[
n∑

i=1

|x̃i − b̃ij1 sj1 − · · · − b̃ijp−1 sjp−1

+ b̃ijp+1 sjp+1 + · · · + b̃ijm−n sjm−n | + |sj1 | + · · ·
+ |sjp−1 | + |sjp+1 | + · · · + |sjm−n |],

subject to [sl1 , . . . , sln ]T = B̃−1[x − sj1 bj1 − · · · − sjp−1 bjp−1

− sjp+1 bjp+1 − sjm−n bjm−n ]. (A.5)
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Similarly, we have the conclusion: if

[1 ± b̃1j1 ± · · · ± b̃nj1 , . . . , 1 ± b̃1jp−1 ± · · · ± b̃njp−1 ,

1 ± b̃1jp+1 ± · · · ± b̃njp+1 , . . . , 1 ± b̃1jm−n ± · · · ± b̃njm−n ]T �= 0, (A.6)

then the objective function in equation A.5 has minima only in the nondif-
ferentiable points. That is, the minimum points of the objective function in
equation A.5 have at least two zero entries, one of which is sjm−n−p = 0.

Noting that for p = 1, . . . , m − n, we can obtain m − n conditions as
equation A.6. If all the m−n conditions and condition A.4 are satisfied, then
the minimum points of the objective function in equation A.5 have at least
two zero entries.

Repeating the procedure above m − n times, we can obtain the optimiza-
tion problem,

min
n∑

i=1

|sli |, subject to x = sl1 bl1 + · · · + sln bln . (A.7)

Note that the constraint equations in equation A.7 are determined and
have a unique solution.

Define the set G2(B) = {B ∈ Rn×m|there exists a square minor matrix B̃ ∈
B, such that at least one vector [1± b̃1i1 ±· · ·± b̃1ik , . . . , 1± b̃ni1 ±· · ·± b̃nik ]

T

= 0, where {(i1, . . . , ik) is a subset of {j1, . . . , jn−m}, 1 ≤ k ≤ m − n}}, G0 =
G2(B̃)

⋃
G1. Then G0 is a zero measure set of B in Rn×m.

Reconsidering equation A.1, if B ∈ Rn×m \ G0, then all possible solutions
of this equation can be obtained by choosing a suitable submatrix of B
and solving the determined constraint equations of equation A.7. Since the
submatrix number of B is Cn

m, there are at most finite solutions of equation
A.1. And the nonzero number of these solutions is less than or equal to n.

Furthermore, we prove the solution is unique.
Suppose that x has the following sparse representation,

x = si1 bi1 + · · · + siL biL , (A.8)

where |si1 | + · · · + |siL | is a global minimum of equation A.1.
It follows from the discussion above that L ≤ n, thus, bi1 ,. . ., biL are

independent.
If x has another sparse factorization based on B, then there are two cases:

(1) the sparse factorization of x is also based on the basis vectors bi1 , . . . , biL ;
and (2) the sparse factorization of x is based on different basis vectors from
those in equation A.8.
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Now consider the first case. We have

x = s′
i1 bi1 + · · · + s′

iL biL , (A.9)

where [s′
i1 , . . . , s′

iL ]′ �= [si1 , . . . , siL ]′, and
L∑

k=1
|s′

ik | =
L∑

k=1
|sik |.

Thus, we have

(si1 − s′
i1)bi1 + · · · + (siL − s′

iL)biL = 0. (A.10)

This is in contradiction to the statement that bi1 ,. . ., biL are independent.
For the second case, suppose that x has a sparse factorization different

from equation A.8:

x = s′
l1 bl1 + · · · + s′

lP blP , (A.11)

and

|s′
l1 | + · · · + |s′

lP | = |si1 | + · · · + |siL |. (A.12)

From equation A.8 and A.11, we have

x = β[si1 bi1 + · · · + siL biL ] + (1 − β)[s′
l1 bl1 + · · · + s′

lP blP ]

= rk1 bk1 + · · · + rkQ bkQ , (A.13)

where β ∈ [0, 1], bk1 , . . . , bkQ are all different basis vectors in {bi1 , . . . , biL ,

bl1 , . . . , blP}, and ri1 , . . . , riQ are corresponding coefficients.
From equations A.12 and A.13, it can be proved that

|rk1 | + · · · + |rkQ | ≤ β(|si1 | + · · · + |siL |) + (1 − β)(|s′
l1 | + · · · + |s′

lP |)
= |si1 | + · · · + |siL |. (A.14)

Thus, the representation of equation A.13 is also a sparse representation, and
Q∑

l=1
|rkl | =

L∑
j=1

|sij |. By choosing different β in equation A.13, it can be seen that

there are infinite sparse representations of x. This is in contradiction with
the statement that there are at most infinite solutions of equation A.1.

From the discussion above, it follows that for a given basis matrix B ∈
Rn×m\G0, the sparse solution of equation 1.1 is unique. Note that the measure
of G0 is zero.

From the proof above, it can be seen that for a given basis B ∈ Rn×m \ G0,
there are at most n nonzero entries of the solution of equation 2.1.

Thus, theorem 1 is proved.
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Appendix B: Proof of Lemma 2

1. Set αn
k = 1 − β(k, n, n), which is the probability P(||sn||1 ≥ ||s(i1,...,ik)

n ||1).
Now consider the probability αn

k+1 = P(||sn||1 ≥ ||s(i1,...,ik+1)
n ||1). s(i1,...,ik+1)

n
can be obtained in two steps. First, using k columns selected randomly to
replace the k columns with indices (i1, . . . , ik) of An in equation 2.6, equation
2.7 and the corresponding solution s(i1,...,ik)

n are obtained. Second, using one
column selected randomly to replace the ik+1−th columns of A(i1,...,ik)

n in
equation 2.7, the corresponding solution s(i1,...,ik,ik+1)

n is obtained. Thus, we
have

αn
k+1 = P(||sn||1 ≥ ||s(i1,...,ik+1)

n ||1)
= P({||sn||1 ≥ ||s(i1,...,ik)

n ||1}
⋂

{||s(i1,...,ik)
n ||1 ≥ ||s(i1,...,ik+1)

n ||1})

+ P({||sn||1 ≥ ||s(i1,...,ik)
n ||1}

⋂
{||s(i1,...,ik)

n ||1 < ||s(i1,...,ik+1)
n ||1}

⋂

{||s(i1,...,ik+1)
n ||1} ≤ ||sn||1})

+ P({||sn||1 < ||s(i1,...,ik)
n ||1}

⋂
{||sn||1 ≥ ||s(i1,...,ik+1)

n ||1})
≈ αn

k µn
k+1 + αn

k (1 − µn
k+1)α

n
k+1, (B.1)

where P(||s(i1,...,ik)
n ||1 ≥ ||s(i1,...,ik+1)

n ||1) is denoted by µn
k+1. And we have sup-

posed that P({||sn||1 < ||s(i1,...,ik)
n ||1}

⋂{||s(i1,...,ik+1)
n ||1 ≤ ||sn||1}) ≈ 0. Under

the condition that ||sn||1 < ||s(i1,...,ik)
n ||1, if ||s(i1,...,ik+1)

n ||1 ≤ ||sn||1, then the
ik+1-th column of equation 2.7 must be very close to x in direction. Since the
column is selected randomly, the probability can be viewed as zero.

Thus, we have

αn
k+1 ≈ µn

k+1

1 − αn
k (1 − µn

k+1)
αn

k . (B.2)

Define a function f (µn
k+1) = µn

k+1
1−αn

k (1−µn
k+1)

. Obviously, f (1) = 1. It is not

difficult to find that

df
dµn

k+1
= 1 − αn

k

(1 − αn
k (1 − µn

k+1))
2 > 0;

hence, f is monotonically increasing.
Noting that µn

k+1 ≤ 1, we have f ≤ 1, and

αn
k+1 ≤ αn

k , (B.3)

that is, β(k + 1, n, n) ≥ β(k, n, n). Thus, the first result of the lemma holds.
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2. Suppose that the sequence {αn
n} does not tend to 0; then there exists

an ε0 > 0 such that the sequence has a subsequence assumed to be {αik
ik },

satisfying that α
ik
ik > ε0. Since the subsequence has an upper bound of 1 and

a lower bound of 0, it also has a convergent subsequence assumed to be
itself without loss of generality. That is, lim

k→+∞
α

ik
ik = p0 ≥ ε0.

In view of B.2 and B.3,

αik
ik ≈ µ

ik
ik

1 − α
ik
ik−1(1 − µ

ik
ik)

α
ik
ik−1

≤ µ
ik
ik

1 − α
ik
1 (1 − µ

ik
ik)

α
ik
ik−1

≤
ik∏

j=2

µ
ik
j

1 − α
ik
1 (1 − µ

ik
j )

α
ik
1 . (B.4)

If there are two positive constants µ0 and α0 satisfying µ0, α0 < 1, such
that

µ
ik
j ≤ µ0, j = 1, . . . , ik, k = 1, 2, . . . , (B.5)

α
ik
1 ≤ α0, k = 1, 2, . . . , (B.6)

then

αik
ik ≤

ik∏
j=2

µ
ik
j

1 − α0(1 − µ
ik
j )

α0

≤
ik∏

j=2

µ0

1 − α0(1 − µ0)
α0

≤
[

µ0

1 − α0(1 − µ0)

]ik−1

α0. (B.7)

In view of equation B.7, we have lim
k→+∞

α
ik
ik = 0, which is in contradiction

to the definition of the sequence of {αik
ik }. Thus, the two inequalities in B.5

and B.6 cannot be satisfied simultaneously. That is, the sequence {µik
j , j =

1, . . . , ik, k = 1, 2, . . .} or the sequence {αik
1 } has a subsequence that tends to

1. This is impossible in practice.
Thus, the sequence {αn

n} tends to 0, that is, lim
n→+∞ β(n, n, n) = 1.

This lemma is proved.
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Appendix C: Proof of Lemma 3

1. Set ᾱk = 1−P(k, n, n), which is the probability P(||sn||1 ≥ ||sk
n||1). Similarly

to equation B.1, we have

ᾱk+1 = P(||sn||1 ≥ ||sk+1
n ||1)

= P({||sn||1 ≥ ||sk
n||1}

⋂
{||sk

n||1 ≥ ||sk+1
n ||1})

+P({||sn||1 ≥ ||sk
n||1}

⋂
{||sk

n||1 < ||sk+1
n ||1}

×
⋂

{||sk+1
n ||1 < ||sn||1})

+P({||sn||1 < ||sk
n||1}

⋂
{||sn||1 ≥ ||sk+1

n ||1})
≈ ᾱkᾱ

k
1 + ᾱk(1 − ᾱk

1)ᾱk+1, (C.1)

where we denote P(||sk
n||1 ≥ ||sk+1

n ||1) as ᾱk
1.

Thus, we have

ᾱk+1 ≈ ᾱk
1

1 − ᾱk(1 − ᾱk
1)

ᾱk. (C.2)

As in the proof of lemma 2, we can prove that ᾱk+1 ≤ ᾱk. Thus, the first
result of the lemma holds.

2. Noting that P(n, n, n) = β(n, n, n), this lim
n→+∞ P(n, n, n) = 1 directly

from lemma 2.
Now consider P(n − k, n, n) defined as P(||sn||1 < ||sn−k

n ||1. sn−k
n can be

obtained in two steps. First, using n columns selected randomly to replace
the n columns of An in equation 2.6, equation 2.7 and corresponding solu-
tion sn

n (= s(1,...,n)
n ) are obtained. Second, using k columns of An in equation

2.6 to replace k columns of A(1,...,n)
n in equation 2.7, the corresponding solu-

tion s(i1,...,in−k)
n can be obtained. Repeat this process until the solution sn−k

n is
obtained, which satisfies that ||sn−k

n ||1 = min{||s(i1,...,in−k)

l ||1, 1 ≤ i1 < · · · <

in−k ≤ n}. Thus, we have

P(n − k, n, n) = P(||sn||1 < ||sn−k
n ||1)

≥ P({||sn||1 < ||sn
n||1}

⋂
{||sn||1 < ||sn−k

n ||1})
= P(n, n, n)P({||sn||1 < ||sn−k

n ||1}/{||sn||1
< ||sn

n||1}). (C.3)

That ||sn||1 > ||sn−k
n ||1 under the condition that {||sn||1 < ||sn

n||1} implies
that there exists at least one column of An that is sufficiently close to (or
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opposite to) x in direction. Set x̄ = x
||x||2 , and α0 > 0 to be a positive constant.

If |aki − x̄k| < α0 is satisfied for k = 1, . . . , n, then we say that the vector ai
and x are sufficiently close in direction. Define the probability P(|aki − x̄k| <

α0) = p0 > 0; then

P(|aki − x̄k| < α0, k = 1, . . . , n) = P(||ak − x̄||∞ < α0)

= pn
0

P(

n⋃
k=1

{||ak − x̄||∞ < α0}) ≤ npn
0 . (C.4)

Thus,

P({||sn||1 < ||sn−k
n ||1}/{||sn||1 < ||sn

n||1})
= 1 − P({||sn||1 ≥ ||sn−k

n ||1}/{||sn||1 < ||sn
n||1})

≥ 1 − npn
0 → 1. (C.5)

In view of equations C.3 and C.5 and that lim
n→+∞ P(n, n, n) = 1, we have

lim
n→+∞ P(n − k, n, n) = 1.

This lemma is proved.

Appendix D: Proof of Theorem 3

1. P(1, l, n), . . . , P(l, l, n) can be viewed as P(n − l + 1, n, n), . . . , P(n, n, n),
respectively. From lemma 3, the result holds.

2. P(1, 2, n), . . . , P(l, n, n) can be viewed as P(n − 1, n, n), . . . , P(1, n, n),
respectively. From lemma 3, we have 1 ≥ P(1, 2, n) ≥ · · · ≥ P(1, n, n).

Now consider the probability P(1, 1, n). l = 1 implies that sl has only
one nonzero entry, assumed to be s1; thus, x = s1a1, and ||sl||1 = |s1|. For an
n×n matrix A(1)

1 selected randomly, the solution s(1)

1 of equation 2.7 satisfies
||s(1)

1 ||1 > ||s1||1, provided that A(1)

1 does not contain the column vector a1.
Thus, P(1, 1, n) = 1, and the second result holds.

3. For 1 ≤ k ≤ l and fixed l, lim
n→+∞ P(k, l, n) = lim

n→+∞ P(n − l + k, n, n) = 1

from lemma 3.
4. In view of the first result in this theorem, we have

P(||sl||1 ≤ ||s̄l||1) = P(||sl||1 ≤ min
k=1,...,l

{min{||s(i1,...,ik)
l ||1,

1 ≤ i1 < · · · < ik ≤ l}})
≥ P(1, l, n)P(2, l, n) · · · P(l, l, n)

≥ (P(1, l, n))l. (D.1)
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From the third result of this theorem and equation D.1, we have lim
n→+∞

P(||sl||1 ≤ ||s̄l||1) = 1 for fixed l.
Thus, the fourth result holds. The theorem is proved.

Appendix E: Proof of Theorem 4

1. P(1, l, n, m), P(2, l, n, m), . . . , P(l, l, n, m) can be viewed as P(n− l+1, n, n,

m), P(n − l + 2, n, n, m), . . . , P(n, n, n, m). The remaining proof is similar to
that of the first result in lemma 3.

2. This result can be proved as in the proof of the second result in theo-
rem 3.

3. First, we prove that lim
n→+∞ P(l, l, n, m) = 1.

Choose n column vectors of Ām−l arbitrarily assumed to be ā1, . . . , ān to
replace the l columns of Al, and obtain the corresponding solution s(1,...,l,1,...,n)

of equation 2.9. Using j (1 ≤ j ≤ min{n, m − n − l}) column vectors of
{ān+1, . . . , ām−l} to replace j columns of {ā1, . . . , ān}, we can obtain a set of
new equations and its solution. For different choices, many sets of equations
and their solutions can be obtained, of which ŝ(j) is denoted as the solution
with minimum 1−norm. We have

P(l, l, n, m) = P(||sl||1 < min{||s(1,...,l,j1,...,jn)||1,
1 ≤ j1 < · · · < jn ≤ m − l})

≥ P({||sl||1 < ||s(1,...,l,1,...,n)||1}⋂
{||ŝ(j)||1 > ||sl||1, j = 1, . . . , min{n, m − n − l}})

= P(l, l, n)P({||ŝ(j)||1 > ||sl||1)}/{||sl||1
< ||s(1,...,l,1,...,n)||1}, j = 1, . . . , min{n, m − n − l}})

≥ P(l, l, n)

m−n−l∏
j=1

P({||ŝ(j)||1 > ||sl||1}/

{||sl||1 < ||s(1,...,l,1,...,n)||1}). (E.1)

Noting that under the condition that ||sl||1 < ||s(1,...,l,1,...,n)||1, ||ŝ(j)||1 ≤ ||sl||1
implies that there exists at least one vector of {ān+1, . . . , ām−l} of which
the direction is sufficiently close to x (or sufficiently opposite to). Similarly
in the proof of Case 2 in lemma 3, it can be proved that the probability
tends to zero when n → +∞. Thus, lim

n→+∞ P({||ŝ(j)||1 > ||sl||1}/{||sl||1 <

||s(1,...,l,1,...,n)||1}) = 1. In view of equation E.1, the third result in theorem 3,
and that m − n − l are fixed, we have lim

n→+∞ P(l, l, n, m) = 1.



Analysis of Sparse Representation and Blind Source Separation 1233

lim
n→+∞ P(k, l, n, m) = 1 can be proved using similar logic to that used in

the proof of Case 2 in lemma 3.
4. For fixed k, l and n, m tends to +∞ implies that there exist infinite

column vectors. We can choose n − l + k vectors that are sufficiently close to
x in direction such that the 1−norm of the solution of equation 2.9 is smaller
than ||sl||1. Thus, lim

m→+∞ P(k, l, n, m) = 0.

5. From theorem 2, if ŝl �= s1, then ||s1||0 = n with probability of one. In
view of the definition of P(k, l, n, m) and the first result in this theorem, we
have

P(ŝl �= s1) = P(||sl||1 > ||s1||1)
= 1 − P(||sl||1 ≤ ||s1||1)
≤ 1 − P(1, l, n, m)P(2, l, n, m) · · · P(l, l, n, m)

≤ 1 − (P(1, l, n, m))l, (E.2)

that is, P(sl = s1) ≥ (P(1, l, n, m))l.
Furthermore, from Case 3 of this theorem, we have lim

n→+∞ P(ŝl = s1) = 1

for fixed l and m − n. Thus, the fifth result holds.
6. The result can be proved as in the proof of the fifth result and using

equation 2.14.
Theorem 4 is proved.
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