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Abstract—In this paper, we propose a robust approach for in-
dependent component analysis (ICA) of signals that observations
are contaminated with high-level additive noise and/or outliers.
The source signals may contain mixtures of both sub-Gaussian
and super-Gaussian components, and the number of sources is
unknown. Our robust approach includes two procedures. In the
first procedure, a robust prewhitening technique is used to reduce
the power of additive noise, the dimensionality and the correlation
among sources. A cross-validation technique is introduced to
estimate the number of sources in this first procedure. In the
second procedure, a nonlinear function is derived using the pa-
rameterized -distribution density model. This nonlinear function
is robust against the undue influence of outliers fundamentally.
Moreover, the stability of the proposed algorithm and the robust
property of misestimating the parameters (kurtosis) have been
studied. By combining the -distribution model with a family of
light-tailed distributions (sub-Gaussian) model, we can separate
the mixture of sub-Gaussian and super-Gaussian source compo-
nents. Through the analysis of artificially synthesized data and
real-world magnetoencephalographic (MEG) data, we illustrate
the efficacy of this robust approach.
Index Terms—Cross-validation method, independent compo-

nent analysis (ICA), parametric estimation method, principal
component analysis (PCA), robust prewhitening, -distribution
density model, unaveraged single-trial MEG data analysis.

I. INTRODUCTION

B LIND separation of independent sources has received
a great deal of attention due to various applications in

science and technology. The problem of blind source separation
(BSS) and/or ICA has been studied by many researchers in
the fields of neural networks and statistical signal processing
[1]–[5], [9], [15], [16], [18], [22], [26], [31], [36] during the
past ten years, and many interesting theoretical and practical
results have been achieved.
The particular ICA model considered in this paper is
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where represents the transpose
of observations at time . Each observation contains
common components (sources)

and a unique component (additive noise), which is included in
the vector . is a full-rank
mixing matrix.
In the model, the sources and their number , additive noise
and matrix are unknown, but the sensor signals are ac-

cessible. The sensor signals contain mixtures of both sub- and
super-Gaussian source components. It is assumed that the com-
ponents of are mutually statistically independent, as well as
statistically independent of the noise components . Moreover,
the noise components themselves are assumed to be mutually
decorrelated. Our goal is to estimate the independent sources
under these challenging conditions or assumptions.
The topics considered in the present paper are related to var-

ious original contributions. They include the ICA noisy model
in [7], [20], [24], [27]–[29], the estimation of the number of
sources in [21], [32], the natural gradient and/or the relative gra-
dient-based ICA algorithms with stability analysis in [1]–[5],
[16], the optimal nonlinear functions or separation of mixtures
of sub- and super-Gaussian source signals in [11], [17], [19],
[23], [25], [34], [37], and the applications of ICA to averaged
and unaveraged MEG/EEG data in [10], [12]–[14], [29], [30],
[35], [38]. These references will be referred to again in the sub-
sequent sections.
In the analysis of real-worldMEG/EEG data one is facedwith

problems such as the different nature of source signals (e.g.,
both sub- and super-Gaussian sources exist), unknown number
of sources, and contamination of the sensor signals with a high
level (power) of additive noise and outliers. We propose a robust
approach to the solution of these problems based on the sub-
space and the parametric methods to analyze the independent
components. Our robust approach includes two procedures. In
the first procedure, observations (noisy data) possessing high
dimensionality are first decomposed into a source signal sub-
space and a noise subspace; the dimensionality is reduced op-
timally. In the second procedure, the transformed low-dimen-
sional signals containing both sub-Gaussian and super-Gaussian
components are further separated using the parameterized -dis-
tribution density model and the light-tailed distribution density
model with the natural gradient-based ICA algorithm.
This paper is organized as follows. A robust prewhitening

technique with noise reduction and a cross-validation technique
with optimal dimensionality reduction are presented in Sec-
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tion II. The parameterized -distribution model and its robust
properties, as well as the stability of the developed algorithm
are presented in Section III. Experimental results using this
new approach on artificially synthesized data and real-world
unaveraged single-trial MEG data are presented in Section IV.
The MEG data are from an experiment studying the auditory
evoked fields (AEF) task. Some conclusions are drawn and
presented in Section V.

II. ROBUST PREWHITENING TECHNIQUE

In this section, we first describe the standard principal compo-
nents analysis (PCA) approach, which has been adopted in some
promising ICA algorithms [9], [15], [26] for the prewhitening
step. Next, we show that this standard PCA approach can be ex-
tended to prewhitening of data with noise reduction. Finally, the
practical implementation of the robust prewhitening algorithm
is presented.
Let us rewrite (1) in a data matrix form as

(2)

where denotes data samples. When the sample size is suf-
ficiently large, the covariance matrix of the observed data can
be written as

(3)

where , and is a diagonal matrix.
Since the sources are mutually independent, as well as indepen-
dent from the noise, the terms and ,
disappearing in (3). For convenience, we assume that has
been divided by so that the covariance matrix can be given
by .

A. Standard PCA for Prewhitening
Let us first consider an ideal case in which the noise vari-

ance is close to zero, or in other words, the signal-to-noise
ratio (SNR) is very high. In the context of biomedical signal
processing, this condition can usually be achieved by taking the
average of a large number of trials.
For this kind of data, a cost function for fitting the model to

the data can be employed to make as small as pos-
sible. It is well known that the standard PCA approach is used to
find the principal components using the eigenvalue decomposi-
tionmethod; that is, the solution of for seeking principal
components can be obtained by

(4)

where is a diagonal matrix whose elements are the largest
eigenvalues of . The columns of are the corresponding
eigenvectors. In (4), let one possible solution for be

(5)

Note that , and the principal-component scores can
be obtained from , that is

(6)

Using this result, the covariance matrix is obtained as
, which means that are orthogonal, or the

components are decorrelated in the new set of transformation
data.
This standard approach or a similar decorrelation procedure

has been adopted in some promising ICA algorithms [9], [15],
[26] for the prewhitening procedure. Applying these algorithms
to the analysis of averaged EEG/MEG data (SNR is high), some
successful results have been reported [35], [38].

B. Prewhitening With Noise Reduction
Let us consider a more difficult or challenging case, however,

in which the power of the noise is larger than that of the source
signal (SNR 0 dB). This situation usually happens with MEG
raw data. In this case, the diagonal elements in the matrix are
relatively large and, therefore, cannot be ignored in the model.
Similar to the standard PCA approach, here we can fit

to using the eigenvalue decomposition method.
We choose the columns of as eigenvectors of
corresponding to the largest eigenvalues so that the sum of
the squares in each column is identical to the corresponding
eigenvalue.
It should be noted that the noise covariance is assumed to

be known in the above case. However, the noise covariance is
usually unknown in the real-world problem and, therefore, it has
to be estimated. Motivated by this, we employ the cost function

(7)

and minimize it by , whereby the esti-
mate of can be obtained as

(8)

In (8), the estimate can be obtained in the same way as in (5).
Note that both the matrix and the diagonal elements of

need to be estimated together from the data. The estimate is
obtained by the standard PCA approach using the eigenvalue
decomposition method. The estimate is obtained by the un-
weighted least squares method, which is one of the estimation
methods used in factor analysis [33].
Once the estimates and converge to stable values, we

need to finally compute the score matrix, or the pseudoinverse
matrix. Since the solution for a pseudoinverse matrix is not
unique, in this paper, we employ the Bartlett method [8], which
is an unbiased model. The noise variance is taken into the
calculation, that is

(9)

Using this result, a new set of transformation data can be ob-
tained by .
Note that the covariance matrix is ,

which implies that the source signals are decorrelated in this
subspace. Therefore, the robust prewhitening technique plays
the same role in decorrelation as in standard PCA, but the noise
variance is taken into account with the former. The differ-
ence between the two methods is that standard PCA fits both
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diagonal and off-diagonal elements of , whereas the robust
prewhitening technique fits only the off-diagonal elements of
. Based on this property, one can take advantage in reducing

the high-power noise using the robust prewhitening technique,
particularly in the case in which the power of noise is larger
than that of the signal. Another advantage is that the robust
prewhitening technique is robust to non-Gaussian unique out-
lier, since it does not assume close adherence to the normal dis-
tribution in the model assumption.
Some similar noise reduction approaches using statistical

methods such as the maximum-likelihood method of factor
analysis has been proposed in [7], [29]. The advantage of these
methods is that there is a statistical measure available for as-
sessing how well the model fits the data. However, when sensor
signals are contaminated with high-power Gaussian noise or
non-Gaussian outliers, such as with single-trial, MEG data, the
algorithms derived using these methods work inefficiently.

C. Estimation of the Number of Sources

The cross-validatory techniques have been injudiciously ap-
plied in multivariate statistics [32]. The basic idea of a cross-
validatory method is that it divides the data into several sub-
groups. One group is used to determine some features of the
data, and the other groups are used to verify the features. Using
this technique, we propose a criterion for estimating the number
of sources based on the error of estimated noise variance.
Let us first divide the data matrix into several disjoint

groups, such as , where is the number of data
samples and the group number . Next, we delete
each group in turn from the data matrix and compute one esti-
mate of the noise variance as ; we use remaining data
to compute another estimate of the noise variance as ,
where . It is obvious when the estimate of source number
has not been matched to its true value, there will be a larger error
between the noise variance and its estimate. Based on this prop-
erty, we define the criterion for each conjectured source number
as

(10)
When the “disjoint” condition is relaxed, we can replace one
of the estimates, or , using the estimate

that will be computed for the total data samples.
It should be noted that it is unnecessary to compute all

the estimates of the source number, such as from to
, where denotes the number of sensors, since the

estimated number of sources should be within the bound [6] as
.

D. Summary

The computation for the robust prewhitening technique is
summarized as follows.

1) Calculate the covariance matrix from data and set an
initial guess of , e.g., .

2) Given an initial number, such as , divide the
data matrix as , then calculate the error
using (10).

3) Calculate the largest eigenvalues and the associ-
ated eigenvectors of .

4) Calculate the estimate using (5) and the estimate
using (8).

5) Repeat calculations 3) and 4) until the estimates con-
verge to stable values.

6) Set the conjectured number as , repeat 2) to
5) until the condition
is satisfied.

7) Seek the minimum error of using (10) and calculate
the pseudoinverse of estimate using (9); finally, ob-
tain a new set of transformation data by .

It should be noted that it is necessary to use the robust
prewhitening technique (i.e., decorrelation procedure) to re-
duce the power of the noise as well as the number of parameters
to be estimated. It is insufficient to obtain the independent
components, since an orthogonal matrix in general contains
additional degrees of freedom. Therefore, the remaining
parameters need to be estimated by ICA.

III. ROBUST NONLINEAR FUNCTION IN THE ICA ALGORITHM

After prewhitening of the noisy observations, the transformed
signals are obtained through a procedure in which
the power of noise, mutual correlation and dimensionality have
been reduced. The decomposed independent sources
can then be obtained from a linear transformation as

(11)

where is the demixing matrix, which can be com-
puted using several kinds of ICA algorithms [1], [15], [26]. In
this paper, we employ the nature gradient-based ICA algorithm
to compute matrix .
The Kullback–Leibler divergence is one ICA contrast func-

tion that measures the mutual stochastic independence of the
output signals between the joint probability density function
(pdf) and the marginal pdfs as

(12)

In (12), the KL divergence , if and only if the
independence condition is satisfied.
The natural gradient-based algorithm was developed by

Amari [1], [4], [5] and independently by Cardoso, which was
termed the relative gradient [16]. It has been proven that the
natural gradient greatly improves learning efficiency in blind
source separation. Applying the natural gradient to minimize
KL divergence (12), the general learning rule for updating
can be developed as [1]

(13)
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When prewhitening has been performed and the demixing ma-
trix is restricted to be orthogonal in form, the algorithm can
be extended to the following form as [5]:

(14)

When the prewhitening is included in the separation process, the
algorithm becomes the EASI algorithm [16]

(15)

In (13)–(15), is a learning rate, and is the vector of
activation functions whose optimal components are

(16)

where .
Typical ICA algorithms, including algorithms (13)–(15), rely

on the appropriate choice of nonlinear score functions. The op-
timal function (16) depends on the probability distribution of the
source, which is usually not available in the ICA task. Therefore,
one practical solution to this problem is to employ a hypothet-
ical probability density model. Several algorithms have been de-
veloped for separating the mixtures of sub- and super-Gaussian
sources [11], [17], [19], [23], [25], [34], [37].
For bimodal distributed sources, employing amixedGaussian

density model has been proposed in [25], [34]. The developed
algorithm based on this model is elegant and enables us to sepa-
rate the mixtures of sub- and super-Gaussian sources. However,
the sign of the hyperbolic-tangent function in the algorithm is
determined by the sign of the kurtosis, which does not always
correspond to the source distribution.
The generalized Gaussian distributions are comprised of uni-

modal heavy-tailed (super-Gaussian) and light-tailed distribu-
tions (sub-Gaussian). The parametric method using the gen-
eralized Gaussian density model has been developed in [37],
[17]. In the method, a shape parameter is introduced to repre-
sent not only the distribution of source but also the value of
the source kurtosis. However, several discontinuities exist in the
heavy-tailed distribution density model, and these discontinu-
ities lead to the instability of algorithm.
In this paper, we introduce the -distribution, which is a

family of heavy-tailed distributions with degrees of freedom
(a shape parameter). Two advantages exist in applying the
-distribution density model: 1) no discontinuity exists in the
-distribution density model, hence, the derived algorithm is
always locally stable; and 2) the nonlinear function derived
from the parameterized -distribution density model is robust
to the undue influence of outlier.
By combining the -distribution density model with a family

of light-tailed distributions (sub-Gaussian) density model, we
can separate the mixtures of sub-Gaussian and super-Gaussian
source components. In this case, the nonlinear function is deter-
mined by the estimated value of the kurtosis, which corresponds

to the source distribution. Preliminary results from applying
the -distribution density model was reported in [11]. Some
extensions, such as the robust property in misestimating the
shape parameters (or kurtosis) and its application to a real-world
problem, are presented in this paper.

A. Proposed Unimodal Distribution Density Model

In this paper, we present a unimodal distribution density
model that combines the -distribution density model and a
family of light-tailed distributions, which are a part of the
generalized Gaussian distributions density model (see Fig. 1).
The pdf of the -distribution with a shape parameter and a

scaling factor is defined by

(17)

where is a Gamma function defined by

(18)

Changing the shape parameter within , we can
obtain a family of heavy-tailed distributions (super-Gaussian)
that have much higher peaks than the Gaussian distribution [see
Fig. 1(a)]. In particular, when , it is identical to the Cauchy
distribution, and when approaches infinity, it reduces to the
Gaussian distribution.
It should be noted that only the heavy-tailed distributions

(super-Gaussian) exist in the -distribution. In order to establish
a unimodal distribution density model that includes not only the
heavy-tailed distributions but also the light-tailed distributions
(sub-Gaussian), we subtract a family of light-tailed distributions
from the generalized Gaussian distributions.
The pdf of the generalized Gaussian distribution with a shape

parameter and a scaling factor is represented by

(19)

where is the pdf of Gaussian distribution. When ,
a family of the heavy-tailed distributions (super-Gaussian) are
similar to that of the -distribution. When , they are a
family of light-tailed distributions (sub-Gaussian) and are much
wider than the Gaussian distribution [see Fig. 1(b)].
The generalized Gaussian distribution density model is

simple. Both heavy-tailed and light-tailed distributions can
be controlled using only one parameter. However, since the
parameterized heavy-tailed distributions model is not always
stable and not as robust, it is worthwhile to replace it with
the parameterized -distribution model, represented by an
additional parameter. In this paper, we propose a unimodal
distribution density model that is a combination of the -distri-
bution density model and the light-tailed distribution density
model [see Fig. 1(c)].
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Fig. 1. Relationship between the kurtosis and the proposed unimodal distribution density model. (a) -distribution. (b) Light-tailed distributions subtracted from
the generalized Gaussian distributions. (c) Proposed unimodal distribution density model. (d) Relationship between the kurtosis and the unimodal distribution
model.

B. Kurtosis and Proposed Unimodal Distribution Density
Model
Kurtosis is a quantity used to measure the peakedness or flat-

ness of the frequency distribution of a random variable. The nor-
malized kurtosis is defined by

(20)

where and are the second- and
fourth-order moments, respectively. A positive kurtosis corre-
sponds to a super-Gaussian distribution and a negative kurtosis
corresponds to a sub-Gaussian distribution.
It should be emphasized that the value of the kurtosis cor-

responds to the shape parameter only in the unimodal distribu-
tion model. Based on this property, the relationship between the
value of the kurtosis and the shape parameters in the -distri-
bution model and the generalized Gaussian distribution density
model can be established.
The second- and fourth-order moments of the -distribution

can be derived by using formula (17). They are

(21)

(22)

where the scaling factor can be derived using one of the
equations in (21) and (22). For example, using (21), we obtain

(23)

Substituting (21) and (22) into (20), we obtain the relative for-
mula between the kurtosis and the shape parameter as

(24)

It should be noted that when parameter is given, it is easy to
calculate the value of kurtosis using (24). However, in most
cases, we need to obtain parameter when given kurtosis .
This can be done by establishing a lookup table in advance, and
then seeking the value of in the table that is close to .
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Fig. 2. (a) Example of an outlier occurring in unaveraged MEG data. (b) Comparison of the functions derived by from the heavy-tailed distribution models:
1) -distributionmodel (solid line; ); 2) heavy-tailed distributions from the generalized Gaussian distribution model (dash-dotted line; ); and 3) mixture
of Gaussian density model (dash-dotted line). It is clear that the function derived by from the -distribution model is robust to the undue influence of an outlier,
which often occurs in MEG records.

Similarly, the second- and fourth-order moments of the gen-
eralized Gaussian distribution and the scaling factor can be ob-
tained by

(25)

(26)

(27)

and the relative formula between the kurtosis and shape pa-
rameter can be obtained by

(28)

where the heavy-tailed distributions are restricted.
The relationship between the kurtosis and the proposed uni-

modal distribution density model is shown in Fig. 1(d). Note
that the curves in Fig. 1(d) are similar to those in Fig. 1(c).
This means that the unimodal distribution curves can be rep-
resented not only by the parameterized unimodal distribution
density model but also by the kurtosis.

C. Proposed Algorithm and Its Implementation

The optimal functions [see (16)] derived using the -distribu-
tion density model (17) and the light-tailed distribution density
model (19) are

(29)

(30)

where is the estimate of kurtosis defined by .
It can be obtained by estimating the second- and fourth-order
moments using the moving-average algorithm as

(31)

where is a learning rate. According to the estimate
, the function in (29) or (30) is selected automatically. Some

coefficients in the functions, such as or , can be calculated
using (23) or (27), respectively.
Let us consider an example in which we compare the acti-

vation functions derived by the -distribution density model,
the heavy-tailed distributions in the generalized Gaussian dis-
tribution density model and the mixed Gaussian density model.
The result is shown in Fig. 2(b). From this result, it is clear
that the function derived by the -distribution density
model approaches zero when the value of abruptly increases.
This means that the proposed function is robust to the undue
influence of an outlier that often occurs in MEG raw data [see
Fig. 2(a)].
The implementation of the proposed ICA algorithm is sum-

marized as follows.
• Calculate the output using (11) when given observations

and an initial value of .
• Calculate the kurtosis using (20) where the second- and
fourth-order moments are estimated using (31).

• Establish two look-up tables for (24) and (28) in advance,
and seek or from the table according to the value of
.

• Calculate the scaling factor using (23) or (27) according
to the value of .

• Calculate the nonlinear function using (29) or (30) and
update using (13), (14) or (15).

D. Stability Analysis of the Proposed Algorithm
The stability conditions for algorithm (13) were developed

by Amari et al. in [2]. The goal of the stability analysis is to

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on August 18,2010 at 02:49:59 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: ROBUST APPROACH TO INDEPENDENT COMPONENT ANALYSIS 637

seek some conditions that guarantee the behavior of the learning
system approaching the equilibrium. It has been proven that
when the Jacobian has negative real
parts, the equilibrium is asymptotically stable. For each of the
pairwise sources ( ), the necessary and sufficient con-
ditions are developed as [2]

(32)
(33)
(34)

where denotes expectation and .
Applying these conditions, we investigate the stability effect

of the nonlinear functions based on the -distribution density
model and the generalized Gaussian distribution density model.
First, we investigate function (29) derived from the -distri-

bution density model for super-Gaussian signals. In this case,
the conditions in (32)–(34) are always satisfied since the terms
on the left-hand side in (35)–(37) are positive (see Appendix I)

(35)

(36)

(37)

In (37), the same assumption , as in (21), is necessary.
Moreover, approaches one if and only if ap-
proaches infinity. This is the case for the Gaussian distributed
signal.
Next, we investigate function (30) derived from the general-

ized Gaussian distribution density model. Similar to the -dis-
tribution model, the stability conditions can be derived as (see
Appendix II):

(38)

(39)

(40)

Let us consider the following three cases
Case 1: (For Sub-Gaussian Signals): When ,

the stability conditions (38)–(40) are always satisfied since the
left terms are positive.
Case 2: (For Gaussian Signals): When , (38)

and (39) are positive. In (40), for the Gaussian distributed signal
, the term . If another signal is also

Gaussian distributed, then stability condition (34) is not satisfied
since . It is well known
that two Gaussian signals cannot be separated. We prove this
from the stability analysis point of view. However, if another
signal is super-Gaussian or sub-Gaussian, then it is easy to
prove that condition (34) is satisfied since .

Case 3: (For Super-Gaussian Signals): When ,
(38) is positive. However, (39) and (40) do not always have a
solution since many discontinuities (for example, ,
etc.) exist in the Gamma function , and these dis-
continuities lead to stability conditions (33) and (34) being un-
satisfied in some situations.
As mentioned in the previous subsections, one advantage of

employing the -distribution density model is that the devel-
oped nonlinear function is robust to outliers [see Fig. 2(b)]. As
we can see here, another advantage of employing the -distri-
bution model is that it always maintains stability. The cost for
employing the -distribution model is that it introduces an ad-
ditional shape parameter .

E. Robust to Misestimation of the Parameter
In Section 3–D, the stability of developed functions was in-

vestigated under an ideal case in which the parameter or
(obtained from the estimate ) is a true value, or is estimated
correctly. In this subsection, we investigate the case in which
the estimate or deviates from the true value or with an
error as

(41)
(42)

For the case of misestimation, the following questions may
arise: 1) Are the stability conditions (32)–(34) still satisfied?
2) If they are conditionally satisfied, what are the new condi-
tions? or How large an interval is allowed for the estimate de-
viating from the true value? In this case, the functions (29) and
(30) become

(43)

(44)

Applying stability conditions (32)–(34) to investigate func-
tions (43) and (44), we can derive new conditions as

(45)

(46)

(47)
and

(48)

(49)

(50)
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Fig. 3. Robustness to parameter misestimation. (a) and (b) Robustness to misestimating the super-Gaussian signals under the conditions in (45)–(47). (c) and (d)
robustness to misestimating the sub-Gaussian signals under the conditions in (48)–(50).

respectively. In (45)–(47) and (48)–(50), we seek the value of
that will satisfy the new stability conditions.
Let us consider two examples to illustrate these results (see

Fig. 3). The first example shows that function (43) derived using
the -distribution density model is robust to misestimation of
super-Gaussian signals [see Fig. 3(a) and (b)]. As shown in
Fig. 3(a), when the true value , the condition (45) is satis-
fied if . Similarly, in Fig. 3(b), when , conditions
(46) and (47) are satisfied if and , respectively.
In summary, conditions (45)–(47) are satisfied when ,
or when the estimate is greater than 2.5 (noted that it is not
necessary to be exactly equal to four). The second example
shows that function (44) derived from the light-tailed distribu-
tion density model is robust to misestimation of sub-Gaussian
signals [see Fig. 3(c) and (d)]. In this case, the true value ,
when the estimate is greater than 3.1 (or ); condi-
tions (48)–(50) are always satisfied.

IV. EXPERIMENTAL RESULTS

A. Experiment With Artificially Synthesized Data
We have performed a simulation experiment with one super-

Gaussian source, and one sub-Gaussian source,
. The total number of data samples was 10 000. We plot

2000 samples in Fig. 4(a). Two sources were artificially mixed

using a 7 2 random numeric matrix . Seven uncorrelated
Gaussian additive noise signals with their variances , or

and an outlier with amplitude 100 were added to an associated
element of [see Fig. 4(b)].
To compare the power of the source to that of the noise

and outlier, we define the signal-to-noise ratio (SNR) and the
signal-to-outlier ratio (SOR) as

SNR SOR

Using these formulas, we know that the maximum SNR
dB (high-level noise) at sensor . This means that the

power of the noise is 100 times that of the source signal. The am-
plitude of the outlier (at sensor ) is 21 times that of the max-
imum amplitude of a source, as SOR (an overwhelming
transient).
The proposed robust algorithm (see Section II-D) was used

for prewhitening with noise reduction. The estimated variances
of the additive noise [see (8)] are
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Fig. 4. Results from application of proposed ICA procedures for artificially synthesized signals. (a) Two super- and sub-Gaussian source signals. (b) Seven mixed
signals with noise and outlier. (c) Result for robust prewhitening using the proposed algorithm in Section II. (d) Result for decomposing sub- and super-Gaussian
source signals using proposed algorithm in Section III.

which are very close to the true values given above. As seen
from the result shown in Fig. 4(c), the high-level noise was al-
most completely removed, but the sources still overlapped. Fol-
lowing this result, the proposed algorithm [see Section III-C;

for (15) and for (31)] was used to further
separate the overlapping sub- and super-Gaussian components.
The result shown in Fig. 4(d) indicates that the source signals
are accurately estimated.
In the previous experiment, the number of sources and its es-

timate are assumed to be known as . In the next
experiment, we assume the number of sources is unknown, and
we apply the proposed criterion (10) to estimate the number of
sources. We first divided the data matrix into five disjoint
groups, such as ( ) Next, we use
one of the groups’ data to compute one estimate of the noise
variance , and use the remaining data to compute an-
other estimate of the noise variance where .
Repeating this calculation, we obtain the error of the estimated
number of sources for (see Fig. 5). As
seen in Fig. 5, when the estimated number of sources is ,
the error is at a minimum. This result indicates that the dimen-
sionality was reduced optimally.
It should be noted that although we have computed all of the

estimates from to , it is not necessary when ap-

Fig. 5. Result for estimation of the source number. The optimal number is
.

plying the condition . Under
the condition , we know the result is the same.
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Fig. 6. Experiment, records, and mapping of averaged AEF. (a) Experimental setup for the AEF task. (b) MEG data with 64-channels recorded over 630 trails.
(c) Ttypical result for the localization of averaged AEF. Two dipoles appear on the left and right sides of the brain.

B. Experiment With Unaveraged Single-Trial AEF Data

In the application of ICA to real-world MEG/EEG data, most
researchers have treated the subjected averaged data to the anal-
ysis [35], [38], [29]. We are more interested in analyzing un-
averaged single-trial data [12]–[14], [30], since many kinds of
important information, such as the strength (amplitude) of an
evoked response and its dynamics, can be visualized, which oth-
erwise might be “smoothed” out in averaged trials.
The MEG data for an AEF task were recorded using an

Omega-64 (CTF Systems Inc., Canada), whole-cortex MEG
system [see Fig. 6(a)]; the experiment was conducted at the Na-
tional Institute of Bioscience and Human-Technology, Japan.
The sensor arrays consist of 64 MEG channels. A healthy,
male adult participated in the AEF experiment. Auditory
stimulation consisted of a 1 kHz tone, presented binaurally
through headphones. There were 630 sets of single-trial data
recorded over 379.008 s. The duration of each trial was 0.6016
s, and the stimulus was presented 0.2 s after recording. The
sampling rate for the MEG was 312.5 Hz [see Fig. 6(b)].
Taking the average of 630 trials and localizing the evoked

fields using the dipole fitting method, we obtain a typical result

for AEF analysis, as shown in Fig. 6(c). This result illustrates
that the estimated locations are reliable, but the amplitude of
each evoked response corresponding to the stimulus is not avail-
able. In order to visualize the amplitude of the evoked response,
we apply the proposed ICA with the robust prewhitening ap-
proach (Sections II and III) to unaveraged single-trial data. For
the first single-trial data, two active components (IC1 and IC3),
which correspond to N100 evoked responses, are successfully
extracted [see Fig. 7(a)]. The IC2 component is a typical 10 Hz
alpha-wave, and the high frequency IC4 component may be an
environmental interference component.
Projecting the decomposed components IC1, IC2 and IC3

onto the sensor space individually, we can virtually visualize a
contribution by a single source at the sensors. This can be done
by using , where is an index of data samples,
is decomposed source, and is th column of the estimated

matrix obtained from Sections II and III, respectively.
Localizing the components IC1, IC2 and IC3 independently

using the virtual contribution , we obtain the head maps, as
shown in Fig. 7(b)–(d), respectively. The map in Fig. 7(b) in-
dicates that IC1 is located on the right temporal cortex, and
the maximum amplitude of IC1 is 184 fT, which corresponds
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Fig. 7. Results for unaveraged AEF data using the proposed approach. (a) Result for decomposed independent sources. (b) Source localization for IC1 (evoked
response N100 on the right side). (c) Source localization for IC2 (a typical alpha-wave component). (d) Source localization for IC3 (evoked response N100 on the
left side).

to the first stimulus. The map in Fig. 7(c) indicates that IC2 is
a 10 Hz alpha wave and is located near the back of the head.
The map in Fig. 7(d) indicates that IC3 is on the left temporal
cortex, and the maximum amplitude of IC3 is 721 fT (i.e., very
strong). Comparing two maps derived using ICA in Fig. 7(b)
and (d) with the averaged map in Fig. 6(c), we find that the two
evoked responses, IC1 and IC3, correspond to the averaged one
in terms of the source location. It is impossible to obtain am-
plitude information corresponding to a particular stimulus from
the averaged data. However, by applying the proposed approach
to unaveraged, single-trial data, the amplitude information (ac-

tivity strength) of each individual evoked response has been vi-
sualized. Moreover, we find that the evoked response on the left
temporal cortex, IC3, [see Fig. 7(d)] is much stronger than that
on the right side, IC1, [see Fig. 7(b)] when the first stimulus is
presented.
The same robust prewhitening technique with JADE algo-

rithm [15] was applied to the same unaveraged single-trial data
as above. The result for decomposed individual components is
shown in Fig. 8(a). The maps for IC1, IC2, and IC3 are shown in
Fig. 8(b)–(d), respectively. Comparing the results derived using
JADE with those derived using the natural gradient-based algo-
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Fig. 8. Results for unaveraged AEF data using JADE with robust prewhitening. (a) Result for decomposed sources. (b) Source localization for IC1 (a typical
alpha-wave component). (c) Source localization for IC2. (d) Source localization for IC3. Note that the location of IC1, IC2 and IC3 are different from ones located
on the left and right side of the brain shown in Fig. 6(c) or Fig. 7(b) and (d).

rithm, we find that the time courses are very similar in Figs. 7(a)
and 8(a). However, the maps for the evokedN100 responses [see
Fig. 8(c) and (d); IC2 and IC3] derived using JADE are not iden-
tical to the averagedmap [Fig. 6(c)] in terms of location. This re-
sult proves that the natural gradient-based ICA algorithm works
efficiently for real-world measured AEF data.

V. CONCLUSION
In this paper, we have proposed a novel approach for inde-

pendent component analysis under the conditions of the sensor
signals are contaminated with a high-level additive noise and
outliers, overlapped sub-Gaussian and super-Gaussian source
components, and the number of sources is unknown.
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The main advantages of our approach are as follows: 1) A
robust prewhitening technique based on the subspace method
is presented for reducing high-level additive noise and for re-
ducing the dimensionality in an optimal manner. It plays the
same role in decorrelation as standard PCA, but the noise vari-
ance is taken into account. 2) The parameterized unimodal dis-
tribution density model, which combines the -distribution den-
sity model with the light-tailed distribution model, is proposed
for separating the mixtures of sub-Gaussian and super-Gaussian
sources. It has been proven that functions (29) and (30) derived
from the proposed model are robust to misestimation of kur-
tosis. Moreover, function (29) derived by the -distribution den-
sity model is always locally stable (without any discontinuity)
and is robust to outliers.
Applying the proposed approach to the analysis of unaver-

aged single-trial AEF data, we obtained the following novel
results: 1) overlapping N100 responses were successfully de-
composed into individual responses; 2) the locations of the de-
composed N100 responses were identical to the dipoles in the
most reliable averaged map; and 3) the strength (amplitude) of
each evoked response corresponding to a single stimulus in one
single-trial can be visualized. We believe this amplitude infor-
mation will be very useful for neuroscientists in their studies of
the information processing mechanisms of the temporal cortex.

APPENDIX I
DERIVATION OF THE STABILITY CONDITIONS OF

-DISTRIBUTION BASED FUNCTION

The differential of function (29) based on the -distribution
density model is derived as

(51)

where we define .
Let us first calculate the expectation of as

(52)

where

and

we use the formula of the finite series including the binomial
coefficients

(53)

where denotes the combination of things taken at a time.
Using (53), the result can be obtained as

(54)

Note that this result is the same as (21).
Next, using (17) and (51), we can calculate the expectation of

as

(55)

Similar to (55), the expectation of with can be calcu-
lated as

(56)

Using the results of (54) and (55), we obtain

(57)

Using the results of (55)–(57), we can easily obtain the sta-
bility conditions (35)–(37) for the function derived from the
-distribution density model.

APPENDIX II
DERIVATION OF THE STABILITY CONDITIONS OF GENERALIZED

GAUSSIAN DISTRIBUTION–BASED FUNCTION

The differential of function (30) based on the generalized
Gaussian distribution density model is derived as

(58)
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Using the definition in (19), we can calculate the expectation
of as

(59)

Using (19) and (58), we can calculate the expectation of
as

(60)

Similar to (60), the expectation of with can be calcu-
lated as

(61)

Using the results of (59) and (60), we obtain

(62)

Using the results of (60)–(62), we can easily obtain the stability
conditions (38)–(40) for the function derived from the general-
ized Gaussian distribution density model.
In the same manner, the stability conditions (45)–(47) and

(48)–(50) in the case of misestimation of the parameter can be
derived.
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