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This study introduces information-geometric measures to analyze neural
firing patterns by taking not only the second-order but also higher-order
interactions among neurons into account. Information geometry provides
useful tools and concepts for this purpose, including the orthogonality
of coordinate parameters and the Pythagoras relation in the Kullback-
Leibler divergence. Based on this orthogonality, we show a novel method
for analyzing spike firing patterns by decomposing the interactions of
neurons of various orders. As a result, purely pairwise, triple-wise, and
higher-order interactions are singled out. We also demonstrate the bene-
fits of our proposal by using several examples.

1 Introduction

One of the central challenges in neuroscience is to understand what and
how information is carried by a population of neural firing (Georgopoulos,
Schwartz, & Kettner, 1986; Abeles, 1991; Aertsen & Arndt, 1993; Singer &
Gray, 1995; Deadwyler & Hampson, 1997; Parker & Newsome, 1998). Many
experimental studies have shown, as a first step toward this end, that the
mean firing rate of each single neuron can be significantly modulated by
experimental conditions and may thereby carry information about these ex-
perimental conditions, that is, sensory and motor signals. Information con-
veyed by a population of firing neurons, however, may be not only a sum of
mean firing rates. Other statistical structures embedded in the neural firing
may also carry behavioral information. In particular, growing attention has
been paid to the possibility that coincident firing, correlated firing, synchro-
nization, or specific firing patterns may alter conveyed information or carry
significant behavioral information, whether such a possibility is supported
or discarded (Gerstein, Bedenbaugh, & Aertsen, 1989; Engel, König, Kreiter,
Schillen, & Singer, 1992; Wilson & McNaughton, 1993; Zohary, Shadlen, &
Newsome, 1994; Vaadia et al., 1995; Nicolelis, Ghazanfar, Faggin, Votaw,
& Oliveira, 1997; Riehle, Grün, Diesmann, & Aertsen, 1997; Lisman, 1997;
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Zhang, Ginzburg, McNaughton, & Sejnowski, 1998; Maynard et al., 1999;
Nadasdy, Hirase, Czurko, Csicsvari, & Buzsaki, 1999; Kudrimoti, Barnes, &
McNaughton, 1999; Oram, Wiener, Lestienne, & Richmond, 1999; Nawrot,
Aertsen, & Rotter, 1999; Baker & Lemon, 2000; Reinagel & Reid, 2000; Stein-
metz et al., 2000; Laubach, Wessberg, & Nicolelis, 2000; Salinas & Sejnowski,
2001; Oram, Hatsopoulas, Richmond, & Donoghue, 2001). For this purpose,
it is important to develop a sound statistical method for analyzing neural
data. An obvious first step is to investigate a significant coincident firing
between two neurons, that is, the pairwise correlation (Perkel, Gerstein, &
Moore, 1967; Palm, 1981; Gerstein & Aertsen, 1985; Palm, Aertsen, & Ger-
stein, 1988; Aertsen, Gerstein, Habib, & Palm, 1989; Grün, 1996; Ito & Tsuji,
2000; Pauluis & Baker, 2000; Roy, Steinmetz, & Niebur, 2000; Grün, Dies-
mann, & Aertsen, 2002a, 2002b; Gütig, Aertsen, & Rotter, 2002).

In general, however, it is not sufficient to test a pairwise correlation of
neural firing because there can be triplewise and higher correlations. For ex-
ample, three variables (neurons) are not independent in general even when
they are pairwise independent. We need to establish a systematic method
of analysis that includes these higher-order correlations (Abeles & Gerstein,
1988; Abeles, Bergman, Margalit, & Vaadia, 1993; Martignon, Von Hasseln,
Grün, Aertsen, & Palm, 1995; Grün, 1996; Tetko & Villa, 1992; Victor & Pur-
pura, 1997; Prut et al., 1998; Del Prete & Martingon, 1998; MacLeod, Bäcker,
& Laurent, 1998; Martignon et al., 2000; Bohte, Spekreijse, & Roelfsma, 2000;
Roy et al., 2000). We are mostly interested in methods able to (1) analyze cor-
related firing of neurons, including higher-order interactions, and (2) con-
nect such a technique with behavioral events, for which we use mutual infor-
mation between firing and behavior (Tsukada, Ishii, & Sato, 1975; Optican &
Richmond, 1987; Richmond, Optican, & Spitzer, 1990; McClurkin, Gawne,
Optican, & Richmond, 1991; Bialek, Rieke, de Ruyter van Steveninck, &
Warland, 1991; Gawne & Richmond, 1993; Tovee, Rolls, Treves, & Bellis,
1993; Gochin, Colombo, Dorfman, Gerstein, & Gross, 1994; Abbott, Rolls,
& Tovee, 1996; Rolls, Treves, & Tovee, 1997; Richmond & Gawne, 1998;
Kitazawa, Kimura, & Yin, 1998; Sugase, Yamane, Ueno, & Kawano, 1999;
Panzeri, Schultz, Treves, & Rolls, 1999; Panzeri, Treves, Schultz, & Rolls,
1999; Brenner, Strong, Koberle, Bialek, & de Ruyter van Steveninck, 2000;
Samengo, Montagnini, & Treves, 2000; Panzeri & Schultz, 2001).

To address these issues, this study uses the orthogonality of the natural
and expectation parameters in the exponential family of distributions and
proposes methods useful for analyzing a population of neural firing in a
systematic manner, based on information geometry (Amari, 1985; Amari &
Nagaoka, 2000) and the theory of hierarchical structure (Amari, 2001). By
use of orthogonal coordinates, we will show that both hypothesis testing of
neural interaction and calculation of mutual information can be drastically
simplified. (For an extended abstract, see Nakahara & Amari, 2002.)

This article is organized as follows. In section 2, we briefly give our
perspective on the merits of using an information-geometric measure. In
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section 3, we begin with an introductory description of information geome-
try, using two random binary variables, and treat the application of this two
variables’ case to the analysis of two neurons’ firing. Section 4 discusses the
interaction of three binary variables and shows how to extract pure triple-
wise correlation, which is different from pairwise correlation. Section 5 gives
a general theory of decomposition of correlations among n variables and
discusses some approaches to overcome practical difficulties that arise in
this case. Section 6 provides illustrative examples. Section 7 contains the
discussion.

2 Perspective

In this section, we state our perspective on the merits of using an informa-
tion-geometric measure, briefly referring to a general case of n neurons. A
detailed discussion in the general case is given in section 5.

We represent a neural firing pattern by a binary random vector variable so
that the probability distribution of firing (of any number of neurons) can be
exactly expanded by a log-linear model. Let X = (X1, . . . ,Xn) be n binary
variables, and let p = p(x),x = (x1, . . . , xn), xi = 0, 1 be its probability,
where we assume p(x) > 0 for all x. Each Xi indicates that the ith neuron
is silent (Xi(ti) = 0) or has a spike (Xi(ti) = 1) in a short time bin, which
is denoted by ti. In general, ti can be different for each neuron, but here,
we assume ti = t for i = 1, . . . ,n for simplicity and drop t in the following
notation (see section 6).

Each p(x) is given by 2n probabilities,

pi1···in = Prob {X1 = i1, . . . ,Xn = in} , ik = 0, 1,

subject to
∑

i1,...,in

pi1···in = 1,

and hence, the set of all the probability distributions {p(x)} forms a (2n −1)–
dimensional manifold Sn.

One coordinate system of Sn is given by the expectation parameters,

ηi = E [xi] = Prob {xi = 1} , i = 1, . . . ,n

ηij = E
[
xixj

] = Prob
{
xi = xj = 1

}
, i < j

η12···n = E [xi, . . . , xn] = Prob {x1 = x2 = · · · = xn = 1} ,

which have 2n−1 components. This coordinate system is calledη-coordinates
and, as in a more general term, defines m-flat structure in Sn (see section 5).

On the other hand, p(x) can be exactly expanded by

log p(x)=
∑

θixi+
∑
i<j

θijxixj+
∑

i<j<k

θijkxixjxk · · · + θ1···nx1, . . . , xn−ψ,
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where the indices of θijk, etc. satisfy i < j < k, etc and ψ is a normalization
term, corresponding to − log p(x1 = x2 = · · · = xn = 0). All θijk, . . . , together
have 2n − 1 components and form another coordinate system, called θ -
coordinates, corresponding to the e-flat structure in Sn (see section 5).

Findings in information geometry assure us that e-flat and m-flat man-
ifolds are dually flat. The η-coordinates and θ -coordinates are dually or-
thogonal coordinates. The properties of the dual orthogonal coordinates
remarkably simplify some apparently complicated issues. For example, the
generalized Pythagoras theorem gives a decomposition of the Kullback-
Leibler divergence by which we can inspect different contributions in the
discrepancy of two probability distributions or contributions of different
order interactions in neural firing. This is a global property of the dual or-
thogonal coordinates in the probability space. As a local property, the dual
orthogonal coordinates give a simple form of the Fisher information metric,
which is useful, for example, in hypothesis testing. This study exploits these
properties. In the next section, we start with the case of two neurons.

3 Pairwise Interaction, Mutual Information, and Orthogonal
Decomposition

3.1 Orthogonal Coordinates. Let us begin with two binary random vari-
ables X1 and X2 whose joint probability p(x),x = (x1, x2), is given by

pij = Prob
{
x1 = i; x2 = j

}
> 0, i, j = 0, 1.

Among four probabilities, {p00, p01, p10, p11}, only three are free, because
of the constraint p00+p01+p10+p11 = 1. Thus, the set of all such distributions
of x forms a three-dimensional manifold S2, where the suffix 2 refers to
the number of random variables in x. Any three of pij can be used as a
coordinate system of S2, which we call P-coordinates for later convenience.
In the context of neural firing, random variables X1 and X2 stand for two
neurons: neuron 1 and neuron 2. Xi = 1 and Xi = 0 indicate whether neuron
i (i = 1, 2) has a spike in a short time bin.

A distribution p(x) can be decomposed into marginal and (pairwise)
correlational components. The two quantities,

ηi = Prob {xi = 1} = E [xi] , i = 1, 2,

specify the marginal distributions of xi, where E denotes the expectation.
Obviously, we have η1 = p10 + p11, η2 = p01 + p11. Let us put

η12 = E [x1x2] = p12.

The three quantities,

η = (η1, η2, η12) , (3.1)
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form another coordinate system of S2, called the η-coordinates. They are
the coordinates of the expectation parameters in an exponential probability
family in general (Cox & Hinkley, 1974; Barndorff-Nielsen, 1978; Lehmann,
1983). In the context of neural data, η1 and η2 are the mean firing rates of
neurons 1 and 2, respectively, whereas η12 is the mean rate of their coincident
firing.

The covariance,

Cov [X1,X2] = E [(x1 − η1) (x2 − η2)] = η12 − η1η2,

may also be considered as a quantity representing the degree of correlation
of X1 and X2. Therefore, (η1, η2,Cov[X1,X2]) can be another coordinate sys-
tem. The term Cov[X1,X2] becomes zero when the probability distribution
is independent, because we have η12 = η1η2 in that case.

There are many candidates to specify the correlation component. The
correlation coefficient

ρ = η12 − η1η2√
η1 (1 − η1) η2 (1 − η2)

is also such a quantity. The triplet (η1, η2, ρ) then forms another coordi-
nate system of S2. The correlation coefficient is used to show the pairwise
correlation of two neurons in N-JPSTH (Aertsen et al., 1989).

Which quantity is convenient for representing the pairwise correlational
component? It is desirable to define the degree of pairwise interaction in-
dependent of the marginals η1 and η2. To this end, we use the orthogonal
coordinates (η1, η2, θ) such that the coordinate curve of θ is always orthog-
onal to those of η1 and η2. This characteristic is particularly desirable in the
context of neural data, as shown later.

Once such a θ is defined, we have a subset E(θ) for each θ , a family of
distributions having the same θ value (see Figure 1A). The E(θ) is a two-
dimensional submanifold on which (η1, η2) can vary freely but θ is fixed.
We put the origin θ = 0 when there is no correlation (i.e., η12 = η1η2) for
convenience (see below), and then E(0) is the set of all the independent dis-
tributions. Similarly, we consider the set of all the probability distributions
whose marginals are common, specified by (η1, η2), but only θ is free. This is
denoted by M (η1, η2), forming a one-dimensional submanifold in S2. The
tangential direction of M (η1, η2) represents the direction in which only the
pure correlation changes, while the tangential directions of E(θ) span the
directions in which only η1 and η2 change but θ is fixed. We now require
that E(θ) and M (η1, η2) be orthogonal at any points, that is, the directions
of changes in the correlation and marginals are to be mutually orthogonal.

The orthogonality of two directions in S2 is defined by using the Rie-
mannian metric due to the Fisher information matrix (Rao, 1945; Barndorff-
Nielsen, 1978; Amari, 1982; Nagaoka & Amari, 1982; Amari & Han, 1989;
Amari & Nagaoka, 2000). Here, we define the orthogonality directly. Let
us specify the probability distributions by p(x; η1, η2, θ). The directions of
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Figure 1: (A) Schematic diagram of E(θ) and M(η1, η2). (B) A simple example
of the generalized Pythagoras decomposition.

small changes in the coordinates ηi and θ are represented, respectively, by
the score functions

∂

∂ηi
l(x; η1, η2, θ), (i = 1, 2)

∂

∂θ
l(x; η1, η2, θ),

where l(x; η1, η2, θ) = log p(x; η1, η2, θ).
They are random variables, denoting how the log probability changes by

small changes in the parameters in the respective directions. These direc-
tions are said to be orthogonal when the corresponding random variables
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are uncorrelated,

E
[
∂

∂θ
l (x; η1, η2, θ)

∂

∂ηi
l (x; η1, η2, θ)

]
= 0, (3.2)

where E denotes the expectation with respect to p(x; η1, η2, θ). This implies
that the cross components of θ andηi in the Fisher information matrix vanish.
When the coordinate θ is defined to be orthogonal to the coordinates η1 and
η2 of marginals, we say that θ represents the pure correlation independent
of the marginals. Such θ is given by the following theorem.

Theorem 1. The coordinate

θ = log
p11p00

p01p10
(3.3)

is orthogonal to the marginals η1 and η2.

The proof can be shown by direct calculations, which is omitted here. A
more general result is shown later. We have another interpretation of θ . Let
us expand log p(x) in the polynomial of x,

log p(x) =
2∑

i=1

θixi + θ12x1x2 − ψ. (3.4)

Since xi takes on the binary values 0, 1, this is an exact expansion. The
coefficient θ12 is given by equation 3.3, while

θ1 = log
p10

p00
, θ2 = log

p01

p00
, ψ = − log p00. (3.5)

We remark here that the above θ12 is well known, having frequently been
used in the additive decomposition of log probabilities. It is 0 when and
only when X1 and X2 are independent. The triple

θ = (θ1, θ2, θ12)

forms another coordinate system of S2, called the θ -coordinates. They are
the coordinates of the natural parameters in the exponential probability
family in general (Cox & Hinkley, 1974; Barndorff-Nielsen, 1978; Lehmann,
1983). Furthermore, the triple

ζ ≡ (η1, η2, θ12)

forms an orthogonal coordinate system of S2, called the mixed coordinates
(Amari, 1985; Amari & Nagaoka, 2000).



2276 Hiroyuki Nakahara and Shun-ichi Amari

3.2 KL-Divergence, Projections, and Pythagoras Relation. The Kull-
back-Leibler (KL) divergence between two probabilities p(x) and q(x) is
defined by

D
[
p : q

] =
∑

x

p(x) log
p(x)
q(x)

. (3.6)

The KL divergence provides a quasi-distance between two probability
distributions, D[p : q] ≥ 0 with equality if and only if p(x) = q(x), whereas
the symmetrical relationship does not generally hold, that is, D[p : q] �=
D[q : p].

Let p̄(x) be the independent distribution that is closest to a distribution
p(x),

p̄(x) = argminq∈E(0)D
[
p : q

]
,

where E(0) is the set of all the independent distributions. We call p̄(x) =
�ipi(xi) the m-projection of p to E(0) (see Figure 1B). Let the mixed coordi-
nates of p be (η1, η2, θ). The coordinates of p̄ are given by (η1, η2, 0) because
of the orthogonality, so that

p̄(x) = �ipi(xi; ηi) = p1(x1; η1)p2(x2; η2),

where pi(xi; ηi) is the marginal distribution of p. Interestingly, the minimized
divergence is given by the mutual information

D
[
p : p̄

] = I(X1; X2) =
∑

p(x1, x2) log
p(x1, x2)

p1(x1)p2(x2)
.

We have another characterization of p̄. Let p0 be the uniform distribution
whose mixed coordinates are (0.5, 0.5, 0). Let M (η1, η2) be the subspace
that includes p. Then,

p̄ = argminq∈M(η1,η2)
D

[
q : p0

]
.

Such p̄ is called the e-projection of p0 to M (η1, η2), and it belongs to E(0).
Since we easily have D

[
q : p0

] = −H
[
q
] + H0, where H

[
q
]

is the entropy
of q and H0 = 2 log 2 is a constant, p̄ has the maximal entropy among those
belonging to M (η1, η2). This fact is called the maximum entropy principle
(Jaynes, 1982).

It is well known that we have the decomposition

D
[
p : p0

] = D
[
p : p̄

] + D
[
p̄ : p0

]
.

Now let us generalize the above observation and let p(x) and q(x) be
two probability distributions whose mixed coordinates are ζp = (η

p
1, η

p
2, θ

p
3 )

and ζq = (η
q
1, η

q
2, θ

q
3 ), respectively. Let r∗(x) be the m-projection of p(x) to

E(θq) and r∗∗(x) be the e-projection of p(x) to M (η
q
1, η

q
2):

r∗(x) = argminr∈E(θ q) D
[
p : r

]
, r∗∗(x) = argminr∈M(ηq

1,η
q
2)

D
[
r : p

]
.
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The mixed coordinates of r∗ and r∗∗ are explicitly given by (ηp
1, η

p
2, θ

q
3 ) and

(η
q
1, η

q
2, θ

p
3 ), respectively. Hence, the following Pythagoras relation holds (see

Figure 1B).

Theorem 2.

D
[
p : q

] = D
[
p : r∗] + D

[
r∗ : q

]
(3.7)

D
[
q : p

] = D
[
q : r∗∗] + D

[
r∗∗ : p

]
. (3.8)

Theorem 2 shows that the divergence D
[
p : q

]
from p to q is decomposed

into two terms, D
[
p : r∗] and D

[
r∗ : q

]
, where the former represents the

degree of difference in their correlation and the latter the difference in their
marginals.

3.3 Local Orthogonality and Fisher Information. For any parameteri-
zation p(x; ξ), the Fisher information matrix G = (gij) in terms of the coor-
dinates ξ is given by

gij(ξ) = E
[
∂ log p(x; ξ)

∂ξi

∂ log p(x; ξ)
∂ξj

]
.

This G(ξ) plays the role of a Riemannian metric tensor.
The squared distance ds2 between two nearby distributions p(x; ξ) and

p(x; ξ + dξ) is given by the quadratic form of dξ,

ds2 =
∑

i,j∈(1,2,3)
gij(ξ)dξidξj.

It is known that this is approximately twice the KL divergence,

ds2 ≈ 2D
[
p(x; ξ) : p(x; ξ + dξ)

]
.

When we use the mixed coordinates ζ, the Fisher information is of the
form

Gζ = (gζij) =

gζ11 gζ12 0

gζ12 gζ22 0

0 0 gζ33

 ,
as is seen from equation 3.2. This is the local property induced by the or-
thogonality of θ and ηi. In this case, by putting

ds2
1 = gζ33(dξ3)

2, ds2
2 =

∑
i,j∈(1,2)

gζijdηidηj,

we have the orthogonal decomposition

ds2 = ds2
1 + ds2

2, (3.9)

corresponding to equation 3.2.
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We show the merits of the orthogonal coordinates for statistical inference.
Let us estimate the parameter η = (η1, η2) and θ from N observed data
x1, . . . ,xN. The maximum likelihood estimator is asymptotically unbiased
and efficient, where the covariance of the estimation error, �η and �θ , is
given asymptotically by

Cov

[
�η

�θ

]
= 1

N
G−1
ζ .

Since the cross terms of G or G−1 vanish for the orthogonal coordinates, we
have

Cov [�η,�θ ] = 0, (3.10)

implying that the estimation error �η of marginals and that of interac-
tion are mutually independent. Such a property does not hold for other
nonorthogonal parameterizations such as the correlation coefficient ρ and
the covariance. This property greatly simplifies procedures of hypothesis
testing, as shown below.

3.4 Hypothesis Testing. Let us consider the estimation of θ and η more
directly. A natural estimate for the η-coordinates is

η̂i = 1
N

#{xi = 1} (i = 1, 2), η̂12 = 1
N

#{x1x2 = 1}. (3.11)

This is the maximum likelihood estimator. The estimator θ̂ is obtained by
the coordinate transformation from η- to θ -coordinates,

θ̂ = log
η̂12(1 − η̂1 − η̂2 + η̂12)

(η̂1 − η̂12)(η̂2 − η̂12)
.

Notably, the estimation of θ can be performed independently from the esti-
mator of η in the sense of equation 3.10. This brings a simple procedure of
hypothesis testing concerning the null hypothesis,

H0 : θ = θ0,

against

H1 : θ �= θ0.

In previous studies, under different frameworks (e.g., using N-JPSTH), the
null hypothesis of independent firing is often examined. This corresponds
to the null hypothesis of θ0 = 0 in the current framework.
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Let the log-likelihood of the models H0 : θ = θ0 and H1 : θ �= θ0, respec-
tively, be

l0 = max
η

log p(x1, . . . ,xN;η, θ0), l1 = max
η,θ

log p(x1, . . . ,xN;η, θ),

where N is the number of observations.
The likelihood ratio test uses the test statistics

λ = 2 log
l0
l1
, (3.12)

which is subject to the χ2 distribution. With the orthogonal coordinates, the
likelihood maximization with respect toη = (η1, η2) and θ can be performed
independently, so that we have

l0 = log p(x̄; η̂, θ0), l1 = log p(x̄; η̂, θ̂ ),
where η̂ denotes the same marginals in both models. If nonorthogonal pa-
rameterization is used, this property does not hold. A similar situation holds
in the case of testing η = η0 against η �= η0 for unknown θ .

Now let us calculate the test statistics λ in more detail. Under the hypoth-
esis H0, λ is approximated for a large N as

λ = 2
N∑

i=1

log
p(xi; η̂, θ0)

p(xi; η̂, θ̂ )

≈ 2NẼ

[
log

p(x; η̂, θ0)

p(x; η̂, θ̂ )

]

≈ 2ND
[
p(x; η̂, θ0) : p(x; η̂, θ̂ )

]
≈ Ngζ33(θ̂ − θ0)

2, (3.13)

where Ẽ is the expectation over the empirical distribution and the approxi-
mation in the third line comes from our assumption of the null hypothesis
H0. gζ33 is the Fisher information of the mixed coordinates ζ in the θ direction
at ζ0 = (η̂; θ0), which is easily calculated as

gζ33 = g33(ζ
0
) = η̂3(η̂1 − η̂3)(η̂2 − η̂3)(η̂1 + η̂2 − η̂3 − 1)

η̂1η̂2(η̂1 + η̂2 − 1 − 2η̂3)+ η̂2
3

.

Asymptotically, we have
√

N
√

gζ33(θ̂3 − θ3) ∼ N (0, 1) and hence,

λ ∼ χ2(1),
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where m in χ2(m) indicates the degrees of freedom m in the χ2 distribution,
that is, in our case, the degree of freedom is 1.

We must note that the above approach is valid regardless of θ3 = 0 or
�= 0. In contrast, the decomposition as shown in equation 3.9 cannot exist,
for example, for the coordinate system (η1, η2, ρ), where ρ is the correlation
coefficient. The plane θ3 = 0, or E(0), coincides with the plane ρ = 0, which
is η3 = η1η2. However, E(c) (c = const �= 0) cannot be equal to any plane
defined by ρ = c′ where c′ = const. Only in the case of ρ = 0 it is possible
to formulate testing for ρ similarly to the above discussion, which is testing
against the hypothesis of independent firing.

3.5 Application to Firing of Two Neurons. Here, we discuss the appli-
cation of the theoretical results already noted to the firing of two neurons and
relate different choices of the null hypothesis with corresponding hypothe-
sis testings. Given N trials of experiments, the probability distribution of X in
a time bin [t, t+δt] can be estimated, denoted by p(x; ξ̂) = p(x; ξ̂(t, t+�t)),
where ξ̂ can be any coordinate system. If stationarity is assumed in a cer-
tain time interval, we obtain the probability distribution in the interval by
averaging the estimated probabilities of many bins of the interval.

The maximum likelihood estimate (MLE) of the P coordinates is given by

p̂ij = Nij

N
,

where Nij (i, j = 0, 1) indicates the number of trials in which the event (X1 =
i,X2 = j) occurs. The MLE is retained by any coordinate transformation.
Any coordinate transformation is easy in the case of two neurons, so we
freely change the coordinate systems in this section.

Let us denote our estimated probability distribution by the mixed coor-
dinates ζ̂. We also denote by ζ0 the probability distribution according to
our null hypothesis. Then, we have

D
[
ζ0 : ζ̂

]
= D

[
ζ0 : ζ̂

′] + D
[
ζ̂

′
: ζ̂

]
= D1 + D2, (3.14)

where D1 = D[ζ0 : ζ̂
′
], D2 = D[ζ̂

′
: ζ̂], and ζ̂

′ = (ζ 0
1 , ζ

0
2 , ζ̂3). In equation 3.14,

we use abbreviation such that D[ζ0 : ζ̂
′
] = D[p(x; ζ0

) : p(x; ζ̂ ′
)].

Here, D1 and D2 are the quantities representing the discrepancies of p(ζ̂)
from p(ζ0

) with respect to the coincident firing and the marginals, respec-
tively. We have

λ1 = 2ND1 ≈ Ng33(ζ
0
)(ζ 0

3 − ζ̂ ′
3)

2 ∼ χ2(1)

λ2 = 2ND2 ≈ N
2∑

i,j=1

gij(ζ
0
)(ζ 0

i − ζ̂ ′
j )

2 ∼ χ2(2).
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Here,λ1 is to test whether the estimated coincident firing significantly differs
from that of the null hypothesis, while λ2 is to test whether the estimated
marginals differ significantly from the hypothesized marginals.

In particular, a test of whether the estimated coincident firing ζ̂3 is sig-
nificantly different from zero is given by ζ0 = (ζ̂1, ζ̂2, 0). This p(x; ζ0

) is the
probability distribution that gives the same marginals as those of p(x; ζ̂)
but with independent firings. In this case, λ1 = 2nD1 = 2nD[ζ̂ : ζ0] gives a
test statistic against θ̂3 = 0, while D2 = 0.

Let us consider another typical situation, where we need to compare
two estimated probability distributions. This case is very important but
somewhat ignored in the testing of coincident firings. Many previous stud-
ies often assumed independent firing as the null hypothesis. However, for
example, to say a single neuron firing as task related, for example, in a
memory-guided saccade task (Hikosaka & Wurtz, 1983), the existence of
firing in task period alone does not guarantee that the firing is task related.
It is normal to examine the firing in the task period against that in the control
period. The firing in the control period serves as the resting level activity
or as the null hypothesis. We hence propose that a procedure for testing
coincident firing should be performed in a similar manner: we should test
if two neurons have any significant pairwise interaction in one period in
comparison to the other (control) period.

Investigation of coincident firing in the task period against the null hy-
pothesis of independent firing may lead to a wrong interpretation of its
significance when there is already a weak correlation in the control period
(see the examples in section 6). The similar arguments can be applied to
different tasks. One example would be a rat’s maze task. A rat is in the left
room in one period, while in the other period, it is in the right room. We may
want to test if coincident firing of the two neurons, say, in the hippocampus,
is significantly larger or smaller in one room than in the other room. The
null hypothesis of independent firing is not plausible in this case.

Let us denote the estimated probability distribution in two periods by

p(x; ξ̂1
) and p(x; ξ̂2

). Using the mixed coordinates, by theorem 2, we have

D
[
ζ̂

1
: ζ̂

2] = D
[
ζ̂

1
: ζ̂

3] + D
[
ζ̂

3
: ζ̂

2]
,

where ζ̂
3 = (ζ̂ 1

1 , ζ̂
1
2 , ζ̂

2
3 ) = (η̂1

1, η̂
1
2, θ̂

2
3 ).

Here, ζ̂
1

is an estimated probability distribution. If we can guarantee that

ζ̂
1

is a true underlying distribution, denoted by ζ1, we can have

λ = 2ND
[
ζ1 : ζ̂

3] ≈ Ng33(ζ
1
)(θ̂2

3 − θ1
3 )

2 ∼ χ2(1). (3.15)

This χ2 test is, precisely speaking, to examine if θ̂2
3 is significantly different

from θ1
3 when ζ̂

1
is a true distribution.
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In general, when ζ̂
1

is an estimated distribution, we should test whether
θ̂1

3 and θ̂2
3 are from the same interaction component, which we denote by θ3.

In this case, the MLEs, denoted by ζ̂
10

and ζ̂
20

, are given by

(ζ̂
10
, ζ̂

20
) = argmax

N∑
j

log p(Xj : ζ1
)p(Xj : ζ2

)

subject to ζ 1
3 = ζ 2

3 = θ3.

Then our likelihood ratio test against this null hypothesis yields

λ′ = 2ND
[
ζ̂

10
: ζ̂

1] + 2ND
[
ζ̂

20
: ζ̂

2]
≈ Ng33(ζ̂

10
)(θ̂1

3 − θ̂10
3 )

2 + Ng33(ζ̂
20
)(θ̂2

3 − θ̂20
3 )

2, (3.16)

where θ̂3 = θ̂10
3 = θ̂20

3 . In equation 3.15, we can convert λ into a χ2 test,
because g33 is the true value by our assumption. In equation 3.16, however,
rigorously speaking, we cannot convert this λ into a χ2 test because both
g33 are estimates, determined at each estimated point ζ̂ , that is, depending
on θ̂10

3 and θ̂20
3 , respectively. This issue is analogous to the famous Fisher-

Beherens problem in the context of the t-test (Stuart, Ord, & Arnold, 1999).
Yet since all of the terms in equation 3.16 asymptotically converge to their
true values, we suggest using

λ′ ≈ Ng33(ζ̂
10
)(θ̂1

3 − θ̂10
3 )

2 + Ng33(ζ̂
20
)(θ̂2

3 − θ̂20
3 )

2 ∼ χ2(2).

This χ2(2) formulation gives a more appropriate test under the null hy-
pothesis against the average activity in control period. At the same time, to
compare significant events between the two null hypotheses—against in-
dependent firing and against the average activity in the control period—we
still suggest using the χ2(1) formulation for the latter hypothesis.

3.6 Relationship Between Neural Firing and Behavior. The orthogo-
nality between θ and η parameters played a fundamental role in the above
results so that pairwise coincident firing, characterized by θ3, can be ex-
amined by a simple hypothesis testing procedure. In the analysis of neural
data, it is also important to investigate whether any coincident firing has
any behavioral significance. For this purpose, we use the mutual informa-
tion to relate neural firing with behavioral events. The above orthogonality
can again play an important role.

Let us denote by Y a discrete random variable representing behavioral
choices, for example, making saccade right or left, or presented stimuli, for
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example, red dots, blue rectangles, or green triangles. The mutual informa-
tion between X = (X1,X2) and Y is defined by

I(X,Y) = Ep(X,Y)

[
log

p(x, y)
p(x)p(y)

]
,

which is equivalent to

I(X,Y) = Ep(Y)
[
D

[
p(X | y) : p(X)

]] = Ep(X)
[
D

[
p(Y | x) : p(Y)

]]
.

We can apply the Pythagoras decomposition to the above equation. We
use the mixed coordinates for p(X | y) and p(X), denoted by ζ(X | y) and
ζ(X), respectively. Then we have

D
[
p(X | y) : p(X)

] = D
[
ζ(X | y) : ζ(X)

]
= D

[
ζ(X | y) : ζ ′] + D

[
ζ ′ : ζ(X)

]
,

where

ζ ′ =ζ ′
(X, y)=(ζ1(X | y), ζ2(X | y), ζ3(X))=(η1(X | y), η2(X | y), θ3(X)).

Thus, ζ ′ has the first two components (i.e., η1, η2) as the same as those of
ζ(X | y) and the third term (i.e., θ3) as the same as that of ζ(X). Using this
relationship, the mutual information between X and Y is decomposed.

Theorem 3.

I(X,Y) = I1(X,Y)+ I2(X,Y), (3.17)

where I1(X,Y), I2(X,Y) are given by

I1(X,Y) = Ep(Y)
[
D

[
ζ(X | y) : ζ ′

(X, y)
]]
,

I2(X,Y) = Ep(Y)
[
D

[
ζ ′
(X, y) : ζ(X)

]]
.

A similar result holds with respect to conditional distribution p(Y | X).
The above decomposition states that the mutual information I(X,Y) is the
sum of the two terms: I1(X,Y) is the mutual information by modulation of
the correlation components of X, while I2(X,Y) is the mutual information
by modulation of the marginal means of X. This observation helps us in-
vestigate the behavioral significance for each modulation of the coincident
firing and the mean firing rate.

4 Triple Interactions Among Three Variables

The previous section discussed pairwise interaction between two variables.
Given more than two variables, we need to look into not only pairwise
interaction but also higher-order interactions. It is useful to study triplewise
interactions before stating the general case.
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4.1 Orthogonal Coordinates and Pure Triple Interaction. Let us con-
sider three binary random variables X1,X2, and X3, and let p(x) > 0, x =
(x1, x2, x3) be their joint probability distribution. We put pijk = Prob{x1 =
i, x2 = j, x3 = k} > 0, i, j, k = 0, 1. The set of all such distributions forms a
seven-dimensional manifold S3, because

∑
pijk = 1 among the eight pijk’s.

The marginal and pairwise marginal distributions of Xi are defined by

ηi = E [xi] = Prob {xi = 1} (i = 1, 2, 3),

ηij = E
[
xixj

] = Prob
{
xi = xj = 1

}
, (i, j = 1, 2, 3).

The three quantities ηi, ηj, and ηij together determine the joint marginal
distribution of any two random variables Xi and Xj. Let us further put

η123 = E [x1x2x3] = Prob{xi = xj = xk = 1}.
All of these have seven degrees of freedom,

η = (η1, η2, . . . , η7) = (η1, η2, η3; η12, η23, η13; η123), (4.1)

which specify any distribution p(x) in S3. Hence, this η is a coordinate
system of S3 called the m- or η-coordinates.

The pairwise correlation between any two of X1,X2, and X3 is determined
from the marginal distributions of Xi and Xj or ηi, ηj, and ηij. However, even
when all the pairwise correlations vanish, this does not imply that X1,X2,
and X3 are independent. Therefore, one should define intrinsic triplewise
interaction independent of pairwise correlations. The coordinate η123 itself
does not directly give the degree of pure triplewise interaction.

In order to define the degree of pure triplewise interaction, the orthog-
onality plays a fundamental role. Let us fix the three pairwise marginal
distributions, specified by the six coordinates,

η2 = (η1, η2, η3; η12, η23, η13).

There are many distributions with the same η2. Let us consider the set
M 2

(
η2

)
of all the distributions in which we have the same single and pair-

wise marginals η2, but η123 may take any value. This is a one-dimensional
submanifold specified by η2. Let us introduce a coordinate θ in M 2

(
η2

)
.

(η2, θ) is a coordinate system of S3. When the coordinate θ is orthogonal to
η2, that is, a change in the log-likelihood along θ is not correlated with that
in any of the components of η2, we may say that θ represents the degree of
pure triple interaction regardless of pairwise marginals η2 and require that
θ has this property.

The tangent direction ofM 2, that is, the direction in which only θ changes
but the second-order marginals η2 are fixed, represents a change in the pure
triple interaction among X1,X2, and X3. To show this geometrically, let us
consider a family of submanifoldsE2∗(θ) in which all the distributions have
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the same θ but the single and pairwise marginals η2 are free. A E2∗(θ) is a
six-dimensional submanifold transversal to M 2(η2). Tangent directions of
E2∗(θ) represent changes in marginals η2, keeping θ fixed, and E2∗(θ) and
M 2(η2) are orthogonal at any θ and η2.

In order to obtain such a θ , let us expand log p(x) in the polynomial of x,

log p(x) =
∑

θixi +
∑

θijxixj + θ123x1x2x3 − ψ. (4.2)

This is an exact formula, since xi (i = 1, 2, 3) is binary. One can check that
the coefficient θ = θ123 is given by

θ123 = log
p111p100p010p001

p110p101p011p000
. (4.3)

The other coefficients are:

θ1 = log
p100

p000
, θ2 = log

p010

p000
, θ3 = log

p001

p000
, (4.4)

θ12 = log
p110p000

p100p010
, θ23 = log

p011p000

p010p001
, θ13 = log

p101p000

p100p001
, (4.5)

ψ = − log p000. (4.6)

Information geometry gives the following theorem.

Theorem 4. The quantity θ123 represents the pure triplewise interaction in the
sense that it is orthogonal to any changes in the single and pairwise marginals.

We can prove this directly by calculating the derivatives of the log likeli-
hood. Equation 4.2 shows thatS3 is an exponential family with the canonical
parameters θ = (θ1, θ2, θ3; θ12, θ23, θ13; θ123). The corresponding expectation
parameters are η = (η2; η123), so that they are orthogonal. We can compose
the mixed orthogonal coordinates, denoted by ζ2, as

ζ2 = (η2; θ123) = (η1, η2, η3; η12, η23, η13; θ123). (4.7)

In this coordinate system, η2 and θ = θ123 are orthogonal. Note that θ123
is not orthogonal to θ12, θ23, θ13. Hence, except when there is no triplewise
interaction (θ123 = 0), the quantities θ12, θ23, and θ13 in equation 4.5 do not
directly represent the degrees of pairwise correlations of the respective two
random variables.

Notably, the submanifold E2∗(0) consists of all the distributions having
no triple interactions but pairwise interactions. The log probability log p(x)
is quadratic and given by log p(x) = ∑

θixi + ∑
θijxixj − ψ . A stable dis-

tribution of a Boltzmann machine in neural networks belongs to this class,
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because there are no triple interactions among neurons (Amari, Kurata, &
Nagaoka, 1992). The submanifold E2∗(0) is characterized by θ123 = 0, or in
terms of η (see equation 4.3) by

η123 =
(η12 − η123)(η13 − η123)(η23 − η123)

×(1 − η1 − η2 − η3 + η12 + η23 + η13 − η123)

(η1−η12−η13+η123)(η2−η23−η12+η123)(η3−η13−η23+η123)
.

4.2 Another Orthogonal Coordinate System. In the above, we extracted
the pure triple interaction by using the coordinate θ123, such that η2 and θ123
are orthogonal. If we are interested in separating simple marginals from var-
ious kinds of interactions, we can use another decomposition. Let us sum-
marize the three simple marginals in η1 = (η1, η2, η3) and then summarize
all of the interaction terms in θ1∗ = (θ12, θ23, θ13, θ123). Here, θ1∗ denotes the
coordinates complementary to η1. Using this pair, we have another mixed
coordinate system, denoted by ζ1, as

ζ1 = (ζ11, ζ12, . . . , ζ17) = (
η1,θ1∗

)
. (4.8)

Here, η1 and θ1∗ are orthogonal. Geometrically, let M 1(η1), specified by
η1 = (η1, η2, η3), be the set of all the distributions having the same simple
marginals η1 = (η1, η2, η3) but having any pairwise and triplewise correla-
tions. M 1(η1) is a four-dimensional submanifold in which θ1∗ takes arbi-
trary values. On the other hand, letE1∗(θ1∗)be a three-dimensional subman-
ifold in which all of the distributions have the same θ1∗ = (θ12, θ23, θ31, θ123)

but different marginals η1. We have the following theorem.

Theorem 5. The coordinates η1 and θ1∗ are orthogonal, that is, E1∗(θ1∗) is
orthogonal to M 1(η1).

Here, θ1∗ represents degrees of pure correlations independent of margi-
nals η1 and includes correlations resulting from the triplewise interaction
in addition to the pairwise interactions. Because of the non-Euclidean char-
acter of S3 (Amari & Nagaoka, 2000; Amari, 2001), we cannot have a co-
ordinate system, (η1, η2, η3; θ ′

12, θ
′
23, θ

′
13; θ123), with {ηi}, {θ ′

ij}, and θ123 being
mutually orthogonal. The submanifold E1∗(0) has zero pairwise and triple-
wise correlations and, hence, consists entirely of independent distributions
in which ηij = ηiηj and η123 = η1η2η3 hold. The function log p(x) is linear in
x because θ1∗ = 0 (see equation 4.2).

4.3 Projections and Decompositions of Divergence. Using the above
two mixed coordinates, we decompose a probability distribution in the fol-
lowing two ways. Let us consider two probability distributions, p(x) and
q(x), where any coordinate system ξ is denoted by ξp and ξq, respectively.
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First, let us consider the case where q is the independent uniform distri-
bution. By using the mixed orthogonal coordinate system ζ2, we now seek
to extract a pure triplewise interaction θ123. For q, we have

θ
q
123 = 0, η

q
1 = η

q
2 = η

q
3 = 1

2
, η

q
12 = η

q
23 = η

q
13 = 1

4
.

Furthermore, we note that q ∈ E2∗(0) and also q ∈ E1∗(0).
Let us m-project p to E2∗(0) by

p̄(x) = arg min
r∈E2∗ (0)

D
[
p(x) : r(x)

]
.

This p̄ has the same pairwise marginals as p but does not include any triple-
wise interaction, and its mixed coordinates are given by ζ

p̄
2 = (η

p
2; θ

q
123) =

(η
p
2; 0). The Pythagorean theorem gives us

D
[
p : q

] = D
[
p : p̄

] + D
[
p̄ : q

]
,

where D[p : p̄] represents the degree of pure triplewise interaction, while
D[p̄ : q] represents how p differs from q in simple marginals and pairwise
correlations.

Let us next extract the pairwise interactions in p(x) by using another
mixed coordinate ζ1. To this end, let us project p to E1∗(0), which is com-
posed of independent distributions,

p̃(x) = arg min
s∈E1∗ (0)

D
[
p(x) : s(x)

]
.

More explicitly, we have ζ
p̃
1 = (η

p̃
1;θ

q
1∗) = (η

p
1; 0) and

D
[
p : p̃

] = D
[
p : p̃

] + D
[
p̃ : q

]
.

Here, D[p : p̃] summarizes the effect of all the pairwise and triplewise in-
teractions, while D[p̃ : q] represents the difference of the simple marginals
from the uniformity.

By taking the two decompositions together, we have

D
[
p : q

] = D
[
p : p̄

] + D
[
p̄ : p̃

] + D
[
p̃ : q

]
. (4.9)

Here D[p : p̄] represents the degree of pure triplewise interaction in the
probability distribution p, D[p̄ : p̃] of pairwise interactions, and D[p̃ : q] of
the nonuniformity of firing rate.

Let us generalize equation 4.9 by dropping our assumption on q as the
independent uniform distribution. We then redefine p̄ and p̃ as

p̄(x) = arg min
r∈E2∗ (θ q

123)

D
[
p(x) : r(x)

]
, p̃(x) = arg min

s∈E1∗ (θq
1∗ )

D
[
p(x) : s(x)

]
.
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We now have theorem 6:

Theorem 6.

D
[
p : q

] = D
[
p : p̄

] + D
[
p̄ : q

]
(4.10)

= D
[
p : p̃

] + D
[
p̃ : q

]
(4.11)

= D
[
p : p̄

] + D
[
p̄ : p̃

] + D
[
p̃ : q

]
. (4.12)

The decompositions in the first and second lines are particularly inter-
esting for neural data analysis purpose, as shown in the next section.

Any coordinate transformation can be done freely in this three-variable
case in a numerical sense. In general, however, coordinate transformations
between θ and η are not easy when the dimensions are high. Later, we
discuss several practical approaches in n neuron case for use in neural data
analysis.

4.4 Applications to Firing of Three Neurons. Here, we briefly discuss
our application of the above results to firing of three neurons. The discussion
in section 3.5 can be naturally extended. We consider three binary random
variables, X = (X1,X2,X3), and denote our estimated probability distri-
bution and the distribution of our null hypothesis by p(x; ξ̂) and p(x; ξ0

),
respectively, where ξ is now a seven-dimensional coordinate system. We
use the following decompositions,

D
[
ξ0 : ξ̂

]
= D

[
ζ0

2 : ζ̂
′′
2

]
+ D

[
ζ̂

′′
2 : ζ̂

]
= D

[
ζ0

1 : ζ̂
′
1

]
+ D

[
ζ̂

′
1 : ζ̂

]
,

where ζ̂
′
1 = (η0

1∗ ; θ̂1∗) and ζ̂
′′
2 = (η0

2; θ̂123).

In the first decomposition, D[ζ0
2 : ζ̂

′′
2] represents the discrepancy in the

triplewise interaction of p(x; ξ̂) from p(x; ξ0
), fixing the pairwise interac-

tion and marginals as specified by p(x; ξ0
). D[ζ̂

′′
2 : ζ̂] then collects all the

residual discrepancy and, more precisely, represents the discrepancy of the

distribution p(x; ξ̂) from p(x; ξ̂′′
2), which has the same simple and second-

order marginals as those of p(x; ξ0
) (i.e., η0

2) and the same triplewise inter-

action θ̂123 as that of p(x; ζ̂). Therefore, D[ζ0
2 : ζ̂

′′
2] is particularly useful for

investigating if there is any significant triplewise interaction in data, that
is, p(x; ξ̂), in comparison with our null hypothesis p(x; ξ0

). A significant
triplewise interaction, for example, may be considered indicative of three
neurons functioning together. As for hypothesis testing, we can use

λ2 = 2ND
[
ζ0

2 : ζ̂
′′
2

]
≈ Ngζ77(ζ

0
2)(θ

0
123 − θ̂123)

2 ∼ χ2(1), (4.13)

where N is the number of trials and the indices are ζ1 = (ζ1, . . . , ζ6; ζ7) =
(η2; θ123).
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In the second decomposition, D[ζ0
1 : ζ̂

′
1] represents the discrepancy in

both the triplewise and pairwise interactions of p(x; ξ̂) from p(x; ξ0
), fixing

the marginals as specified by p(x; ξ0
), while D[ζ̂

′
1 : ζ̂] collects all the resid-

ual discrepancy. D[ζ0
1 : ζ̂

′
1] is useful to investigate if there is a significant

coincident firing, taking the pairwise and triplewise interactions together,
compared with the null hypothesis. We now have

λ1 = 2ND
[
ζ0

1 : ζ̂
′
1

]
≈ N

7∑
i,j=4

gζij(ζ
0
1)(ζ

0
i − ζ̂i)(ζ

0
j − ζ̂j) ∼ χ2(4), (4.14)

where the indices are given by ζ = (ζ1, . . . , ζ7) = (η1∗ ;θ1∗).
We can also compare two probability distributions estimated under dif-

ferent experimental conditions. Let us denote two estimated distributions

by p(x; ξ̂1
) and p(x; ξ̂2

). We first detect the triplewise interaction. The MLE,

denoted by ζ̂
10
2 and ζ̂

20
2 , of our null hypothesis, that is, θ̂1

123 = θ̂2
123, is given by

(ζ̂
10
2 , ζ̂

20
2 ) = argmax

N∑
j

log p(Xj : ζ1
2)p(X

j : ζ2
2)

subject to θ1
123 = θ2

123. (4.15)

Then we have

λ′
2 = 2ND

[
ζ̂

10
2 : ζ̂

1
2

]
+ 2ND

[
ζ̂

20
2 : ζ̂

2
2

]
≈ Ngζ77(ζ̂

10
2 )(θ

10
123 − θ̂1

123)
2 + Ngζ77(ζ̂

20
2 )(θ

20
123 − θ̂2

123)
2

∼ χ2(2). (4.16)

When we investigate the coincident firing, taking the pairwise and triple-
wise interactions together, we use the second decomposition above. The
MLE of our null hypothesis in this case is given by

(ζ̂
10
1 , ζ̂

20
1 ) = argmax

N∑
j

log p(Xj : ζ1
1)p(X

j : ζ2
1)

subject to θ1
1∗ = θ2

1∗ . (4.17)

For hypothesis testing, we can use

λ′
1 = 2ND

[
ζ̂

10
1 : ζ̂

1
1

]
+ 2ND

[
ζ̂

20
1 : ζ̂

2
1

]
≈ N

7∑
i,j=4

gζij(ζ̂
10
1 )(ζ

10
i − ζ̂i)(ζ

10
j − ζ̂j)
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+ N
7∑

i,j=4

gζij(ζ̂
20
1 )(ζ

10
i − ζ̂i)(ζ

10
j − ζ̂j)

∼ χ2(8). (4.18)

The decompositions in the KL divergence also allow us to decompose
mutual information between the firing pattern of three neurons X = (X1,X2,

X3) and the behavior Y in a similar manner to section 3.6.

Theorem 7.

I(X,Y) = Ep(X,Y)

[
log

p(x, y)
p(x)p(y)

]
= I1(X,Y)+ I2(X,Y) (4.19)

= I3(X,Y)+ I4(X,Y) (4.20)

where

I1(X,Y) = Ep(Y)
[
D

[
ζ1(X | y) : ζ1(X, y)

]]
,

I2(X,Y) = Ep(Y)
[
D

[
ζ1(X, y) : ζ1(X)

]]
and we define ζ1(X, y) = (η1(X | y);θ1∗(X)). Similarly,

I3(X,Y) = Ep(Y)
[
D

[
ζ2(X | y) : ζ2(X, y)

]]
,

I4(X,Y) = Ep(Y)
[
D

[
ζ2(X, y) : ζ2(X)

]]
and we define ζ2(X, y) = (η2(X | y);θ2∗(X)).

In equation 4.19, the mutual information I(X,Y) is decomposed into two
parts: I1, the mutual information conveyed by the pairwise and triplewise
interactions of the firing, and I2, the mutual information conveyed by the
mean firing-rate modulation. In equation 4.20, I(X,Y) is decomposed dif-
ferently: I3, conveyed by the triplewise interaction, and I4, conveyed by the
other terms, that is, the pairwise and mean firing-rate modulations.

5 General Case: Joint Distributions of X1, . . . ,Xn

Here we study a general case of n neurons. Let X = (X1, . . . ,Xn) be n binary
variables, and let p = p(x),x = (x1, . . . , xn), xi = 0, 1, be its probability,
where we assume p(x) > 0 for all x. We begin with briefly recapitulating
Amari (2001) for the theoretical framework and then move to its applica-
tions.
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5.1 Coordinate Systems of Sn. As mentioned in section 2, the set of all
probability distributions {p(x)} forms a (2n − 1)–dimensional manifold Sn.
Any p(x) inSn can be represented by the P-coordinate system, θ -coordinate
system, or η-coordinate system. The P-coordinate system is defined by

pi1···in = Prob {X1 = i1, . . . ,Xn = in} , ik = 0, 1,

subject to
∑

i1,...,in

pi1···in = 1.

The θ -coordinate system is defined by the expansion of log p(x) as

log p(x) =
∑

θixi +
∑
i<j

θijxixj +
∑

i<j<k

θijkxixjxk · · ·

+ θ1···nx1 · · · xn − ψ, (5.1)

where the indices of θijk, . . . , satisfy i < j < k and then

θ = (θi, θij, θijk, . . . , θ12,...,n) (5.2)

has 2n −1 components and forms the θ -coordinate system. It is easy to com-
pute any components of θ; for example, we can get θ1 = log p10,...,0

p0,...,0
. For later

convenience, we use the notation θ1 = (θi),θ2 = (θij),θ3 = (θijk), . . . ,θn =
θ12,...,n, where l in θl runs over l-tuple among n binary numbers, yielding
nCl components (nCl is the binomial coefficient). Then we can write

θ = (θ1,θ2, . . . ,θn).

On the other hand, the η-coordinate system is defined by using

ηi = E [xi] (i = 1, . . . ,n),

ηij = E
[
xixj

]
(i < j), . . . , η12,...,n = E [xi, . . . , xn] ,

which has 2n − 1 components (see section 2)—in other words,

η = (
ηi, ηij, . . . , η1,...,n

)
forms the η-coordinate system in Sn. We also write η = (η1,η2, . . . ,ηn),

which is linearly related to {pi1,...,in}.
In the rest of this section, we provide some general concepts in informa-

tion geometry. Readers who are interested in more detail can refer to Amari
and Nagaoka (2000). When a submanifold of Sn, denoted by E, is repre-
sented by linear constraints among the θ coordinates, E is called exponen-
tially flat or e flat. When a submanifold of Sn, denoted by M , is represented
by linear constraints among the η coordinates, M is called mixture flat or
m flat.
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The Fisher information matrices in the respective coordinate systems
play the role of Riemannian metric tensors. The two coordinate systems
θ and η are dually coupled in the following sense. Let A,B,C, . . . denote
ordered subsets of indices, which stand for components of θ and η, that is,
θ = (θA),η = (ηB).

Theorem 8. The two metric tensors G(θ) and Ḡ(η) are mutually inverse,

Ḡ(θ) = G(η)−1, (5.3)

where G(η) = (gAB(η)) and Ḡ(θ) = (ḡAB(θ)) are defined by

gAB(θ) = E
[
∂ log p(x;θ)

∂θA

∂ log p(x;θ)
∂θB

]
,

ḡAB(η) = E
[
∂ log p(x;η)

∂ηA

∂ log p(x;η)
∂ηB

]
.

The following generalized Pythagoras theorem has been known in Sn
(Csiszár, 1967, 1975; Amari et al., 1992; Amari & Han, 1989). It holds in more
general cases, playing an important role in information geometry (Amari,
1987; Amari & Nagaoka, 2000).

Theorem 9. Let p(x), q(x) and r(x) be three distributions where the m geodesic
connecting p(x) and q(x) is orthogonal to the e geodesic connecting q(x) and r(x).
Then,

D
[
p : q

] + D
[
q : r

] = D
[
p : r

]
. (5.4)

5.2 Higher-Order Interactions. This section aims at defining the higher-
order interactions using the k-cut mixed coordinate system. Section 5.1 in-
troduced θ = (θ1, . . . ,θn) and η = (η1, . . . ,ηn), each of which spans Sn.
Let us define their partitions, called a k-cut, as follows,

θ = (
θk−;θk+

)
, η = (

ηk−;θk+
)
, (5.5)

where θk− and ηk− consist of coordinates whose subindices have no more
than k indices, that is, θk− = (θ1,θ2, . . . ,θk),ηk− = (η1,η2, . . . ,ηk), and
θk+ and ηk+ consist of the coordinates whose subindices have more than k
indices, that is, θk+ = (θk+1,θk+2, . . . ,θn), ηk+ = (ηk+1,ηk+2, . . . ,ηn).

First, note that ηk− specifies the marginal distributions of any k (or less
than k) random variables among X1, . . . ,Xn. Let us consider a family of
m-flat submanifold in Sn,

M k (mk) = {
η | ηk− = mk

}
.
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It consists of all the distributions having the same k-marginals specified
by a fixed ηk− = mk. They differ from one another only by higher-order
interactions of more than k variables.

Second, all coordinate curves represented by θk+ are orthogonal to ηk−
or any components of ηk−. Hence, θk+ represents interactions among more
than k variables independent of the k marginals, ηk−. Then, for a constant
vector ck, let us compose a family of e-flat submanifolds,

Ek+ (ck) = {
θ | θk+ = ck

}
.

Third, Ek+ (ck) and M k (mk) are mutually orthogonal and introduce a
new coordinate system, called the k-cut mixed coordinate system, defined by

ζk = (
ηk−;θk+

)
.

Any k-cut mixed coordinate system forms the coordinate system of Sn. A
change in the θk+ part preserves the k-marginals of p(x) (i.e., ηk−), while a
change in the ηk− part preserves the interactions among more than k vari-
ables. These changes are mutually orthogonal. Thus, Ek+(θk+) is regarded
as the submanifold consisting of distributions having the same degree of
higher-order interactions. When θk+ = 0,Ek+(0) denotes the set of all the
distributions having no intrinsic interactions of more than k variables.

5.3 Projections and Decompositions of Higher-Order Interactions.
Given p(x), we define p(k)(x) = ∏(k) p by

p(k)(x) =
(k)∏

p = arg min
q∈Ek+(0)

D
[
p : q

]
.

This is the point closest to p among those that do not have intrinsic
interactions of more than k variables. We note that another characterization
of p(k) is given by

p(k)(x) = arg min
q∈Mk(η

p
k−)

D
[
q : p(0)

]
,

where it should be easy to see p(0) a uniform distribution by definition of
p(0). The e geodesic connecting p(k) and p(0) is orthogonal to M k(η

p
k−) to

which the original p belongs.
The k-cut mixed coordinates of p(k) are given by ζk(p

(k)) = (ηk−,θk+ = 0).
The degree of interactions higher than k is hence defined by D[p : p(k)]. Since
the m geodesic connecting p and p(k) is orthogonal toEk+(0), the Pythagoras
theorem guarantees the following decomposition:

D
[
p : p(0)

]
= D

[
p : p(k)

]
+ D

[
p(k) : p(0)

]
.

Let us put

Dk(p) = D
[
p(k) : p(k−1)

]
.
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Then Dk(p) is interpreted as the degree of interaction purely among the k
variables. We then have the following decomposition in which Dk(p)denotes
the degree of interaction among k variables.

Theorem 10.

D
[
p : p(0)

]
=

n∑
k=1

Dk(p). (5.6)

It is straightforward to generalize the above results when we are given
two distributions p(x), q(x). Let us define

ζ(k
′)

k = ζk(p
(k′)) = (ηk−(p);θk+(q)).

Then we have

D[p : q] = D[ζp
k : ζq

k] = D[ζp
k : ζ(k

′)
k ] + D[ζ(k

′)
k : ζq

k],

which is induced from theorem 9. By defining,

Dk′(p) = D
[
p(k

′) : p((k−1)′)
]
,

we obtain

D
[
p : q

] =
n∑

k=1

Dk′(p). (5.7)

The decompositions shown in equations 5.6 and 5.7 are obviously similar
to each other. A critical difference, however, exists in the interpretation of
the two decompositions. Each term in equation 5.6, Dk(p), represents the
degree of purely kth order interaction, whereas Dk′(p) in equation 5.7 does
not necessarily do so. This is because ζk(p

(k)) always has θk+ = 0, that is,
the higher-order coordinates than the kth order. On the other hand, ζk(p

(k′))

does not necessarily have zero in the corresponding part. In other words,
θk represents the pure kth order interaction only if θk+ = 0.

5.4 Application to Neural Firing. To apply the results in the above sec-
tions to neural firing data, the discussion for the case of the three neurons
can be directly applied. Hence, we mainly provide some remarks in this
section.

First, suppose that we have an estimated probability distribution of n
neurons, denoted by p(x; ξ̂), and a probability distribution of our null hy-
pothesis, p(x; ξ0

). Then, using the k-cut mixed coordinates, we obtain the
decomposition,

D[ξ0 : ξ̂] = D[ζ0 : ζ̂
′
k] + D[ζ̂

′
k : ζ̂],
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where we define ζ̂
′
k = (η0

k−; θ̂k+). In this decomposition, D[ζ0 : ζ̂
′
k] repre-

sents the discrepancy between ξ0 and ξ̂ in the interactions higher than the

kth order and D[ζ̂
′
k : ζ̂] equal to and lower than the kth order. We can also

convert these divergences to a χ2 test. For example, we have

λk+ =2ND[ζ0 : ζ̂
′
k]≈N

∑
A,B>k

gζk
AB(ζ

0
)(ζ 0

A−ζ̂A)(ζ
0
B −ζ̂B)∼χ2(m), (5.8)

where N is the number of trials and A,B runs over all of the indices higher
than the k-tuple, included in θk+, and the degree of freedom m in the χ2

test is given by m = ∑n
l=k+1 nCl. By using λk+, we can test whether there is

any significant contribution of a higher-order interaction by summing all
interactions higher than the kth order.

In equation 5.8, gζk
AB corresponds to the part, denoted by Dζk , of the Fisher

information matrix of the k-cut mixed coordinates, Gζk . Let us write the
Fisher information matrix of different coordinate systems in block form as
follows:

Gζk =
[

Aζk O
O Dζk

]
, Gη =

[
Aη Bη
BT
η Dη,

]
Gθ =

[
Aθ Bθ
BT
θ Dθ

]
.

The following theorem gives an explicit form of Gζk .

Theorem 11. The Fisher information matrix of the k-cut mixed coordinates, Gζk ,
is given by

Aζk = A−1
θ , Dζk = D−1

η . (5.9)

Note that Gθ is easy to obtain from the experimental data because gθAB =
Eθ [XAXB] − ηAηB, component-wise. Given Gθ , the computation of Gη may
be said to be easy in the sense of Gη = G−1

θ . Thus, we can easily compute
Aζk and Dζk .

Suppose two probability distributions are given, estimated under differ-

ent experimental conditions, denoted by p(x; ξ̂1
) and p(x; ξ̂2

). Our task is
to test whether any higher-order (than the kth order) interaction is signifi-
cantly different between the two distributions. In this case, we first need to
solve the following MLE:

(ζ̂
10
k , ζ̂

20
k ) = argmax

N∑
j

log p(Xj; ζ1
k)p(X

j; ζ2
k)

subject to θ1
k+ = θ2

k+. (5.10)
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The χ2 test is then given as

λ′
k+ = 2ND[ζ̂

10
k : ζ̂

1
k] + 2ND[ζ̂

20
k : ζ̂

2
k]

≈ N
∑

A,B>k

gζk
AB(ζ̂

10
k )(ζ

10
A − ζ̂ 1

A)(ζ
10
B − ζ̂ 1

B)

+ N
∑

A,B>k

gζk
AB(ζ̂

20
k )(ζ

20
A − ζ̂ 2

A)(ζ
20
B − ζ̂ 2

B)

∼ χ2(2m), where m =
n∑

l=k+1
nCl.

To relate the neural firing with discrete behavioral choice, denoted by Y,
we have the following decomposition in the mutual information.

Theorem 12.

I(X,Y) = Ik+(X,Y)+ Ik−(X,Y), (5.11)

where we define

Ik+(X,Y) = Ep(Y)
[
D

[
ζk(X | y) : ζk(X, y)

]]
,

Ik−(X,Y) = Ep(Y)
[
D

[
ζk(X, y) : ζk(X)

]]
and ζk(X, y) = (ηk−(X | y);θk+(X)).

5.5 Homogeneous Case. This section discusses an approach under the
assumption of the homogeneity of neural activities, which is useful for
avoiding some practical difficulties (Grün & Diesmann, 2000). Here, ho-
mogeneity refers to the assumption of homogeneous neural firing—that
the interaction of some kth orders is the same as another among all k tuple
neurons. For simplicity, we mostly assume below that the interaction of any
kth order is the same as another among all k tuple neurons, which will be
referred to as full homogeneous assumption.

It is easy, using Rota’s methods in the set theory in relation to principle
of inclusion and exclusion (Amari, 2001), to explicitly write down the coor-
dinate transformations between the P and η coordinates and also between
the P and θ coordinates. Hence, it is possible in principle to do the coordi-
nate transformation between the η and θ coordinates and also between the
k mixed and P coordinates. There are remaining practical difficulties, how-
ever, in two aspects. First, the computational complexity in these coordinate
transformations increases exponentially. Second, the limitation in the num-
ber of samples becomes severe in estimating the values in any coordinate
system as the number of neurons increases.
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One approach to overcoming these difficulties is to use the homogeneity
assumption. Under the full homogeneity assumption, the 2n −1 dimensions
in the n-neuron case reduce to n dimensions. The coordinate transformation
in this case is given by theorem 13.

Theorem 13.

ηk =
n−k∑
l=0

(n−k)ClPk+l, log Pk =
k∑

l=1
kClθl − ψ, (5.12)

where nCk denotes the binomial coefficient. Equivalently, we also have

Pk =
n−k∑
l=0

(n−k)Cl(−1)lηk+l, θk =
k∑

l=0
kCl(−1)(k−l) log Pl. (5.13)

All of the results in the previous sections can be rewritten by using these
simplified coordinates.

5.6 Interesting Set of Neurons. One important question in this n-neur-
ons case is how to find a set of neurons whose firing shows significant
coincident firing. We discuss one practical approach here, mentioning sev-
eral mathematical tricks to overcome some practical issues. In practice, this
question may occur either when (1) we simply want to give an answer to
the question by some rigorous tests or (2) when, in facing a vast amount of
data, we only want to find some candidates of interesting sets of neurons
for further investigation. In this second case, it is perhaps unnecessary to
be too rigorous; simplicity is preferred, although some complexity is in-
evitably involved. A method for this purpose is particularly needed given
the increasing number of neurons simultaneously recorded in experiments.
This section is formulated accordingly.

One obvious approach is to find a significant kth order interaction (k <
n) and group a significant k-tuple of the neurons as an interesting set of
neurons. A basic procedure is given as follows:

1. Given the population of recorded neurons, calculate the θ coordinates
and find nonzero θ of the largest order, denoted by θA

k , where A indi-
cates a specific k-tuple and k is the order.

2. There can be multiple θA
k in the same kth order, but we discard any

interaction between them. Under this circumstance, each A is specified
by ζk = (ηA

k−; θA
k ).

3. We set our null hypothesis, ζ0
k = (ηA

k−; θ0
k ), and then compute the χ2

value to test whether θA
k is significant against θ0

k .

4. If A is found to be significant, we nominate A as an interesting set of
neurons, denoted by A∗.
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5. If A is insignificant, we go down to the lower order. In doing so, we
omit the neurons that are already registered in {A∗} (i.e., any subset of
A∗) from consideration. Given these, when we find nonzero θ of the
next largest order, θA

k′ , we repeat from step 2.

In the above procedure, there are some practical concerns to solve. First,
the coordinate transformation from ζk to p becomes computationally ex-
pensive as the number of neurons increases. In our procedure, this trans-
formation is needed to compute the χ2 value. The χ2 value is obtained by
using the Fisher metric component at ζ0

k , which is computed by use of this
transformation (i.e., ζ0

k to p0). We now recall that the reason we choose to
compute the Fisher metric component at ζ0

k comes from hypothesis testing
formalism and that the χ2 value is a quadratic approximation of the KL
divergence. Therefore, for our testing, we can in fact use the Fisher metric
at ζk to compute the χ2 value,

λ = 2ND[ζ0
k : ζk] ≈ Ng(ζk)(θ

0
k − θA

k )
2 ∼ χ2(1). (5.14)

The value of λ is easy to compute because all coordinates at ζk are easily
obtained from the data.

Second, we should ask how to set θ0
k , that is, our null hypothesis. Appar-

ently, there are two choices. One is to choose θ0
k = 0, which is a hypothesis

of no purely kth-order interaction. The other is to obtain the value of θk
under the homogeneous assumption, denoted by ζ∗

k = (η∗
k−; θ∗

k ), and set
θ0

k = θ∗
k . Both choices are feasible, but the underlying assumption differs

in each choice. Third, a practical concern is the limited number of trials.
One practical solution is to use the homogeneity assumption. For exam-
ple, when we are interested only in which order should be considered as
the order of the interesting set of neurons, we suggest using ζ∗

k to com-
pare against the null hypothesis of no purely kth-order interaction, that is,
ζ0

k = (η∗
k ; 0). As another example, in case we happen to find a specific k-

tuple A firing (θA
k �= 0), we may use ζk = (ηA

1 ;η∗
2, . . . ,η

∗
(k−1); θA

k ) under the
partial homogeneous assumption to compare against the null hypothesis
ζ0

k = (ηA
1 ;η∗

2, . . . ,η
∗
(k−1); 0).

6 Examples

In this section, we demonstrate our method using artificial data. (More ex-
amples, including application of the proposed method to experimental data
and also to autocorrelation, are available as a technical report: Nakahara,
Amari, Tatsuno, Kang, & Kobayashi, 2002.)
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6.1 Example 1: Firing of Two Neurons.

6.1.1 Coincident Firing. In this simulation, we aim to demonstrate a re-
lation between correlation coefficient and θ , and hypothesis testing under
different null hypotheses. Figures 2A and 2B give the mean firing frequency
of two neurons and their correlation coefficients (COR; the N-JPSTH), re-
spectively (see the legend for spike generation). Period a is the control pe-
riod. The neural firing in this period presumably indicates the resting level
activity, which was set to have a very weak correlation here. The firing is
almost independent in both periods b and c, whereas it is not independent
in period d, whose COR is larger than that of period a.

Figure 2C shows θ3, a quantity in our measure to indicate the pairwise
interaction. At first glance, the time course of θ3 may look similar to the
COR. A careful inspection, however, shows that they are different (e.g., the
relative magnitudes between periods a and d are different for COR and
θ ). This is because (η1, η2, θ3) and (η1, η2,COR) form different coordinate
systems, although both θ3 and COR represent the correlational component.

The KL divergence is used to measure the discrepancy between two
probability distributions—one distribution to be examined and the other
to be of the null hypothesis. Using the orthogonality of θ3 with (η1, η2), we
can decompose the KL divergence into two terms—one representing the
discrepancy in the correlational component and the other the discrepancy
in the mean firing. We call the former the KL divergence in correlation for
convenience.

We first examine the KL divergence in correlation against the null hypoth-
esis of independent firing (i.e., θ3 = 0), which is the probability distribution
with the same marginals of the examined probability but with the indepen-
dent firing. This KL divergence, denoted by KL1, is indicated by the solid
line in Figure 2D. Compared with θ3, the KL1 takes into account the metric
in the probability space. In Figure 2D, we also indicate by the dashed line
the corresponding p-value, derived from the χ2(1) distribution (e.g., if the
p-value reaches 0.95, it is significant with p < 0.05). We observe that period d
is significant in Figure 2D.

We now examine the KL divergence in correlation against the null hy-
pothesis of the averaged activity (including both averaged mean firing rates
and averaged coincident firing) in the control period. In Figure 2E, this KL di-
vergence in correlation, denoted by KL2(1), is indicated by a solid line, while
the corresponding p-value, derived fromχ2(1), is indicated by a dashed line.
In Figure 2E, period d is no longer significant under this null hypothesis.
Period c now is clearly significant, whereas period b is barely significant,
although θ3 is the same between the two periods (see Figure 2C). This is
because the mean firing rates are different between periods b and c, and the
Fisher information metric takes the geometrical structure into account—not
only the degree of the coincident firing (θ3) but also the marginal probability
(i.e., the mean firing rates).
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A comparison between Figures 2D and 2E illustrates a simple fact that
what should be considered as a significant event depends on what is taken
as the null hypothesis. In Figure 2E, where the p-value is from χ2(1) for-
mulation, the underlying assumption is that the averaged activity in the
control period, which is estimated from data in practice, is regarded as a
true average activity in the control period (see section 3.5). When we are
interested in comparing significances between two null hypotheses of inde-
pendent firing and the averaged activity in the control period, we suggest
that the comparison of p-values from χ2(1) is informative, as in Figures 2D
and 2E.

In contrast, since we estimate the average activity in the control period
from data in practice, a more proper and more conservative hypothesis
testing is to use a different formulation of the likelihood ratio test. This
results in using the p-value associated with χ2(2) (see section 3.5). In Fig-
ure 2F, we indicate by a solid line the KL2(2), the KL divergence in the
correlation that corresponds to this χ2(2) formulation. The dashed line in-

Figure 2: Facing page. Example of a two-neuron case to detect the significant pair-
wise correlation. The spikes of two neurons were generated such that whether
a spike exists or not in each bin (1 ms bin width is used) was probabilisti-
cally determined in each trial (where the number of all trials was 2000), given
an assumed probability (η1, η2, η12) in each period a–d. Period a (0–100 ms) is
with (η1, η2, η12) = (0.04, 0.04, 0.0031). Period b (100–300 ms) is with (0.04, 0.04,
0.0016). Period c (300–500 ms) is with (0.12, 0.12, 0.0144). Period d (500–700 ms)
is with (0.12, 0.12, 0.0260). To estimate the probabilities from artificially sampled
data, averaged values in each bin were obtained over all trials, and the value in
each bin was then finally determined by smoothing over several bins (set as 25
ms). (A) Mean firing frequency for two neurons. Because the mean firing fre-
quency of the two neurons was the same, the two lines are superimposed with
very little fluctuation. (B) Correlation coefficient. (C) θ3 (= θ12). (D) KL diver-
gence in correlation against the null hypothesis of independent firing and the
corresponding p-value, derived from χ2(1), are indicated by solid and dashed
lines, respectively (see the text). (E) KL divergence in correlation against the null
hypothesis of the averaged activity in the control period and the corresponding
p-value, from χ 2(1), are indicated by solid and dashed lines, respectively. (F) Us-
ing the formulation that the firing in the control period and in other periods is
from the same correlation level (see section 3.5), the p-value, derived from χ2(2),
is indicated by dashed line, while the sum of corresponding KL divergences is
indicated by solid line. Arrows at the right-hand side of B and C indicate the
true values (note that some arrows are superimposed since they are close each
other). In all examples in this section, the values of the η coordinates are pro-
vided in each figure legend. The η coordinates can be easily converted to the P
coordinates used to generate sampled data, by which we obtained the estimated
values of any coordinates in figures, and given the P coordinates, it is simple to
compute true θ values (e.g., equations 4.3–4.6 for Figure 4). In all examples, the
estimated θ values reasonably match with the true ones (e.g., Figure 6C).
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dicates the p-value, now fromχ2(2). We can observe that the p-value in Figure 2F
gives a more conservative estimate compared with the p-value in Figure 2E.

6.1.2 Mutual Information Between Firing and Behavior. Figure 3 shows
the decomposition of mutual information (MI) between firing and behavior,
using artificial data. We assumed only two choices for the behavior, denoted
by s1 and s2. Figures 3A and 3B show the mean firing frequency with respect
to s1 and s2, respectively. The mean firing of both neurons is the same
between s1 and s2 in period a, assumed to be the control period. In periods b
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Figure 3: Example of a two-neuron case to obtain mutual information (MI)
between firing and behavior and its decomposition. The spikes of two neurons
were generated and estimated in a similar manner to Figure 2. The number of
stimulus condition is assumed to be two, denoted by s1 and s2, and the number
of trials per stimulus was 500. In period a (0–100 ms), assumed probabilities
(η1, η2, η12) for s1 and s2 were given as (0.02, 0.02, 0.002) and (0.02, 0.02, 0.002),
respectively. In period b, (100–300 ms), (0.08, 0.02, 0.004) and (0.02, 0.08, 0.004);
in period c, (300–500 ms), (0.08, 0.02, 0.002) and (0.02, 0.08, 0.015). (A, B) Mean
firing frequency of the two neuron with respect to s1 (A) and s2 (B), respectively.
A solid line indicates the mean firing of one neuron and a dashed-dotted line
the mean firing of the other neuron. A dashed line indicates the mean firing
of the coincident firing. (C) MI. The (total) MI is indicated by a solid line and
is decomposed into two terms: the MI by the modulation of the mean firing
rate (dashed line) and the MI by the modulation of the pairwise correlation
(dashed-dotted line).

and c, assumed to be the test periods, we have set the mean firing of the two
neurons as a somewhat mirror image between s1 and s2. The mean firing of
each neuron stays the same in the test periods. Notably, however, the mean
coincident firing increases in period c only when s2 is given (period c in
Figure 3B).

In Figure 3C, we show the (total) MI between firing and behavior and its
decomposition. The total MI (the solid line in Figure 3C) exists in periods b
and c. Its magnitude is larger in period c than in period b, although the
mean firing of each neuron stays the same in both periods. This is because
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the coincident firing is modulated by the behavioral choices only in period c.
This observation can be directly examined by looking into the decomposed
MIs (see the figure legend). In brief, we observe that the increase in the
total MI in period c comes almost exclusively from the part of the MI by
the modulation of the coincident firing (indicated by the dashed-dot line in
Figure 3C).

6.2 Example 2: Firing of Three Neurons.

6.2.1 Inspection of Triplewise Interaction. Figure 4A gives η = (η1,η2,

η3), where the firing is assumed to be homogeneous for simplicity. Period a
is assumed to be the control period. Figure 4B shows COR. The COR in
the control period is almost zero, while the CORs in periods b and c are
almost the same as each other, both being different from zero. Yet when we
are more careful in looking into the interaction, using θij (see Figure 4C)
and θ123 (see Figure 4D), we see that the nature of the interaction is largely
different between periods b and c.

The triplewise interaction, θ123, shown in Figure 4D is nearly zero in peri-
ods a and b. Hence, θij in Figure 4C indicates the purely pairwise correlation
in these periods. On the other hand, since θ123 is not zero in period c, θij in
this period does not represent the purely pairwise correlation any more,
although it is still correct to say that the pairwise correlation is different be-
tween periods b and c by simply observing that θij’s are different in the two
periods. The fact that θ123 is not zero in period c indicates that the purely
triplewise interaction exists in this period, where θ123 is negative so that the
triplewise interaction is negative.

We can make the above observations more quantitative. In Figure 4E, the
p-value, derived from χ2(2), is to measure the triplewise interaction against
the null hypothesis of the activity in the control period. Here we used the
decomposition of k-cut = 2, which separates the triplewise interaction from
other orders, which take the mean firing rates and the pairwise interaction
together (see section 4.1). We observe that the triplewise coincident firing
becomes significant only in period c.

Figure 4F indicates the p-value from χ2(8), which is to measure the triple-
wise and pairwise interaction together. Here we used the decomposition of
k-cut = 1 that separates the mean firing rates (first order) from other orders,
which take the pairwise and triplewise interactions together (see section 4.2).
We can see that both periods b and c now become significant.

6.2.2 Mutual Information Between Behavior and Firing. Figure 5 shows
the decomposition of the MI between firing and behavior. In each of two
stimulus conditions, denoted by s1 and s2, the neuron firing is assumed to
be homogeneous for simplicity. Figures 5A and 5B show the mean frequency
of single-neuron firing, pairwise firing, and triplewise firing with respect
to s1 and s2, respectively. Period a was assumed to be the control period,
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while periods b through d were assumed to be test periods. For s2, the mean
frequency is the same over all periods. For s1, compared with period a, only
the mean frequency of single-neuron firing is different in period b; only the
mean frequency of pairwise firing is different in period c; and only the mean
frequency of triplewise firing is different in period d.

The total MI is shown by the solid line in Figures 5C and 5D, while the
decomposed MIs by k-cut = 2 and = 1 are shown in Figures 5C and 5D,
respectively. In period b, Figure 5D indicates that most of the behavioral
information is carried by modulation of single-neuron firing (the dashed
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line in the figure), although some information is also carried by modulation
of the other orders together (dotted line; see the legend). By inspection of
period b in Figure 5C, we can further observe that the behavioral infor-
mation is mostly carried by the modulation of taking single-neuron firing
and pairwise firing together (the dashed line, which is almost the same as
the solid line, i.e., the total MI) but is not really carried by triplewise firing
(dotted line).

We can inspect periods c and d in a similar manner. In brief, Figures 5C
and 5D together indicate that most behavioral information is carried by the
modulation of taking pairwise and triplewise firing together in period c and
is carried by the modulation of triplewise firing in period d.

6.3 Example 3: Interesting Set of Neuron Firing. Here, we demonstrate
our method to find an interesting set of neuron firing and also illustrate some
practical issues in data analysis. There are two starting assumptions for
this demonstration. First, the number of simultaneously recorded neurons
is assumed to be 10. Second, the number of trials is assumed to be 1200
here. The number of trials is a severe limitation in real data for detecting
higher-order interaction, and we consider 1200 as conceivable, or at least
not impossible.

We follow the procedure set out in section 5.6 under the assumption of full
homogeneous firing and ask whether any significant order of firing exists
against the null hypothesis of independent firing at the questioned order.
Note that it will be very difficult to investigate our data faithfully, because
the assumed number of trials is 1200 and the dimension of 10 neurons is
210 − 1 = 1023. The full homogeneous assumption reduces the dimension
of n neuron firing from (2n − 1) to n dimension so that it circumvents the
undersampling problem.

Figure 4: Facing page. Example of a three-neuron case to detect the significant
triplewise interaction. The spikes of three neurons were generated and estimated
in a similar manner to Figure 2. (A) The η coordinates. Since we treated a homo-
geneous case here for simplicity, η = (ηi, ηij, ηijk) is shown from top to bottom,
being superimposed with the same order of η coordinates. (B) Correlation coef-
ficients of three pairs of neural firing are shown, being superimposed. (C) The
second order, θij = {θ12, θ13, θ23}. (D) The third order, θ123. (E) The p-value, from
χ 2(2), to indicate triplewise coincident firing against the null hypothesis of the
average activity in the control period. (F) The p-value, from χ2(8), to indicate
pairwise and triplewise coincident firing together against the null hypothesis
of the average activity in the control period. As for spike data generation, the
number of trials is set as 2000, and the spike probability is assumed to be homo-
geneous in each period; η = (ηi, ηij, ηijk) = (0.0450, 0.00258, 0.00020) in period a,
η = (0.0450, 0.0090, 0.0040) in period b, and η = (0.0449, 0.0090, 0.0001) in pe-
riod c. The arrows at the right-hand side in B, C, and D indicate true values (see
the Figure 1 legend).
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We specified probability distributions over three periods of a trial to gen-
erate spike data (see the figure legend) and call them seed probabilities for
convenience. Figure 6A indicates the estimated mean firing frequency of a sin-
gle neuron (i.e., the first-order mean firing frequency) given generated sampled
data, and Figure 6B indicates the estimated mean firing frequencies from the sec-
ond to the fifth order, which appear from top to bottom in the figure. Period a is
assumed to be the control period, in which the seed probability is independent
firing. While the first-order mean firing frequency is the same in periods b and
c as in period a, the mean firing frequencies in higher order are somewhat dif-
ferent, yet do not look so different in Figure 6B. We will see, however, that its
intrinsic probabilistic structure is significantly different.

We can compute the exact p-values in χ2(1) from the seed probabilities (see
equation 5.14), some of which (only the relevant ones) are shown in Figure 6C.
No significant order exists in period a, because the firing in that period is in-
dependent. In period b, the p-value of the fourth-order firing exceeds the 0.95
significance level. In period c, while the p-value of the fourth order drops far be-
low, the p-value of the tenth order exceeds the significance level, and the p-value
of the seventh order stays around the significance level.
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In Figure 6D, we show corresponding p-values estimated from the sample
data for the fourth and seventh orders. The indicated significant periods in both
orders (see Figure 6D) overall follow the exact values (see Figure 6C). Although
the tenth-order firing should be significant (as in Figure 6C), theoretically at
least, it could not be observed in our sampled data due to a sampling problem.
Indeed, all of the eighth-, ninth-, and tenth-order firings could not be observed
in our sampled data (i.e., P̂(10)

8 = P̂(10)
9 = P̂(10)

10 = 0), and we started our procedure
from the seventh order in the sampled data. This kind of situation will most
likely be encountered in real data analysis and relates to the sampling problem
even under the full homogeneous assumption. This example also indicates that
the significant coincident firing, even if it exists, may not be detected due to the
sampling problem. Finally, the other orders do not reach the significant level by
both exact and estimated values (results not shown).

7 Discussion

In this study, we investigated the nature of an information-geometric measure
and its application to spike data analysis. By using the dual orthogonality of
the natural and expectation parameters, we have shown that we can system-
atically investigate neuronal firing patterns, considering not only the second-
order but also higher-order interactions, and we provided a method of hypoth-
esis testing. For this purpose, we used the log-linear model (e.g., equation 3.4
for the two-neuron case and equation 4.2 for the three-neuron case). In this
aspect, our approach shares some features with previous work (Martignon et

Figure 5: Facing page. Example of a three-neuron case to obtain mutual infor-
mation (MI) between firing and behavior and its decomposition. The spikes
of three neurons were generated and estimated in a similar manner to Figure 2.
(A, B) Mean firing frequency of the three neurons with respect to s1 (A) and
s2 (B). In each figure, the mean firings of a single neuron, of the pairwise co-
incident firing, and of the triplewise coincident firing are indicated from top
to bottom. (C) MI and its decomposition by k-cut = 2. The total MI is indi-
cated by a solid line. The two decomposed MIs, one by modulation of taking
the mean firing rate and the pairwise interaction together and the other by
modulation of the triplewise interaction, are indicated by dashed and dotted
lines, respectively. (D) MI and its decomposition by k-cut = 1. The total MI
is indicated by a solid line. The two decomposed MIs, one by modulation of
the mean firing rate and the other by modulation of taking the pairwise and
triplewise interactions together, are indicated by dashed and dotted lines, re-
spectively. As for spike data generation, the number of trials per stimulus was
1000, and in each stimulus, the spike probability is assumed to be homogeneous.
For s2, assumed probabilities are (ηi, ηij, ηijk) = (0.08, 0.00704, 0.00041) over all
the periods, a–d. For s1, assumed probabilities are (ηi, ηij, ηijk) = (0.08, 0.00704,
0.00041) in period a. Compared with these probabilities, ηi changed to 0.12
in period b, ηij changed to 0.00049 in period c, and ηijk changed to 0.00700 in
period d.
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al., 1995, 2000; Del Prete & Martingon, 1998; Deco, Martignon, & Laskey, 1998),but
our study explicitly uses the above orthogonality so that the methods become
more transparent, more systematic, and easier. As a reference, we simply men-
tion that the method we propose here can be related to a maximum entropy
principle (Jaynes, 1982) and to testing goodness of fit to a maximum entropy
distribution with some constraints, which is also related to a derivation of dif-
ferent types of free energies in statistical physics.

In the case of two neurons, we first showed that our method is able to test
whether any pairwise correlation in one period is significantly different from
that in another period, where the correlation, as the null hypothesis, is not nec-
essarily zero. Second, the method is shown to be able to relate behavior directly
with neuronal firing, using their mutual information (MI). The MI is decom-
posed into two types of information, conveyed by the mean firing rate and
coincident firing, respectively. Third, the method is extended to the three neu-
rons’ case, where we described the details and went one step further to the
general case of n neurons, where we proposed several approaches to meet prac-
tical concerns (also see Gütig, Rotter, & Aertsen, 2001). Fourth, we demonstrated
the merits of the method with artificial data.

The notion of the third-order and higher-order interactions may be difficult to
understand at a glance. For example, even with three neurons, investigation of
only the pairwise interaction cannot fully determine their interaction, whatever
measures are used. In addition, when we question whether the three neurons
bind features of a single object together (Singer & Gray, 1995) or fire together,
it seems more natural to seek whether triplewise interaction exists. Hence, to
question functions of even only the three neurons’ interaction, it is more conclu-
sive and more robust to investigate both pairwise and triplewise interactions.
Thus, to explore the functions of neural interaction in general, we consider that
a method of analysis that can fully investigate any order interaction in relation
to behavior is required, with the method as simple, flexible, and systematic as
possible to use. It was a motivation of this study.

This study discussed coincident firing, or simultaneous firing, that is, ti = tj

(for any i, j) in X = (X1(t1), . . . ,Xi(ti), . . . ,Xn(tn)). This was only for simplicity
of presentation. Our method is applicable to a more general case—for any set of
{ti}n

i=1. It is then intriguing to ask how many specific firing patterns, or synfire
chains, become significant and how much behavioral information these signif-
icant firing patterns carry (Richmond et al., 1990; McClurkin & Optican, 1996;
McClurkin, Zarbock, & Optican, 1996; Abbott et al., 1996; Oram et al., 1999, 2001;
Baker and Lemon, 2000). We are also pursuing this question using experimental
data from the prefrontal and dorsal extrastriate visual cortices (Nakahara et al.,
2001).

This study represented spike firing patterns by a binary vector; in other
words, we dissected continuous time into short time bins. Obviously, we should
be careful about how much information we lose by this dissection (Grün, Dies-
mann, Grammont, Riehle, & Aertsen, 1999) or by the use of a short time window
(Panzeri, Schultz, et al., 1999; Panzeri, Treves, et al., 1999; Panzeri & Schultz,
2001). The later studies use a Taylor series expansion of MI with respect to
time. In contrast, the decomposition of different order interactions and MI in
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Figure 6: Example of a 10-neuron case to find an interesting set of neurons. The
spikes of 10 neurons were generated and estimated in a similar manner to Fig-
ure 2. The number of trials was set as 1200. The spike probabilities are assumed
to be homogeneous so that we define only 10-dimensional coordinates, which
we indicate here by η coordinates. In all periods (a–c), η1 is fixed as 0.010. In pe-
riod a, the firing is assumed to be independent, that is, ηk = ηk

1 (k = 2, . . . , 10). In
period b, ηk = 0.0125 × (0.285)k−2 (k = 2, . . . , 10). In period c, η2 = 0.0125, η3 =
0.0020, and ηk = 0.0003 × (0.5)k−4 (k = 4, . . . , . . . , 10), to which there are very
small adjustments. (A) Mean firing frequency (of the first order). (B) Mean firing
frequencies of the second, third, fourth, and fifth orders, which appear from top
to bottom. (C) Theoretically expected p-values in χ2(1) for the fourth (indicated
by a dashed line), seventh (a solid line), and tenth orders (dotted line). (D) Es-
timated p-values for the fourth (dashed line) and seventh orders (by solid line).

our study is exact given a fixed time bin width, regardless of its size. Math-
ematically speaking, coincident firing depends on time bin width. The effect
of a given bin width in analyzing data is an important subject but not ad-
dressed in this study. In addition, we did not address bias correction of the
estimates. MI is known to be overestimated given the limited number of sam-
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ples. A correcting procedure is needed to estimate MI in our method, too. We
can use, in principle, the previously proposed procedure (Optican, Gawne,
Richmond, & Joseph, 1991; Kjaer, Hertz, & Richmond, 1994; Treves & Panz-
eri, 1995; Golomb, Hertz, Panzeri, Treves, & Richmond, 1997; Panzeri & Treves,
1996).

We discussed the method only in cases where no event has zero proba-
bility (i.e., pA �= 0), for which our theory is mathematically rigorously valid.
However, in cases where some event has zero probability, we need some care.
Since the dimension of binary vector increases rapidly, this issue may be a con-
cern. There are at least two cases. In the first case, where we know a certain
firing structure (e.g., for some specific sets of neurons), we can incorporate
its knowledge in our estimation. Hence, if we know a priori that some prob-
abilities are zero, the method is applicable with a little modification. In the
second case where some zero probabilities are found in estimates due to a
limited number of samples, we emphasize that it is a limitation of data but
not of the method of analysis. For example, we cannot estimate all 1023 co-
ordinate components of 10 neurons given only 800 samples. Yet we may still
want to overcome such a situation in some ways. As one solution, we dis-
cussed using the assumption of homogeneous firing. Most studies in liter-
ature simply ignore the higher-order interaction, say, triplewise and higher,
and focus on analyzing the first-order and pairwise interaction. This corre-
sponds to assuming θ k = 0 (k ≥ 3) (i.e., a partial homogeneous assump-
tion). Certainly, the method can be used with such an assumption. Further-
more, although the decomposition was shown only for the mixed coordinates
of a type ζ k = (ηk−; θ k+) in our study, the decomposition property has more
generality. Any combination of subsets ηA and θB that spans the probabil-
ity space of Sn can be used similarly. Extension of the method from binary
to k-discrete random variable vectors is also possible. In addition, we note
that other approaches are also available, including some bootstrap methods
and a Bayesian framework (Del Prete & Martingon, 1998; Martignon et al.,
2000).

Finally, our measure is model free, so it can be used without any assump-
tion of the underlying neuron models and their connections. At the same time,
even if the significant events were detected by the measure, the measure itself
cannot determine the underlying neural interaction. This is a different issue but
important in its own right, and we are interested in it too (Amari, Nakahara,
Wu, & Sakai, in press). Overall, the method presented in the article is just a mea-
sure. Its ultimate test is whether it will lead to exciting findings in neuroscience
(Nakahara et al., 2001).
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