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Abstract

The natural gradient method has an ideal dynamic behavior which resolves the slow learning speed of the standard gradient descent

method caused by plateaus. However, it is required to calculate the Fisher information matrix and its inverse, which makes the implementa-

tion of the natural gradient almost impossible. To solve this problem, a preliminary study has been proposed concerning an adaptive method

of calculating an estimate of the inverse of the Fisher information matrix, which is called the adaptive natural gradient learning method. In

this paper, we show that the adaptive natural gradient method can be extended to be applicable to a wide class of stochastic models:

regression with an arbitrary noise model and classi®cation with an arbitrary number of classes. We give explicit forms of the adaptive natural

gradient for these models. We con®rm the practical advantage of the proposed algorithms through computational experiments on benchmark

problems. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Feedforward neural networks or multilayer perceptrons

have been applied successfully to solve a variety of dif®cult

and diverse problems by using the gradient descent learning

method known as the error backpropagation algorithm.

However, it is known that the backpropagation method is

extremely slow in many cases, which has been a serious

obstacle when we use neural networks in real world appli-

cations. This slow convergence is caused by the plateau

phenomenon which is ubiquitous in the backpropagation

type learning, taking a dominant part in the whole learning

process (Saad & Solla, 1995).

Although there have been a lot of techniques for accel-

erating convergence, most of them cannot solve the plateau

problems. The adaptive learning rate and the momentum

method can provide somewhat improved learning speed

(LeCun, Bottou, Orr, & MuÈller, 1998), but it cannot avoid

plateaus because they basically use the same direction as the

one used in the standard backpropagation algorithm. The

second order methods such as the Newton method, conju-

gate gradient, and Quasi-Newton method (e.g. BFGS) are

alternative approaches which try to ®nd the steepest descent

direction to the optimal point at a given position (LeCun et

al., 1998). However, since these methods are based on the

quadratic approximation, it works well only in a small

neighborhood of the optimal point. In addition, most of

the second order methods can only be applied to the

batch-mode learning, which is not appropriate for a large

data set. Recently, Ampazis, Perantonis, and Taylor (1999)

proposed a new method which uses eigenvalues of the

Hessian matrix of the cost function to avoid or escape

from plateaus. However, the computational cost will be

very large for large-scale problems.

On the other hand, the concept of natural gradient was

proposed to de®ne the steepest direction of a loss function in

the parameter space based on information geometry (Amari,

1985; Amari & Nagaoka, 2000). Amari (1998) showed that

the natural gradient achieves Fisher ef®ciency, and Amari

(1998) and Yang and Amari (1998) suggested that the

natural gradient algorithm has the possibility of avoiding

or alleviating plateaus. This possibility has been theoreti-

cally con®rmed by statistical±mechanical analysis (Rattray,

Saad, & Amari, 1998; Rattray & Saad, 2000). Comparing

with other second-order on-line methods, the natural gradi-

ent method can give a more general learning scheme in the

sense that it can be applied for various error functions.
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Moreover, it has a theoretically rigorous justi®cation

(Rattray & Saad, 2000). Rattray and Saad (1998) also

analyzed the dynamics of a number of second order on-

line learning algorithms and the natural gradient learning

algorithm and showed the superiority of natural gradient

learning method in the transient dynamics of learning.

However, there are some problems concerning the imple-

mentation of the natural gradient learning method. Firstly, it

is required to know the input distribution in order to get the

explicit form of the Fisher information matrix which is

essential to get the natural gradient. This information is

hardly given in practical applications. In addition, even

though we know the input distribution, inverse operation

on the Fisher information matrix is necessary at each learn-

ing step, which is very time consuming when the number of

parameters is large.

To solve these problems, Amari, Park, and Fukumizu

(2000) proposed an adaptive method of obtaining an esti-

mate of the natural gradient (adaptive natural gradient

method) without any information on the input distribution

and inverse operation on the Fisher information matrix.

They gave an explicit form of the adaptive natural gradient

learning method for the single-output stochastic multilayer

perceptron model with additive Gaussian noise. Since the

natural gradient learning can be applied to various stochas-

tic models, the adaptive natural gradient learning can also be

applied to them. The more appropriate model we use for a

given problem, the better performance we can expect.

The purpose of this paper is to extend the adaptive natural

gradient method to various stochastic models used in prac-

tical applications. More speci®cally, we extend the method

to be applicable to more general classes of multi-dimen-

sional regression and classi®cation problems. In the case

of regression, we introduce stochastic models having

general probability functions other than the Gaussian one.

This corresponds to a general loss function other than the

squared error. In the case of classi®cation, given an input,

the output of the underlying network is required to generate

the probability distribution of its classes. We take the Kull-

back±Leibler error criterion to train the network, and gener-

alize our method to be applicable to such cases. We give a

general description of the adaptive natural gradient method

for stochastic neural networks, and give its explicit learning

algorithms for the typical stochastic models used in practi-

cal applications of neural networks. We also conduct

computational experiments using the proposed algorithms

to show their advantage in practical problems. The results

show that the present methods have very fast convergence

because they are free of plateau phenomena, showing their

practical ef®ciency.

2. Adaptive natural gradient learning

2.1. Adaptive natural gradient for stochastic neural

networks

Before giving various forms of adaptive natural gradient

descent learning, let us recapitulate the natural gradient

learning algorithm brie¯y. Natural gradient learning is a

kind of stochastic gradient descent learning method. We

consider the space of related probability density functions

(pdfs) {p�x; y; u�uu [ RM} of stochastic neural networks

with input x, output y and a parameter vector u: The goal

of learning is to ®nd the optimum up that maximizes the log

likelihood function. The loss function of learning can be

de®ned as

l�x; y; u� � 2log p�x; y; u� � 2log p�yux; u�q�x� �1�

� 2log p�yux; u�2 log q�x�; �2�
where q(x) is the pdf of the input x and p�yux; u� the condi-

tional pdf of y conditioned on x. Using this loss function, the

ordinary gradient 7l is calculated and the learning algorithm

is given by

ut11 � ut 2 ht7l�u t� � ut 2 ht

2l�xt; yt;ut�
2ut

; �3�

where ht is a learning rate.

The natural gradient learning method is based on the fact

that the space of p�x; y; u� is a Riemannian space in which

the metric tensor is given by the Fisher information matrix

G�u� de®ned by

G�u� �
ZZ 2 log p

2u

2 log p

2u

� �T

p�yux;u�q�x�dy dx �4�
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Nomenclature

x; y; u Input, output, and parameter vectors of a network, respectively

p�x; y; u�; r�x; y; u�; q�x� Probability density function

l�x; y;u� Loss function

7l; ~7l; 7̂l Ordinary gradient, natural gradient, and adaptive natural gradient of loss function, respectively

G�u�; Ĝ Fisher information matrix and its estimation

fi�x;u� A deterministic function for ith output node of a network

F�x;u� A vector of fi�x;u�; i � 1; 2;¼;L

L, M The number of output nodes and the number of parameters of a network

ht;at; et User de®ned parameters in learning



� Ex Eyux;u
2 log p�yux; u�

2u

2 log p�yux; u�
2u

� �T
" #" #

; �5�

where Ex�´� and Eyux;u�´� denote the expectation with respect

to q(x) and p�yux;u�; respectively, and T denotes the trans-

position. Using this Fisher information matrix, we can

obtain the natural gradient ~7l and its learning algorithm

for the stochastic neural networks

~7l�u� � G 21�u�7l�u� � G 21�u� 2l�x; y;u�
2u

; �6�

ut11 � ut 2 ht
~7l�u t�: �7�

Even though it has been proved that the natural gradient

learning algorithm gives a Fisher ef®cient on-line estimator,

there are some problems in the implementation of these

algorithms. Firstly, we have to know q(x) to get an explicit

form of G�u�; but this information is hardly given in prac-

tical applications. In addition, even if we can get the explicit

form of G�u�; the inversion of G�u� is necessary in order to

get the natural gradient at each learning step, which is very

time consuming. To solve these practical problems, Amari

et al. (2000) proposed an ef®cient method of directly obtain-

ing an estimate of G21�u� for the stochastic neural network

having one output node with Gaussian random noise. The

present paper gives a more general perspective on the adap-

tive natural gradient method. It will be extended to a general

form for stochastic neural networks represented by a general

conditional pdf of output y given input x speci®ed by the

structure of the network. Our ®nal purpose is to develop the

explicit algorithms of adaptive natural gradient learning for

various stochastic models and loss functions which are

widely used in practical applications. To this end, we give

a general description of adaptive natural gradient learning

for various stochastic neural networks in this section.

Let us assume a stochastic network with L output nodes

and M parameters. The network ®rst calculates a determi-

nistic input±output function f �x;u� determined by the

network structure, and then the output y is emitted stochas-

tically subject to the conditional probability density of the

form

p�yux; u� � r�yuf ��x; u���; �8�

f �x; u� � � f1�x; u�;¼; fL�x;u��: �9�
Here the function r de®nes the stochastic property of the

network.

From the de®nition of the Fisher information matrix of

Eq. (5), taking the expectation on Eyux;u�´�; we have a special

type of the Fisher information matrix written as

G�u� � Ex�7FR�7F� T�; �10�
where

7F � �7f1�x;u�;¼;7fL�x; u��; �11�

R � �Rij� � Eyux;u
1

r2

2r

2z

2r

2z

� �T� �� �
; �12�

z � f �x; u�: �13�
The adaptive method of obtaining an estimate Ĝt11 of G�ut�
is given by

Ĝt11 � �1 2 et�Ĝt 1 et7FtR
1=2�7FtR

1=2�T; �14�

7Ft � �7f1�xt;ut�;¼;7fL�xt; ut��; �15�
where R1=2 denotes the square root of the positive symmetric

matrix R and et is a time dependent learning rate. Typical

examples are et � c=t and et � e: From this type of equa-

tion, the inverse matrix Ĝ21
t can be directly obtained by

Ĝ21
t11 � 1

1 2 et

Ĝ21
t 2

et

1 2 et

Ĝ21
t 7FtR

1=2��1 2 et�I

1 etR
1=27F T

t Ĝ21
t 7FtR

1=2�21R1=27F T
t Ĝ21

t : �16�
One can see that there is still an inverse operation as well

as a matrix square-root operation in Eq. (16). However, the

size of matrix R1=27F T
t Ĝ21

t 7FtR
1=2 is L £ L whereas the size

of the Fisher information matrix is M £ M: Since the

number of output nodes is much smaller than the number

of parameters in general, this inverse operation is not so

time consuming. In addition, the square-root part may disap-

pear when we use some types of p�yux; u� in practical appli-

cations, as we will show later. In addition, in practical

applications, et is small so that Eq. (16) is well approxi-

mated to be the simpler form

Ĝ21
t11 � �1 1 et�Ĝ21

t 2 etĜ
21
t 7FtR7F T

t Ĝ21
t �17�

by neglecting the small value of the order o�et�:
The ®nal form of the adaptive natural gradient 7̂l and its

learning algorithm can be given by

u t11 � ut 2 ht7̂l�ut� � ut 2 htĜ
21
t117l�ut�: �18�

In the implementation of the adaptive natural gradient, we

need to ®nd the explicit form of R in Eq. (14) which is

determined by the conditional probability distribution func-

tion p�yux;u�: The function p�yux; u� or r�yu f �x;u�� can be

de®ned in various forms according to the problems we want

to solve, and we expect a better performance using an appro-

priate type of p�yux; u�: Problems can be divided into two

classes based on the characteristics of the stochastic model.

They are regression problems and classi®cation problems.

In this paper, we de®ne the representative types of p�yux; u�
for regression problems and classi®cation problems, respec-

tively, and give the explicit form of adaptive natural gradi-

ent learning for each class of problems.

2.2. Adaptive natural gradient for regression problems

There are many applications which can be considered as

regression problems. Function approximation, time series
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prediction and non-linear system identi®cation are typical

examples. A common characteristic of these problems is

that the output y takes continuous values. From this fact,

we can use the following type of stochastic network:

y � f �x;u�1 j; �19�

y � �y1;¼yL�T; f � � f1;¼fL�T; j � �j1;¼jL�T:
with an additive noise or ¯uctuation j: The value of each

output node yi is decided by the sum of the output of deter-

ministic function fi�x;u� and additional random noise j i

which is subject to an input-independent pdf ri�j i�: The

deterministic function fi�x;u� is the value of the ith output

node of the feedforward neural network, and can be written

by

fi�x;u� �
Xo

j

vijs�w T
j x 1 bj�1 boi

�20�

where vij, wj, bj, boi
are the weight parameters of the

network. If we assume a different structure of the network,

fi�x;u� can be written in a different form, but the Fisher

information matrix G�u� of Eq. (5) and adaptive estimation

method of Eq. (14) do not depend on the explicit form of

fi�x;u� directly. Assuming that each noise element j i is

mutually independent, we can get the conditional probabil-

ity density function of output y given input x and its loga-

rithm as follows:

p�yux;u� �
YL

i

ri�yi 2 fi�x;u��; �21�

log p�yux; u� �
XL

i

log ri�yi 2 fi�x; u��: �22�

The negative of log likelihood gives a loss function for this

model

l�x; y; u� � 2
XL

i

logri�yi 2 fi�x;u��: �23�

Using this stochastic model, we can get the following

theorem.

Theorem 1. Let the conditional probability distribution of

the output y of a stochastic model given input x be

p�yux;u� �
YL

i

ri�yi 2 fi�x;u��: �24�

Then the Fisher information matrix G�u� and the adaptive

estimate Ĝ21
t11 of the inverse of Fisher information matrix is

given by

G�u� � Ex�7 ~F�7 ~F� T�; �25�

Ĝ21
t11 � 1

1 2 et

Ĝ21
t 2

et

�1 2 et� Ĝ21
t 7 ~Ft��1 2 et�I

1 et7 ~F T
t Ĝ21

t 7 ~Ft�217 ~F T
t Ĝ21

t �26�
or by neglecting the small value of the order o�et� under the

assumption of small et;

Ĝ21
t11 � �1 1 et�Ĝ21

t 2 et�Ĝ21
t 7 ~Ft��Ĝ21

t 7 ~Ft�T; �27�
where

7 ~Ft

�
�����������������
Ej1

r 01
r1

 !2" #vuut 7f1�xt; ut�;¼;

�����������������
EjL

r 0L
rL

 !2" #vuut 7fL�xt; ut�
0B@

1CA:
�28�

Note that Ej i
��r 0i=ri�2� does not depend on x and u , and

can be calculated if the noise model is speci®ed.

In addition, we can get a simpler form if we add one more

assumption that all ri�j i� are the same, represented by a

common r�j�. For this case, we can get the following

corollary.

Corollary 1. Let the conditional probability distribution

of the output y of a stochastic model given input x be

p�yux; u� �
YL

i

r�yi 2 fi�x; u��: �29�

Then the Fisher information matrix G(u) and the adaptive

estimate Ĝ21
t11 of the inverse of Fisher information matrix is

given by

G�u� � Ej��r 0=r�2�Ex�7F�7F� T�; �30�

Ĝ21
t11 � 1

1 2 et

Ĝ21
t 2

et

�1 2 et� Ĝ21
t 7Ft��1 2 et�I

1 et7F T
t Ĝ21

t 7Ft�217F T
t Ĝ21

t �31�
or by neglecting the small value of the order o�et� under the

assumption of small et;

Ĝ21
t11 � �1 1 et�Ĝ21

t 2 et�Ĝ21
t 7Ft��Ĝ21

t 7Ft�T; �32�
where

7Ft � �7f1�xt;ut�;¼;7fL�xt;ut��: �33�

Eq. (31) can be given by ignoring the constant part

Ej��r 0=r�2� of Eq. (30) which has no in¯uence on the direc-

tion of the gradient. We can see that the matrix square root

operation of Eq. (16) disappears in the forms of Eqs. (26)

and (31).

For a further simple case where j is subject to the
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Gaussian distribution with zero mean and variance s 2, we

can get the same Fisher information matrix as Eq. (30)

except that Ej��r 0=r�2� is replaced by 1=s 2
; and exactly the

same form as Eq. (31) for adaptive estimation. We should

note here that the explicit form of adaptive natural gradient

learning using Eq. (31) has the same form as that of the on-

line Gauss±Newton method which is usually applied only to

the sum-of-square error function (see LeCun et al., 1998 for

details). The sum-of-square error function can be given

under the last assumption above, i.e. j is subject to the

Gaussian noise with a scalar covariance matrix. As we

derived above, however, we can get the on-line Gauss±

Newton learning method from a more general type of loss

function which can be written by

l�x; y; u� � 2
XL

i

log r�yi 2 fi�x;u��: �34�

Of course, if we use a different stochastic model, we can

get a different explicit form of adaptive natural gradient

learning. The model that we use in this section is clearly

sensible for regression problems, but is not always good for

the different types of application problem. We may say

therefore that the adaptive natural gradient algorithm is a

generalization of the Gauss±Newton method with solid

theoretical justi®cation.

2.3. Adaptive natural gradient for classi®cation problems

Whereas each output node of a network for regression

problems has in general a continuous value decided by a

deterministic function and an additional noise, the target

output values for classi®cation problems are discrete, repre-

senting classes of patterns. The models in Section 2.2 (Eq.

(21)) do not provide a good description of their distribution.

We therefore need quite a different type of stochastic model.

In this section, we use Bayesian stochastic models for clas-

si®cation problems (Bishop, 1995), and give explicit forms

of adaptive natural gradient learning for the models.

2.3.1. Case of two classes

Let us ®rst consider relatively simple problems involving

only two classes: C1 and C2. To categorize x into the two

classes, a network with single output would be enough by

using a target coding scheme where y � 1 is used for class

C1 and y � 0 for class C2. We use the deterministic function

f �x; u� of the form

f �x;u� � s�neto� � s
X

j

vjs�w T
j x 1 bj�1 bo

0@ 1A; �35�

where s(´) is the logistic sigmoidal function and vj;wj; bj

are weight parameters related to hidden node j. We can

consider this output value as the posterior probability

P�C1ux� for class C1. The posterior probability for class C2

is given by 1 2 f �x; u�; and the conditional probability

distribution function of the ®nal output y given x can be

written as

p�yux; u� � f �x;u�y�1 2 f �x;u��12y
: �36�

By ignoring log q(x) in Eq. (2) which is independent of u ,

the loss function can be given by

l�x; y;u� � 2y log f �x; u�2 �1 2 y�log�1 2 f �x; u��: �37�
This type of loss function is called cross entropy function

(see Bishop, 1995 for details), and it was con®rmed by

computational experiments that one can get better perfor-

mances for classi®cation problems by using the cross

entropy loss function than the sum of square loss function

(Joost, 1996).

Using this stochastic model, we can get the following

theorem.

Theorem 2. Let the conditional probability distribution of

the output y of a stochastic model given input x be

p�yux; u� � f �x;u�y�1 2 f �x;u��12y
: �38�

Then, the Fisher information matrix G(u) and the adaptive

estimate Ĝ21
t11 of the inverse of Fisher information matrix is

given by

G�u� � Ex

1

f �x;u��1 2 f �x; u��
2f

2u

2f

2u

� �T
" #

; �39�

Ĝ21
t11 � 1

1 2 et

Ĝ21
t

2
et

�1 2 et�
Ĝ21

t 7ft�7ft�TĜ21
t

�1 2 et�ft�1 2 ft�1 et7f 0tĜ21
t 7ft

�40�

or by neglecting the small value of the order o�et� under the

assumption of small et;

Ĝ21
t11 � �1 1 et�Ĝ21

t 2 et

1

ft�1 2 ft� Ĝ21
t 7ft�7ft�TĜ21

t ; �41�

where

7ft � 2f �xt; ut�
2ut

and ft � f �xt; ut�:

2.3.2. Case of multiple classes

Let us now consider a more general case that more than

two classes are involved. In the case of L-classes classi®ca-

tion problems, we need a network with L output nodes so

that each output node i represents each class Ci. We use the

target coding scheme where yi � dil for class Cl, such that

the value of the ith output node, fi�x;u�; can be considered as

representing the posterior probability P�Ciux� for class Ci.

The conditional distribution can therefore be written as

p�yux; u� �
YL

i�1

� fi�x;u��yi : �42�
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Since the output values fi�x; u� are interpreted as probabil-

ities, they must lie in the range [0,1], and their sum must be

equal to 1. This can be achieved by using a generalized form

of the logistic function sg de®ned as

fi�x;u� � sg�neti� � exp�neti�XL
l�1

exp�netl�
: �43�

where neti is the value of the weighted sum for the ith output

node. This scheme was used in Amari (1993). This type of

activation function sg is known as the normalized exponen-

tial or softmax activation function (Bishop, 1995). The

difference between the true conditional distribution p�iux�
and the distribution fi�x; u� given by the network may be

measured by the Kullback±Leibler divergence

K�u� � Eq�x�
X

i

p�iux�log
p�iux�

fi�x;u�

" #
: �44�

The expected loss L(u ) or risk function is the expectation of

the following loss:

l�x; y; u� � 2
XL
i�1

yi log fi�x;u� �45�

except for the entropy term independent of u . Hence, we

have the stochastic descent learning method based on Eq.

(45). This was proposed by Amari (1993) (see also Bishop

(1995)). Here, we give its adaptive natural gradient version.

Using this stochastic model, we can get the following

theorem.

Theorem 3. Let the conditional probability distribution of

output y of a stochastic model given input x be

p�yux;u� �
YL

i�1

� fi�x;u��yi : �46�

Then the Fisher information matrix G(u) and the adaptive

estimate Ĝ21
t11 of the inverse of Fisher information matrix is

given by

G�u� � Ex

XL
i�1

1

fi�x;u�
2fi
2u

2fi
2u

� �T
" #

; �47�

Ĝ21
t11 � 1

1 2 et

Ĝ21
t

2
et

�1 2 et� Ĝ21
t 7 ~Ft �1 2 et�I 1 et7 ~F T

t Ĝ21
t 7 ~Ft

� �21
7 ~F T

t Ĝ21
t

�48�
or by neglecting the small value of the order o�et� under the

assumption of small et;

Ĝ21
t11 � �1 1 et�Ĝ21

t 2 et�Ĝ21
t 7 ~Ft��Ĝ21

t 7 ~Ft�T; �49�
where

7 ~Ft � 7f1�xt;ut������������
f1�xt;ut�
p ;¼;

7fL�xt;ut������������
fL�xt; ut�
p

� �
: �50�

3. Experimental results

To check the performance of the proposed algorithms, we

conducted computational experiments using the stochastic

models that we discussed in the previous section. We used a

well-known benchmark problem for each stochastic model,

and compared the performance of the adaptive natural

gradient learning method with the ordinary gradient learn-

ing method with momentum. In each experiment, the initial

values of parameters were selected randomly subject to the

uniform distribution on [20.1, 0.1]M, and we conducted ten

runs with different initial values for each algorithm and each

problem to get an average result. Each learning process

stops when the mean square error (MSE) becomes smaller

than a desired value, or the number of learning cycle

exceeds an appropriate large number. The learning rate h t

for each algorithm and momentum rate a t for the ordinary

gradient learning were adjusted through experiments in

order to get fast convergence and a high rate of success.

The value of e t for adaptive natural gradient learning was

set to 1/t.

3.1. Regression problem

For the regression problem, we assume that the random

output noise vector is Gaussian with a scalar covariance

matrix, so that the loss function becomes the squared-error

function. We can therefore use the explicit form of the

adaptive natural gradient in Eq. (31). We used a multilayer

perceptron with ten hidden units in one hidden layer. The

application problem used for the experiment is the Mackey±

Glass chaotic time series prediction which is a well-known

benchmark problem. The time series data were generated

H. Park et al. / Neural Networks 13 (2000) 755±764760

Fig. 1. Mackey±Glass time series.



from the equation

x�t 1 1� � �1 2 b�x�t�1 a
x�t 2 t�

1 1 x�t 2 t�10
; �51�

where a � 0:2; b � 0:1; t � 17: The input values of the

network are given from four previous time series data x(t),

x�t 2 6�; x�t 2 12�; x�t 2 18�; and the output value of the

network is given from one future time series datum x�t 1 6�:
We used 500 data which were generated at t � 200;¼; 700;

for training, and another 500 data at t � 5000;¼; 5500 were

used for test. The time series at t � 200;¼; 700 is shown in

Fig. 1.

We stopped the learning process when the MSE for the

training data became to be smaller than 2 £ 1025
: The aver-

age results over the 10 independent runs are shown in Table

1. For this problem, the adaptive natural gradient showed

more than 1600 times faster convergence than the ordinary

gradient learning in the sense of the learning cycle. In the

sense of processing time, the proposed learning algorithm

was more than 15 times faster than the ordinary one. In

addition, the adaptive natural gradient learning method

gave a smaller prediction error for the test data. Fig. 2

shows the learning curves of the two algorithms, from

which we can see that the plateaus which appear in the

ordinary gradient learning mostly do not exist in the adap-

tive natural gradient learning.

3.2. Classi®cation problem

3.2.1. Case of two classes

Using the stochastic model of Eq. (36), we conducted

experiments on an extended exclusive OR problem which

is a benchmark problem for pattern classi®ers. The pattern

set to be classi®ed is shown in Fig. 3. It consists of nine

clusters each of which is assigned to one of the two classes

marked by the different symbols W and 1. Each cluster was

generated subject to Gaussian distribution speci®ed by a

mean and a common covariance matrix. The pattern set

used for training has 1800 elements consisting of the nine

clusters each of which contains 200 elements generated

from respective distributions. The pattern set used for test

has 900 elements that were similarly generated.

Since there are some overlapped parts between two differ-

ent clusters (Fig. 3), it is hard to expect a very small error.

Considering the rate of the overlapped part over the whole

pattern set, we regarded a learning process as a success

when the MSE became smaller than 0.03.

The average results over 10 independent runs are given in

Table 2. For this problem, it is shown that the adaptive

natural gradient learning method can give more than 250

times faster convergence than the ordinary gradient learning

method in the sense of the learning cycle. In the sense of

processing time, the proposed learning is more than 10 times

faster than the ordinary one. It is also con®rmed that this fast

convergence speed can be achieved by avoiding plateaus in

which the ordinary gradient method was trapped (see Fig.

4). The middle curve in Fig. 4 is the result of the adaptive

natural gradient method for the loss function of squared

errors which corresponds to the stochastic model of additive

Gaussian random noise for regression. This model was used
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Table 1

Results on the Mackey±Glass time series prediction problem (OGL: the

ordinary gradient learning, ANGL: the adaptive natural gradient learning)

OGL ANGL

Learning rate (h) h � 0:1; a � 0:1 h � 0:005; et � 1=t

Number of hidden nodes 10 10

Rate of success 10/10 10/10

Learning cycle for MSE

,2 £ 1025

836,480 502.2

MSE for test data 7:6265 £ 1025 2:4716 £ 1025

Processing time (relative

to OGL)

1.0 0.064

plateau

M
S

E
(lo

g
sc

al
e)

Learning Cycle (log scale)

ANGL
OGL

Fig. 2. Learning curves for the Mackey±Glass problem (OGL: the ordinary gradient learning, ANGL: the adaptive natural gradient learning).



in Amari et al. (2000). The present paper used a more appro-

priate stochastic model for the same problem.

3.2.2. Case of multiple classes

We used the IRIS ¯ower classi®cation problem in order to

check the performance of the adaptive natural gradient

method derived from the stochastic model (Eq. (42)) for

problems involving multiple classes. The IRIS problem,

which is a well-known benchmark problem, is to classify

three different species of the iris ¯owers based on the four

attributes on the shape of the plant. We therefore need a

network structure with four input nodes and three output

nodes. From the benchmark data set which consists of 150

data (50 data for each class), we randomly selected 30 data

for each class for training, and other 60 data were used for

test. We stopped a learning process when MSE became

smaller than 1024.

The average results are compared in Table 3. In the sense

of the learning cycle, the adaptive natural gradient method is

more than 700 times faster than the ordinary gradient

method as well as that the adaptive natural gradient method

can give higher classi®cation rates for the test data than the

ordinary one. In the sense of the processing time, the

proposed method is more than 10 times faster than the ordin-

ary one. Showing the learning curves of the two algorithms

in Fig. 5, we con®rm that the adaptive natural gradient can

avoid or alleviate plateaus in which the ordinary gradient

learning is trapped.

4. Conclusions and discussion

In this paper, we gave the general description of the

H. Park et al. / Neural Networks 13 (2000) 755±764762

Fig. 3. Extended XOR problem.

Table 2

Results on the extended XOR classi®cation problem (OGL: the ordinary

gradient learning, ANGL: the adaptive natural gradient learning)

OGL ANGL

Learning rate h � 0:005; a � 0 h � 0:00002; et � 1=t

Number of hidden nodes 8 8

Rate of success 9/10 10/10

Learning cycle for

MSE ,0.03

182,440 686.2

Classi®cation rate

(Training)

95.39% 96.12%

Classi®cation rate

(Test)

94.77% 94.71%

Processing time

(relative to OGL)

1.0 0.086

Table 3

Results on the IRIS pattern classi®cation problem (OGL: the ordinary

gradient learning, ANGL: the adaptive natural gradient learning)

OGL ANGL

Learning rate h � 0:02; a � 0 h � 0:005; et � 1=t

Number of hidden nodes 4 4

Rate of success 10/10 10/10

Learning cycle for MSE ,1024 83,586.0 107.8

Classi®cation rate (Training) 100% 100%

Classi®cation rate (Test) 94.38% 94.99%

Processing time

(relative to OGL)

1.0 0.097



adaptive natural gradient methods, and developed the expli-

cit algorithms of adaptive natural gradient learning for the

representative stochastic models used in practical applica-

tions. Using the proposed learning algorithm, we conducted

computational experiments on well-known benchmark

problems and con®rmed that it can be applied to various

types of application problem successfully. In the sense of

convergence steps, the adaptive natural gradient learning

gave remarkable improvement over the ordinary gradient

learning, and in the sense of the processing time, the

proposed method showed superiority to the ordinary gradi-

ent method, too. Through the learning curves given from the

experiments, we also con®rmed that the adaptive natural

gradient learning can avoid or alleviate plateaus.

H. Park et al. / Neural Networks 13 (2000) 755±764 763

plateau

OGL
SANGL
ANGL
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Fig. 4. Learning curves for the extended XOR problem (OGL: the ordinary gradient learning, SANGL: the adaptive natural gradient learning with squared

error, ANGL: the adaptive natural gradient learning with cross entropy error).
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Learning Cycle (log scale)
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Fig. 5. Learning curves for the IRIS problem (OGL: the ordinary gradient learning, ANGL: the adaptive natural gradient learning).
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