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Abstract

We propose a method of modifying a kernel function to improve the performance of a support vector machine classifier. This is based on
the structure of the Riemannian geometry induced by the kernel function. The idea is to enlarge the spatial resolution around the separating
boundary surface, by a conformal mapping, such that the separability between classes is increased. Examples are given specifically for
modifying Gaussian Radial Basis Function kernels. Simulation results for both artificial and real data show remarkable improvement of
generalization errors, supporting our id€a1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction mapped patterng(x) explicitly, and instead we only need
the dot products between mapped patterns. They are directly
Support Vector Machine (SVM) is a new promising available from the kernel function which genera¢x). By
pattern classification technique proposed recently by choosing different kinds of kernels, SVM can realize Radial
Vapnik and co-workers (Boser, Guyon & Vapnik, 1992; Basis Function (RBF), Polynomial and Multi-layer Percep-
Cortes & Vapnik, 1995, and Vapnik, 1995). Unlike tradi- tron classifiers. Compared with the traditional way of imple-
tional methods which minimize the empirical training error, menting them, SVM has an extra advantage of automatic
SVM aims at minimizing an upper bound of the general- model selection, in the sense that both the optimal number
ization error through maximizing the margin between the and locations of the basis functions are automatically
separating hyperplane and the data. This can be regarded asbtained during training (S¢hampf et al., 1996).
an approximate implementation of the Structure Risk Mini-  The performance of SVM largely depends on the kernel.
mization principle. What makes SVM attractive is the prop- Smola, Schitkopf and Miller (1998) elucidated the relation
erty of condensing information in the training data and between the SVM kernel method and the standard regular-
providing a sparse representation by using a very smallization theory (Girosi, Jones & Poggio, 1995). However,
number of data points (SVs) (Girosi, 1998). there are no theories concerning how to choose good kernel
SVM is a linear classifier in the parameter space, but it is functions in a data-dependent way. The present paper is a
easily extended to a nonlinear classifier of ghemachine first step to this important problem. We propose an informa-
type (Aizerman, Braverman & Rozonoer, 1964) by mapping tion-geometric method of modifying a kernel to improve the
the space& = {x} of the input data into a high-dimensional performance. This is based on the structure of the Rieman-
(possibly infinite-dimensional) feature spaEe= { ¢p(X)}. nian geometry induced in the input space by the kernel. A
By choosing an adequate mappinfy, the data points  nonlinear functiongp embeds the input spa&= {x} in a
become linearly separable or mostly linearly separable in high-dimensional Euclidean or Hilbert feature sp&ce=
the high-dimensional space, so that one can easily apply the{ ¢} as a curved submanifold. This embedding induces a
structure risk minimization. We need not compute the Riemannian metric in the input space, which shows how a
small volume element in the input space is enlarged or
reduced in the feature space. The idea is as follows: in
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neighborhoods of support vectors which are located closely The kernel SVM begins with a kern&l(x, x’) to obtain

to the boundary surface. This makes it possible to enlargethe nonlinear mapping(x). The form of the SVM solution

the spatial resolution around the boundary so that the separturns out to be

ability of classes is increased. To implement this idea, we _

use a conformal mapping of the input Riemannian space.f(x) - iezsvhiy‘K(X"X)ero’ ®

This will be realized approximately by a conformal trans-

formation of a kernel. where summation runs over all the support vectors,tal
The practical training process consists of two steps: In the & positive number representing the contribution of ithe

first step a primary kernel is used to obtain support vectors. SUpport vector (Boser et al., 1992, Cortes & Vapnik, 1995).

The kemel is then modified conformally in a data dependent Thehis are derived as dual variables to solve the problem of

way by using the information of the support vectors. In the minimizing 1{w]°. The bias ternb, can be found by using

second step the modified kernel is used to obtain the final 2ny SUPpOrt VECtoXs, as

classm.er. Examples are _glven.specmcally for modlfqug o = Yoy— Z hyiK (X, Xsy). @

Gaussian RBF kernels. Simulation results for both artificial &y

and real data support our method. o )
It is interesting to note that we need not compute the

mapped patternp(x) explicitly. We only need their dot

2. The method products, which is available from the kernel functiéh
Actually, in the SVM study people work in the inverse
2.1. Geometry Of the SVM kerl’lel Way by Starting from a kerneL

) - ) Let us analyze the geometrical structure induced in the
Consider a pattern classifier, which uses a hyperplane toinput space by a kernel. The mappiggdefines an embed-
separate two classes of patterns based on given exampleamg of Sinto F as a curved submanifold. Whem is a
{x; yi} for i =1,...|, wherex; is a vector in the input space  gyglidean or Hilbert space, a Riemannian metric is thereby
S= R"andy, denotes the class index taking a vatti& or  jnquced in the spac&, where the length of a small line

—1. A nonlinear SVM maps th,(\? input datainto a high element & in Sis defined by the length in the larger
dimensional feature spade= R (N may be infinite) by SpacerF.

using a nonlinear mapping, z= ¢ (x). It then searches for Denote byz the mapped pattern afin the feature space,
a linear discriminant function i.e.,z= ¢(x). A small vector o is mapped to
f(X) = w-b(x)+b @ 9
dz=Vdx=> v d(x)dx;, (8)
|

in the feature space. Patterns are classified by the sign of i
f(x). Obviously, the classifier has a nonlinear boundary | hare
f(xX) = 0 in the input space. The SVM solution is obtained
through maximizing the margin between the separating V= (i¢(x))- 9)
hyperplane and the data, where the margin is defined as 2/ 9%
[w]. This is justified from the point of view of Structure Risk The squared length ofzd= (dz,) is written in the
Minimization principle as minimizing an upper bound of the quadratic form as
generalization error.

Let us consider a reproducing kernel functikiix, x'), |dz* = Z (dz,)? = Z g (X) dx; dx;, (10
and let its eigenfunctiong, (x) be a i

where
J KX, X )@ (X )AX" = Ay @ (X), a=12,... 2
d 9
00 = — | — 11
Then, the kernel is represented as 9 (0 (axi ¢>(x)) (ax,- ¢(X))’ D
Kx,x") = Z A @a(X)@u(X). A3) the dot denoting the summation over indexf ¢. Then x
a n positive-definite matrixG(x) = (g;(x)) is the Riemannian
We rescale functions,, as metric tensor induced irs. We show that the metric is
‘ directly derived from the kernel.
ba() = VA a@a(X) €
so that we have Theorem 1.
KXX) =D da(X)dba(X) = (X)-d(x"), (5)
a A ,
whered(x) = (¢,(X)). %00 = % ox] KO6X o (12
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Proof.
Jd 9

X x|

From Eq. (5), we have
K, x') = Vé(x)-V(x'), (13

which proves Eq. (12) O.
There are some typical kernel functions. One is radial,

Koxx) = fG k=X [P a9

which includes the Gaussian RBF kernel,

K(x,x) = e IxxIFr2, (15)
The other is functions of the inner product,

Kx,x") = f(xx) (16)

which includes the Polynomial kernel of degred
Kx,x") = (1+xx")?, and the Multi-layer Perceptron
kernel,K(x, x") = tanh(x-x"— ).

The Riemannian metric for the first case is given by
Jd 0
900 = o

!
. oX

K(X’X/)lx/:x

1
&if'( > IX—X'[?)e=x

1
-1'(3 Ix=x'P) %6 =XD (% =X x—y = —F'(0)8;.

an
In particular for the Gaussian RBF kernel, we have

g;j(X) = %&y (18
The induced metric is Euclidean, which is translational and
rotational invariant. However, this does not imply that the
image ofe is linear. It may be curved iR, having non-zero
Euler—Schouten embedding curvature but zero Rieman-
nian—Christoffel curvature.

The metric for the inner product case can be calculated in

a similar way, and is given by
g; ) = £'(0)8; +x%"(0). (19

The metric is Riemannian and rotational invariant.
The volume form in a Riemannian space is defined as

dV = /g(x) dx; ---dx,

whereg(x) = detg;(x)|. The factor,/g(x) represents how a
local area is magnified iR under the mapping . Hereafter,
we call it the magnification factor.

(20

2.2. A data dependent way for modifying a kernel

785
Riemannian distance

i

or the volume elemen{/g(x) into account, this leads us to
increase the metrig;(x) around the boundary dfx) = 0
and to reduce it around other points. More precisely, we
modify the nonlinear mapping (or the related kernek)
such that/g(x) is enlarged around the boundary. In practice,
the boundary is not known. By using the knowledge that
support vectors are (mostly) located around the boundary,
we solve the problem by increasing the metric in the neigh-
borhood of the support vectors.

A conformal transformation

i (0 = 2(x)g; (%),

gives a solution to this problem, because the metric is
enlarged by a factof2(x) at pointx. See Okamoto, Amari
and Takeuchi (1991) for another application of conformal
transformation in information geometry. In our problem,
(x) should be chosen in the way that it has large values
at the support vector positions. The advantage of a confor-
mal transformation is that it keeps angles unchanged in the
whole space and therefore won't affect much the spatial
relationship between the data points. In practice, it is diffi-
cult to find a nonlinear mapping which realizes the above
conformal transformation. Therefore, we consider a quasi-
conformal transformation obtained from modification of a
kernel.

For a positive scalar functioc(x),

(22

Definition.

K(x,x") = c()cxHK(x, x") (23)

is called a conformal transformation of a kernel by factor

c(x).

Remark. Smola et al. (1998) gave a sufficient condition
for a regularization operatdt to give a solution equivalent
to the SVM with kerneK. When a kernekK corresponds to a
regularization operatoP, its conformal transformatioi
with c(x) corresponds to the operator

P = c(x)P. (24
Theorem 2. The metricg; is changed intdj;,
G; () = G(X)G(X)+C(x) gy (X) (25)

Based on the Riemannian geometrical structure inducedby a conformal transformation of the Gaussian RBF kernel,

in the input space, we propose a method of modifying a
kernel to improve the performance of a SVM classifier.
The idea is rather straightforward. To increase the margin

or separability of classes, we need to enlarge the spatial

resolution around the boundary surfaceFn Taking the

whereci(X) = ac(X)/ox;.

It should be remarked thaf(x) = 0 at positions on which
c(x) is maximal. In order to ensure thafx) have large
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(a)

+

(b) 08 -06 04 02 0 02 04 06 08 1
Fig. 1. (a) A two-dimensional artificial data set, where the two classes are denoteddnd* = ’, respectively. The symbok’ represents the support vectors

of kernelK. The distribution of the magnification factq/ig for the three different values of (b) 0.1; (c) 0.5; and (d) 0.25. The magnitude is represented by the
gray level.

values at the support vector positions, we construct it in a wherer is a free parameter and summation runs over all the

data dependent way as support vectors.
Now, let us study how the spatial resolution is enlarged
c(x) = z hy o Ix—xilfr27? (26) by looking into the magnification factayg in the case of a

iesv Gaussian RBF kernel. Let us focus on the region of a
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(c)

(d)
Fig. 1. continued

neighborhood of a support vectar. We then have (see Its derivative is given b
g y
Appendix)
d/gx) e_mz,sz[ 20°r _2nr <1+ o’ r2) ]/
.n T 200 AN
Jax) = %‘ e 2P 1y £4r2. 27
T

(28

wherer = |[x—xi|| is the Euclidean distance betweeandx;.
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Table 1

Comparing the training results for three different values of

( Train errors GE #SV

Before modifying 0 0.080 24
7=0.1 0 0.072 54
T=0.25 0 0.042 17
7=05 0 0.077 22

It is easy to check the following:

1. when 7 < o//n,r = =/Un—7?/d° > O(obtained from
d/@/dr = 0) is the place being mostly magnified;

2. whenr = a/,/n, sinced./g/dr = 0 for any value of,r =
0 (the support vector position) is the place being mostly
magnified.

In order to make sure the magnification is larger around
the support vector, we needo be not much less than'\/n.
In contrast, in order to ensure the magnification is local

S. Amari, S. Wu / Neural Networks 12 (1999) 783-789

area of this region measures the generalization eGgj 6f
the classifier, which is given by

GE (29

1 1
= J lu(x)—sin(rx)| dx,
4)-1

where|-| denotes the absolute value.

In the simulation experiment, 100 training examples are
randomly and uniformly generated. To exclude the possibi-
lity that improvement results from other factors, we set the

value ofo to be equal to the optimal one, 0.4, in the sense
that it achieves the best training result in the first step train-

ing. Simulation results for three different values ofare
compared in Table 1. It shows that whertakes a proper
value (0.25 in this example, which is a little smaller than the
theoretically predicted valueg/\/n = 0.283), the perfor-
mance of the classifier is remarkably improved. The gener-
alization error probability is decreased to nearly a half, and
interestingly, the number of support vectors decreases dras-

(because a magnification over the whole space is meaning-ically.

less), we need to be small. When the above two facts are
considered, the optimal value faris aroundo/./n, which
roughly agrees with the simulation results.

In summary, the training process of the new method
consists of the two steps:

1. Train SVM with a primary kerndk, which is then modi-
fied according to Egs. (23) and (26):
2. Train SVM with the modified kernef.

3. Simulation experiments

To evaluate the performance of our method, we did simu-
lations on two classification problems, one artificial and one
real. The primary kernel function is fixed to be a Gaussian
RBF. The SVM solver we used is a gradient descent
method. This method is an application of the Adatron
method (Anlauf & Biehl, 1989) to the kernel SVM named
the Kernel-Adatron algorithm (Friess, Cristianini & Camp-
bell, 1998). We used a different version, developed indepen-
dently, to look for an approximate solution by augmenting
the input data with one more dimension (Vijayakumar &
Wu, 1999). The method has proved to be simple, fast and is
able to achieve high precision approximation.

3.1. An artificial nonlinear classification problem

Let us consider an artificial two-dimensional dataxset
(%, y) uniformly distributed in the regionH1, 1] X [— 1, 1],

To illustrate our method geometrically, we calculated the
magnification factor,/g for the three cases. It shows that
whenr is small (see Fig. 1(b)), magnification is isolated, not
covering the boundary, and the performance is bad. When
is large (see Fig. 1(c)), magnification occurs over the whole
space and the performance is also bad. Whetakes a
proper value (see Fig. 1(d)), magnification occurs roughly
around the boundary and the performance is significantly
improved. This observation agrees with the geometrical
picture underlying our method.

We should note that, since the data set is randomly gener-
ated, results in the generalization error and the optimal
values ofo and T may change in different trials. However,
the essential character of the above observation which
supports our method always holds.

3.2. Wisconsin breast cancer data classification

In this section a benchmark problem for Wisconsin
breast cancer data classification is tested (Ster &
Dobnikar, 1996). The data consists of 10 medical attri-
butes (one of them is the id number which we don't use
for the classification task), which are used to make a
binary decision on the medical condition: whether the
cancer is malignant or benign. The data set consists of
699 instances including missing values. We used a
random selection of 200 training data and 200 testing
data, excluding the instances with missing values.

where the two classes are separated by a nonlinear boundary The parametes is set to be 0.6 to achieve the best result

determined by = sin(wX) (see Fig.1 (a)). A SVM classifier
with a kernelK (or K) generates a new boundairyor f),
fxy) = Yiesv hyiK(x;,X)+bg = 0, which gives a bound-
ary curve of the formy = u(x)(or y = 0(x)). Misclassifica-

in the primary training. Simulation results for three different
values ofr are compared in Table 2. It shows that when
takes a proper value (0.3 in this example, which is a little
greater than the theoretically predicted valag/n = 0.2),

tion happens when a pattern is in the region between the twothe performance of the classifier is improved remarkably,

boundariesy = sin(7x) andy = u(x) (or y = t(x)). So the

and the number of support vectors decreases from 42 to 34.
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Table 2 Thus, the magnification factor is given by
Comparing the training results for three different values of
n n 172
# Train errors # Test errors #SV g(x) = w (1+ Z a,-z) (36)
N pr 2 .
Before modifying 1 9 42 =1
:f g'g 8 1% gi Let us now focus on a neighborhood of a support vector
=04 0 8 38 xi, where
2
o0 = hye "7 (37)

4. Conclusion _ ) ) _ )
inwhichr = [x—Xx;| is the Euclidean distance betweeand

In this paper we presented a new method of modifying a Xi- Substituting Eq. (37) in Eq. (36), we have
kernel to improve the performance of a SVM classifier. It is .
based on information-geometric consideration of the struc- ' 2oz | O
ture of the Riemannian geometry induced by the kernel. The \/@ T e ?rz' (38)
idea is to enlarge the spatial resolution around the boundary
by a conformal transformation so that the separability of Notes added in proof: The authors found that Burges (1999)
classes is increased. This geometrical picture is confirmeddefined the same Riemannian metric induced by a kernel as
by simulations. Examples are given specifically for modify- OUrs.
ing a Gaussian RBF kernel. Simulation results for both arti-
ficial and real data support our idea. In a future work we will
analyze in more detail the theoretical underpinning of the
method and extend it to different kernel cases. The presentReferences
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