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Abstract

We propose a method of modifying a kernel function to improve the performance of a support vector machine classifier. This is based on
the structure of the Riemannian geometry induced by the kernel function. The idea is to enlarge the spatial resolution around the separating
boundary surface, by a conformal mapping, such that the separability between classes is increased. Examples are given specifically for
modifying Gaussian Radial Basis Function kernels. Simulation results for both artificial and real data show remarkable improvement of
generalization errors, supporting our idea.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Support vector machine; Pattern classification; Information geometry; Kernel function; Radial basis function; Riemannian geometry; Kernel
Adatron; Nonlinear classification

1. Introduction

Support Vector Machine (SVM) is a new promising
pattern classification technique proposed recently by
Vapnik and co-workers (Boser, Guyon & Vapnik, 1992;
Cortes & Vapnik, 1995, and Vapnik, 1995). Unlike tradi-
tional methods which minimize the empirical training error,
SVM aims at minimizing an upper bound of the general-
ization error through maximizing the margin between the
separating hyperplane and the data. This can be regarded as
an approximate implementation of the Structure Risk Mini-
mization principle. What makes SVM attractive is the prop-
erty of condensing information in the training data and
providing a sparse representation by using a very small
number of data points (SVs) (Girosi, 1998).

SVM is a linear classifier in the parameter space, but it is
easily extended to a nonlinear classifier of thef -machine
type (Aizerman, Braverman & Rozonoer, 1964) by mapping
the spaceS� { x} of the input data into a high-dimensional
(possibly infinite-dimensional) feature spaceF � {f�x�}.
By choosing an adequate mappingf , the data points
become linearly separable or mostly linearly separable in
the high-dimensional space, so that one can easily apply the
structure risk minimization. We need not compute the

mapped patternsf�x� explicitly, and instead we only need
the dot products between mapped patterns. They are directly
available from the kernel function which generatesf�x�. By
choosing different kinds of kernels, SVM can realize Radial
Basis Function (RBF), Polynomial and Multi-layer Percep-
tron classifiers. Compared with the traditional way of imple-
menting them, SVM has an extra advantage of automatic
model selection, in the sense that both the optimal number
and locations of the basis functions are automatically
obtained during training (Scho¨lkopf et al., 1996).

The performance of SVM largely depends on the kernel.
Smola, Scho¨lkopf and Müller (1998) elucidated the relation
between the SVM kernel method and the standard regular-
ization theory (Girosi, Jones & Poggio, 1995). However,
there are no theories concerning how to choose good kernel
functions in a data-dependent way. The present paper is a
first step to this important problem. We propose an informa-
tion-geometric method of modifying a kernel to improve the
performance. This is based on the structure of the Rieman-
nian geometry induced in the input space by the kernel. A
nonlinear functionf embeds the input spaceS� { x} in a
high-dimensional Euclidean or Hilbert feature spaceF �
{f} as a curved submanifold. This embedding induces a
Riemannian metric in the input space, which shows how a
small volume element in the input space is enlarged or
reduced in the feature space. The idea is as follows: in
order to increase the margin or separability in the feature
space without changing the volume of the entire space, it is
efficient to enlarge volume elements locally in
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neighborhoods of support vectors which are located closely
to the boundary surface. This makes it possible to enlarge
the spatial resolution around the boundary so that the separ-
ability of classes is increased. To implement this idea, we
use a conformal mapping of the input Riemannian space.
This will be realized approximately by a conformal trans-
formation of a kernel.

The practical training process consists of two steps: In the
first step a primary kernel is used to obtain support vectors.
The kernel is then modified conformally in a data dependent
way by using the information of the support vectors. In the
second step the modified kernel is used to obtain the final
classifier. Examples are given specifically for modifying
Gaussian RBF kernels. Simulation results for both artificial
and real data support our method.

2. The method

2.1. Geometry of the SVM kernel

Consider a pattern classifier, which uses a hyperplane to
separate two classes of patterns based on given examples
{ xi, yi} for i � 1,…,l, wherexi is a vector in the input space
S� Rn andyi denotes the class index taking a value11 or
21. A nonlinear SVM maps the input datax into a high
dimensional feature spaceF � RN (N may be infinite) by
using a nonlinear mappingf , z�f (x). It then searches for
a linear discriminant function

f �x� � w·f�x�1b �1�
in the feature space. Patterns are classified by the sign of
f(x). Obviously, the classifier has a nonlinear boundary
f(x) � 0 in the input space. The SVM solution is obtained
through maximizing the margin between the separating
hyperplane and the data, where the margin is defined as 2/
iwi. This is justified from the point of view of Structure Risk
Minimization principle as minimizing an upper bound of the
generalization error.

Let us consider a reproducing kernel functionK�x; x 0�;
and let its eigenfunctionswa(x) beZ

K�x; x 0�wa�x 0�dx 0 � lawa�x�; a � 1;2;…: �2�

Then, the kernel is represented as

K�x; x 0� �
X
a

lawa�x�wa�x 0�: �3�

We rescale functionswa as

fa�x� �
����
la

p
wa�x� �4�

so that we have

K�x; x 0� �
X
a

fa�x�fa�x 0� � f�x�·f�x 0�; �5�

wheref�x� � �fa�x��.

The kernel SVM begins with a kernelK�x; x 0� to obtain
the nonlinear mappingf (x). The form of the SVM solution
turns out to be

f �x� �
X

i[SV

hiyiK�xi ; x�1b0; �6�

where summation runs over all the support vectors, andhi is
a positive number representing the contribution of theith
support vector (Boser et al., 1992, Cortes & Vapnik, 1995).
Thehis are derived as dual variables to solve the problem of
minimizing 1/iwi2. The bias termb0 can be found by using
any support vectorxsv as

b0 � ysv2
X

i[SV

hiyiK�xi ; xsv�: �7�

It is interesting to note that we need not compute the
mapped patternf (x) explicitly. We only need their dot
products, which is available from the kernel functionK.
Actually, in the SVM study people work in the inverse
way by starting from a kernel.

Let us analyze the geometrical structure induced in the
input space by a kernel. The mappingf defines an embed-
ding of S into F as a curved submanifold. WhenF is a
Euclidean or Hilbert space, a Riemannian metric is thereby
induced in the spaceS, where the length of a small line
element dx in S is defined by the length in the larger
spaceF.

Denote byz the mapped pattern ofx in the feature space,
i.e., z � f (x). A small vector dx is mapped to

dz� 7f·dx �
X

i

2

2xi
f�x�dxi ; �8�

where

7f � 2

2xi
f�x�

� �
: �9�

The squared length of dz � (dza) is written in the
quadratic form as

udzu2 �
X
a

�dza�2 �
X
i;j

gij �x� dxi dxj ; �10�

where

gij �x� � 2

2xi
f�x�

� �
·

2

2xj
f�x�

 !
; �11�

the dot denoting the summation over indexa of f . Then ×
n positive-definite matrixG�x� � �gij �x�� is the Riemannian
metric tensor induced inS. We show that the metric is
directly derived from the kernel.

Theorem 1.

gij �x� � 2

2xi

2

2x0j
K�x; x 0�jx 0�x: �12�
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Proof. From Eq. (5), we have

2

2xi

2

2x0j
K�x; x 0� � 7f�x�·7f�x 0�; �13�

which proves Eq. (12) A.
There are some typical kernel functions. One is radial,

K�x; x 0� � f � 1
2

ix2x 0 i2�; �14�

which includes the Gaussian RBF kernel,

K�x; x 0� � e2ix2x 0i2
=2s2

: �15�
The other is functions of the inner product,

K�x; x 0� � f �x·x 0� �16�
which includes the Polynomial kernel of degreed,
K�x; x 0� � �11x·x 0�d; and the Multi-layer Perceptron
kernel,K�x; x 0� � tanh�x·x 02u�:

The Riemannian metric for the first case is given by

gij �x� � 2

2xi

2

2x0j
K�x; x 0�jx 0�x � 2dij f

0� 1
2

ix2x 0i2�ux0�x

2 f 00� 1
2

ix2x 0i2��xi2x0i��xj2x0j�jx 0�x � 2f 0�0�dij :

�17�
In particular for the Gaussian RBF kernel, we have

gij �x� � 1
s2 dij : �18�

The induced metric is Euclidean, which is translational and
rotational invariant. However, this does not imply that the
image off is linear. It may be curved inF, having non-zero
Euler–Schouten embedding curvature but zero Rieman-
nian–Christoffel curvature.

The metric for the inner product case can be calculated in
a similar way, and is given by

gij �x� � f 0�0�dij 1xixj f
00�0�: �19�

The metric is Riemannian and rotational invariant.
The volume form in a Riemannian space is defined as

dV � �����
g�x�p

dx1
…dxn �20�

whereg(x) � detugij(x)u. The factor
�����
g�x�p

represents how a
local area is magnified inF under the mappingf . Hereafter,
we call it the magnification factor.

2.2. A data dependent way for modifying a kernel

Based on the Riemannian geometrical structure induced
in the input space, we propose a method of modifying a
kernel to improve the performance of a SVM classifier.
The idea is rather straightforward. To increase the margin
or separability of classes, we need to enlarge the spatial
resolution around the boundary surface inF. Taking the

Riemannian distance

ds2 �
X
i;j

gij dxi dxj �21�

or the volume element
�����
g�x�p

into account, this leads us to
increase the metricgij(x) around the boundary off(x) � 0
and to reduce it around other points. More precisely, we
modify the nonlinear mappingf (or the related kernelK)
such that

�����
g�x�p

is enlarged around the boundary. In practice,
the boundary is not known. By using the knowledge that
support vectors are (mostly) located around the boundary,
we solve the problem by increasing the metric in the neigh-
borhood of the support vectors.

A conformal transformation

~gij �x� � V�x�gij �x�; �22�
gives a solution to this problem, because the metric is
enlarged by a factorV (x) at pointx. See Okamoto, Amari
and Takeuchi (1991) for another application of conformal
transformation in information geometry. In our problem,
V (x) should be chosen in the way that it has large values
at the support vector positions. The advantage of a confor-
mal transformation is that it keeps angles unchanged in the
whole space and therefore won’t affect much the spatial
relationship between the data points. In practice, it is diffi-
cult to find a nonlinear mapping~f which realizes the above
conformal transformation. Therefore, we consider a quasi-
conformal transformation obtained from modification of a
kernel.

For a positive scalar functionc(x),

Definition.

~K�x; x 0� � c�x�c�x 0�K�x; x 0� �23�
is called a conformal transformation of a kernel by factor
c(x).

Remark. Smola et al. (1998) gave a sufficient condition
for a regularization operatorP to give a solution equivalent
to the SVM with kernelK. When a kernelK corresponds to a
regularization operatorP, its conformal transformation~K
with c(x) corresponds to the operator

~P� c�x�P: �24�

Theorem 2. The metricgij is changed into~gij ;

~gij �x� � ci�x�cj�x�1c�x�2gij �x� �25�
by a conformal transformation of the Gaussian RBF kernel,
whereci(x) � 2c(x)/2xi.

It should be remarked thatci(x) � 0 at positions on which
c(x) is maximal. In order to ensure thatc(x) have large
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values at the support vector positions, we construct it in a
data dependent way as

c�x� �
X

i[SV

hi e2ix2xi i
2
=2t2 �26�

wheret is a free parameter and summation runs over all the
support vectors.

Now, let us study how the spatial resolution is enlarged
by looking into the magnification factor

��
~g
p

in the case of a
Gaussian RBF kernel. Let us focus on the region of a
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Fig. 1. (a) A two-dimensional artificial data set, where the two classes are denoted by ‘W’ and ‘ p ’, respectively. The symbol ‘1’ represents the support vectors
of kernelK. The distribution of the magnification factor

��
~g
p

for the three different values oft : (b) 0.1; (c) 0.5; and (d) 0.25. The magnitude is represented by the
gray level.



neighborhood of a support vectorxi. We then have (see
Appendix)

�����
~g�x�p � hn

i

sn e2nr2
=2t2

�����������
11

s2

t4 r2

s
: �27�

wherer � ix2xii is the Euclidean distance betweenx andxi.

Its derivative is given by

d
�����
~g�x�p

dr
� hn

i

2sn e2nr2
=2t2 2s2r

t4 2
2nr

t2 11
s2

t4 r2

 !" #
=

�
�����������
11

s2

t4 r2

s
: �28�
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It is easy to check the following:

1. when t , s=
��
n
p

; r � t
�������������
1=n2t2=s2
p

. 0(obtained from
d
��
~g
p

=dr � 0) is the place being mostly magnified;
2. whent $ s=

��
n
p

; sinced
��
~g
p

=dr # 0 for any value ofr, r �
0 (the support vector position) is the place being mostly
magnified.

In order to make sure the magnification is larger around
the support vector, we needt to be not much less thans=

��
n
p

.
In contrast, in order to ensure the magnification is local
(because a magnification over the whole space is meaning-
less), we needt to be small. When the above two facts are
considered, the optimal value fort is arounds=

��
n
p

; which
roughly agrees with the simulation results.

In summary, the training process of the new method
consists of the two steps:

1. Train SVM with a primary kernelK, which is then modi-
fied according to Eqs. (23) and (26):

2. Train SVM with the modified kernel~K.

3. Simulation experiments

To evaluate the performance of our method, we did simu-
lations on two classification problems, one artificial and one
real. The primary kernel function is fixed to be a Gaussian
RBF. The SVM solver we used is a gradient descent
method. This method is an application of the Adatron
method (Anlauf & Biehl, 1989) to the kernel SVM named
the Kernel-Adatron algorithm (Friess, Cristianini & Camp-
bell, 1998). We used a different version, developed indepen-
dently, to look for an approximate solution by augmenting
the input data with one more dimension (Vijayakumar &
Wu, 1999). The method has proved to be simple, fast and is
able to achieve high precision approximation.

3.1. An artificial nonlinear classification problem

Let us consider an artificial two-dimensional data setx �
(x, y) uniformly distributed in the region [21, 1] × [2 1, 1],
where the two classes are separated by a nonlinear boundary
determined byy� sin(px) (see Fig.1 (a)). A SVM classifier
with a kernelK (or ~K) generates a new boundaryf (or ~f ),
f �x; y� � P

i[SV hiyiK�xi ; x�1b0 � 0; which gives a bound-
ary curve of the formy� u�x�(or y� ~u�x��: Misclassifica-
tion happens when a pattern is in the region between the two
boundaries,y � sin(px) andy� u�x� (or y� ~u�x�). So the

area of this region measures the generalization error (GE) of
the classifier, which is given by

GE� 1
4

Z1

2 1
uu�x�2sin�px�u dx; �29�

whereu·u denotes the absolute value.
In the simulation experiment, 100 training examples are

randomly and uniformly generated. To exclude the possibi-
lity that improvement results from other factors, we set the
value ofs to be equal to the optimal one, 0.4, in the sense
that it achieves the best training result in the first step train-
ing. Simulation results for three different values oft are
compared in Table 1. It shows that whent takes a proper
value (0.25 in this example, which is a little smaller than the
theoretically predicted value,s=

��
n
p � 0:283), the perfor-

mance of the classifier is remarkably improved. The gener-
alization error probability is decreased to nearly a half, and
interestingly, the number of support vectors decreases dras-
tically.

To illustrate our method geometrically, we calculated the
magnification factor

��
~g
p

for the three cases. It shows that
whent is small (see Fig. 1(b)), magnification is isolated, not
covering the boundary, and the performance is bad. Whent
is large (see Fig. 1(c)), magnification occurs over the whole
space and the performance is also bad. Whent takes a
proper value (see Fig. 1(d)), magnification occurs roughly
around the boundary and the performance is significantly
improved. This observation agrees with the geometrical
picture underlying our method.

We should note that, since the data set is randomly gener-
ated, results in the generalization error and the optimal
values ofs andt may change in different trials. However,
the essential character of the above observation which
supports our method always holds.

3.2. Wisconsin breast cancer data classification

In this section a benchmark problem for Wisconsin
breast cancer data classification is tested (Ster &
Dobnikar, 1996). The data consists of 10 medical attri-
butes (one of them is the id number which we don’t use
for the classification task), which are used to make a
binary decision on the medical condition: whether the
cancer is malignant or benign. The data set consists of
699 instances including missing values. We used a
random selection of 200 training data and 200 testing
data, excluding the instances with missing values.

The parameters is set to be 0.6 to achieve the best result
in the primary training. Simulation results for three different
values oft are compared in Table 2. It shows that whent
takes a proper value (0.3 in this example, which is a little
greater than the theoretically predicted value,s=

��
n
p � 0:2),

the performance of the classifier is improved remarkably,
and the number of support vectors decreases from 42 to 34.
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Table 1
Comparing the training results for three different values oft

( Train errors GE #SV

Before modifying 0 0.080 24
t � 0.1 0 0.072 54
t � 0.25 0 0.042 17
t � 0.5 0 0.077 22



4. Conclusion

In this paper we presented a new method of modifying a
kernel to improve the performance of a SVM classifier. It is
based on information-geometric consideration of the struc-
ture of the Riemannian geometry induced by the kernel. The
idea is to enlarge the spatial resolution around the boundary
by a conformal transformation so that the separability of
classes is increased. This geometrical picture is confirmed
by simulations. Examples are given specifically for modify-
ing a Gaussian RBF kernel. Simulation results for both arti-
ficial and real data support our idea. In a future work we will
analyze in more detail the theoretical underpinning of the
method and extend it to different kernel cases. The present
paper is expected to open a new study on the optimal choice
of kernel functions.

Appendix A. Calculating the magnification factor
��
~g
p

for
Gaussian RBF kernel

From the Eq. (25), we have

~gij �x� � c2�x�
s2 Aij �30�

where

Aij � aiaj1dij ; �31�
and

ai � s

c
ci�x�: �32�

The matrixA � { Aij} can be written as

A � I1a2eeT
; �33�

whereI is the identity matrix,a2 � Pn
i a2

i , e is an × 1 unit

vector with elements {ei1 � ai =a} ; eT is the transposition of
e.

By using an adequate orthogonal transformation, we can
easily get

detuAu � 11a2 �34�
and

~g�x� � detu ~gij u � c2n�x�
s2n 11

Xn
i�1

a2
i

 !
: �35�

Thus, the magnification factor is given by

�����
~g�x�p � cn�x�

sn 11
Xn
i�1

a2
i

 !1=2

: �36�

Let us now focus on a neighborhood of a support vector
xi, where

c�x� ù hi e2r2
=2t2 �37�

in which r ; ux2xi u is the Euclidean distance betweenx and
xi. Substituting Eq. (37) in Eq. (36), we have

�����
~g�x�p � hn

i

sn e2nr2
=2t2

�����������
11

s2

t4 r2

s
: �38�

Notes added in proof: The authors found that Burges (1999)
defined the same Riemannian metric induced by a kernel as
ours.
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Comparing the training results for three different values oft
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Before modifying 1 9 42
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