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Asymptotic Statistical Theory of Overtraining
and Cross-Validation
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Abstract—A statistical theory for overtraining is proposed. because the parameter values fit too well the speciality of the
The analysis treats general realizable stochastic neural networks, piased training examples and are not optimal in the sense of
trained with Kullback—Leibler divergence in the asymptoticcase minimizing the generalization error given by the risk function.

of a large number of training examples. It is shown that the Th b f thods of idi fitti
asymptotic gain in the generalization error is small if we per- ere are a numpber of methods o avoiding overntung.

form early stopping, even if we have access to the optimal FOr example, model selection methods (e.g., [23], [20], [26]
stopping time. Considering cross-validation stopping we answer and many others), regularization ([25] and others), and early

the_ question: In What_ rati_o the ex_amples should_be divide_d into stopping ([16], [15], [30], [11], [4] and others) or structural
training and cross-validation sets in order to obtain the optimum risk minimization (SRM, cf. [32]) can be applied.

performance. Although cross-validated early stopping is useless in H il id v st . in detail. Th .
the asymptotic region, it surely decreases the generalization error ere we will consiaer 9‘3”_’ stopping In detail. . ere Is
in the nonasymptotic region. Our large scale simulations done on @ folklore that the generalization error decreases in an early

a CM5 are in nice agreement with our analytical findings. period of training, reaches a minimum and then increases
Index Terms—Asymptotic analysis, cross-validation, early stop- as training goes on, W_h'_le the t_ra'nmg error monOton'Cf_i"_y
ping, generalization, overtraining, stochastic neural networks. ~ decreases. Therefore, it is considered better to stop training
at an adequate time, a technique often referred to as early
stopping . To avoid overtraining, the following simple stopping
rule has been proposed based on cross-validation: Divide all

ULTILAYER NEURAL networks improve their behav- the available examples into two disjoint sets. One set is used
ior by learning a set of examples showing the desirddr training. The other set is used for validation such that
input—output relation. This training procedure is usually carrigtie behavior of the trained network is evaluated by using the
out by a gradient descent method minimizing a target functi@noss-validation examples and the training is stopped at the
([1], [27], and many others). point that minimizes the error on the cross-validation set. Note
When the number of examples is infinitely large and thayat dividing the available examples into two fixed sets is a
are unbiased, the network parameters converge to one of stengly simplified implementation of k-fold cross-validation
local minima of the empirical risk function (expected lossfcf. [12]).2 In our study we will consider only the above
to be minimized. When the number of training examples tescribed two set cross-validation and we will refer to it as
finite, the true risk function (generalization error) is differentross-validation in the following.
from the empirical risk function. Thus, since the training Wang et al. [30] analyzed the average optimal stopping
examples are biased, the network parameters converge ttiree without cross-validation in the case of lindaimachines.
biased solution. This is known as overfitting or overtrainingFor the regression cased®erg and Ljung [29] calculated
asymptotically that the number of efficient parameters is linked

. . _ 1) to the regularization parameter if a specific regularization
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of the network, which in the case of realizable rules coincidéiseory fits well with simulations, showing cross-validation is

with the number of parametera. Their result was achieved not necessary, because the generalization error becomes worse

by bounding the probability of error of the recognizer selectdsy using cross-validation examples to obtain an adequate

by cross-validation using both classical and VC bounds; tstopping time. For an intermediate range, where 30m

resulting bound is then optimized with respect to the splitvertraining occurs surely and the cross-validation stopping

between training and validation set. improves the generalization ability strongly (Section VII).
There are various phases in the overtraining phenomdraally, concluding remarks are given in Section VIII.

depending on the ratio of the numberf examples to the

number m of the modifiable parameters (see [24]). When

t is smaller or nearly equal tan, the examples can in Il. STOCHASTIC FEEDFORWARD NETWORKS

principle be memorized and overfitting is remarkable in this Let us consider a stochastic network which receives input

phase, in particular around~ m ([19], [10]). However, the vector z and emits output vectog. The network includes

application of simple two set cross-validation stopping has modifiable vector parametep = (wy,:--,w,,) and the

serious disadvantages in this case. The simple splitting fétwork specified by is denoted byV (w). The input—output

an already small set of examples decreases the scarce @figtion of the networkV (w) is specified by the conditional

valuable information in the small data set. In order to aVOb‘robabiIityp(ykc;w). It is assumed that input is randomly

overtraining in this case, we need to use global methods liseosen from an unknown probabilityz). The joint probabil-

the above mentioned regularization, SRM or k-fold crossy of (z,y) of N(w) is given by

validation rather than simple two set cross-validation stopping.
In an intermediate phase (cf. [24]) df larger thanm,

simulations show that cross-validation stopping is effective in

general. However, it is difficult to construct a general theory

in this phase (see also Section VI for discussion). . .
In the asymptotic phase wheteis sufficiently large, the 1) There exists a teacher netwal(wo) which generates

asymptotic theory of statistics is applicable and the estimated training examples.

parameters are approximately normally distributed around thez) The Fisher information matrik = (Gy;) defined by

p(z, y;w) = q(x)p(ylz; w). 1)

We assume the following.

true values.

As the_ fir§t step toward eIucidatipn of pvertraining and Gij(w) = E log p(z, ¥; w)ﬁlogp(% yw)| (2)
cross-validation, the present paper gives a rigorous mathemat- Wi dw;
ical analysis of overtraining phenomena for 1) a realizable
stochastic machine (Section Il); 2) Kullback-Leibler diver- ~ has a full rank and is differentiable with respect to
gence (negative of the log likelihood loss); and 3) a sufficiently ~ w, Where E' denotes the expectation with respect to
large numbet of examples (compared with the numberof p(z, g w).
parameters). 3) The training set

We analyze the relation between the training error and
cross-validation error, and also the trajectory of learning using Dy ={(z1,41), ", (®t,9.)}

a quadratic approximation of the risk function around the
optimal value in the asymptotic region (Section Ill). The effect consists of i.i.d. examples generated by the distribution
of early stopping is studied on this basis. It is shown that  p(x,y;wo) of N(wo).

asymptotically we gain little by early stopping even if we | et ys define the risk and loss functions. When an in-
had access to the optimal stopping time (Section IV). S'nfﬁlt—output pair(z, y) is an example generated from network

we never have access to the optimal stopping time, the 980tw), its loss or error is given by the negative of the
eralization error becomes asymptotically worse, which meafig|ihood,

that the gain achieved through early stopping is asymptotically
smaller than the loss of not using the cross-validation examples
for training.

We then answer the question: In what ratio the examples . . . .
should be divided into training and cross-validation sets i The risk functionk(w) of network N (w) is the expectation

order to obtain the optimum performance (Section V). We giv([); loss with respect to the true distribution

a definite analytic answer to this problem. When the number

m of network parameters is large, the best strategy is to use R(w) = —Eo[log p(z, y; w)] 4)

almost allt examples in the training set and to use affly’2m

examples in the cross-validation set, e.g., wher= 100, this Where E, denotes the expectation with respecpfe, y; wo).

means that only 7% of the training patterns are to be usedTiRe risk functioni(w) is called the generalization error, since

the set determining the point for early stopping. it is evaluated by the expectation Hfr,y; w) where the test
Our results are confirmed by large-scale computer simulair (z.y) is newly generated byV(wy). It is easy to show

tions of three-layer feedforward networks where the number

m of modifiable parameters is ~ 100. Whent > 30m, the R(w) = Hy + D(wo||w) (5)

Iz, y;w) = —logp(z, y; w). (3)
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where Lemma 1: When w belongs to the(1/+/t)-neighborhood
of wo
Hy = —Ey[log p(z, y; wo)] (6)

Ryen(w) = Ho + £ (w —wo)'G —wp) + O(t™%/?
is the entropy of the teacher network and sen(t) 0+ 3w —wo)” Gluwo)(w — wo) ( )

(12)
_ N p("l"v Y, 1110) Rtrain(w) = HO - %(ﬁlt - wO)TG(wo)(ﬁlt — wO)
Pl =l Y + (= ) Gl 10 — ) + Oy(+2)
(13)

is the Kullback—Leibler divergence from probability distribu-

tion p(x, y;wo) 10 p(x, y; w) or the divergence oN(w) from  wherew? denotes the transpose of the column veatoand

N(wo). Obviously, D(wo|lw) > 0 and the equality holds

when, and only whery = wy. Hence, the risi?(w) measures - 1o

the divergence between the true distributigf, v; wo) and Ho= - N ZIng(‘”i’yi?"’O) = Rurain(wo)

the distributionp(z, y; w) of N(w) except for a constant term . =1

Hy which denotes the stochastic uncertainty of the teacher (Ho) =Ho, Ho=Ho+ Op(l/\/E)

T)?;:”:) :t?;]l;' m:amgilrfil;%i(]ui]s) :;tea?nu(;\éaini tq(l)lor'mmmlzmg and{ ) represents the average with respect to the distribution
orﬁ the sampleD; [3].

In the case of multilayer perceptrons with additive Gaussia ! . .
noise, the outpuy is written as id;'nr;ﬁyrelatlon (12) is the Taylor expansion of (4), where the

y=/f(lzw) +n 8) 52
Ey
where f(z;w) is the analog function calculated by the mul- Ow;Ow;

tilayer perceptronV(w) with a set of parametersy and n
is Gaussian noise. When its componenisare independent
subject toN(0, 0?), we have

log p(x, y;wo) | = —G(wo)

is used. The proof of (13) is given in Appendix A.
By puttingw = 1, in (12) and (13), we have the asymptotic
evaluations of the generalization and training error&/¢iy, ).
1 k 1 ) They depend on the exampld3, from which the m.lLe. is
p(ylz;w) = <\/ﬁa> eXP{—T‘gH/— f(a; w) } (9)  calculated. We denote by ) the average with respect to
the distribution of the samplé®, which determinesy,. We

Hence the loss is the ordinary squared error then obtain the following universal relation concerning the
1 generalization error and training error. This was first proved
l(z.yiw) = 5 5ly - f@;w)|? + c(x) (10) by [3]. A similar but different universal property is proved by
Amari [2] for deterministic dichotomy machines.
where ¢(z) does not depend ow. Corollary 1: For the m.l.e4,, the average training error
and generalization error are asymptotically evaluated by the
lIl. A SYMPTOTIC ANALYSIS OF LEARNING AIC® type criterion [3]
The maximum likelihood estimator (m.l.ew); maximizes NN m _3/9
the likelihoodIl!_, p(x;,y,;;w) of producing the training set (Ryen(i1)) = Ho + 2t O™ (14)
Dy, or equivalently minimizing the empirical risk function (Rizain(W2)) = Ho — g + O3/ (15)
t
Rizain(w) = _1 Z log p(x;,y;; w). (11) independently of the architecture of networks, wherés the
b number of modifiable parameters (dimension numbewof

.andt is the number of training patterns.

This empirical nsk' is called the training error since it is Murataet al. [22], [23] obtained more general versions and
evaluated by the training examples themselves. In order t

avoid confusionf(w) is denoted by, () when necessary. pPopo_sed the NIC (r}e_twork information criterion) for model
Th totic th £ statisti & that th | selection by generalizing the AIC [5].
€ asymptotic theory of Stalistics proves that In€ m.L.€. 1S, o\, consider the gradient descent learning rule, where the
asymptotically subject to the normal distribution with meaBarameter&;(n) at thenth step is modified b
wo and varianceG~1/t y
EaRtrain(ﬁ](n))

Jw

. _ o L _ where ¢ is a small positive constant. More precisety(n)
under ce_rtam _regularlt_y condltlpns, whefE* is the inverse should be denoted b, (n) since it depends ot;, but we
of the Fisher information matrixz. omit the subscript for the sake of simplicity. This is batch

By expanding the risk functions, we have the followinge, ming where all the training examples are used for each
asymptotic evaluations aR(w) and Ri,,;»(w) in the neigh-

borhood ofwyg. 3 Akaike’s information criterion.

w(n+ 1) = @(n) — (16)

1
Wy — wo ~ N<0, ZG*)
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iteration of modifying@(n). We can alternatively use on-line A
learning

Ealogp(xruyn7wﬂ) (17)
ow 2Rsing
where (z,,y,) is randomly chosen at each step from the
training data setD,. The batch process is deterministic and
w(n) converges taw,® provided the initialw(0) is included
in its basin of attraction. For large, w(n) is in the (1/+/t)-
neighborhood ofv, and the gradient aR\,.;, iS approximated
from (13) as

a-Rtra,in (ﬁ](n))
Jw

w(n+ 1) = w(n) +

= Glwo){Ww(n) — w} + O,(t~%?).
Fig. 1. Geometrical picture to determine the optimal stopping peiht
Hence, by neglecting the term of ordeyt>/2, (16) is

approximated b C : :
pproxt y Proof: The distribution of the rayis(n) is not necessarily

w(n +1) = w(n) — eG{w(n) — w}. isotropic butw is distributed isotropically arounar,. The
o ' _ average(Rq.,(w(n))) is the expectation with respect to the
This gives the asymptotic evaluation unknown initialw(0), which determines the rag(n) and with

respect toD,, which determinesp. Let us fix a ray and take
average with respect td,, that is with respect tap. Since
the relative direction between the fixed ray and all possible
large. is isotropically distributed, it follows that taking the average
In order to make the analysis easier, we take the coordin4fiih respect tow for a fixed ray is equivalent to taking the

system such that the Fisher information matfixis equal to average with respect to isotropically distributed rays and a
the identity matrix/ fixed w. Therefore we may calculate the averages by using

the isotropically distributed rays instead of the isotropically

w(n) = (I —e@" " {w(n') — @} + @

where I is the identity matrix andh'(<n) is assumed to be

G(wo) =1 (18) distributedip. ]
at wy. This is possible without loss of generality, and the
results of the following analysis are the same whichever IV. VIRTUAL OPTIMAL STOPPING RULE
coordinate system we use. Under this coordinate system, we R i
have When the parameted(n) approaches as learning goes on,

n=1,2,---,the generalization behavior of netwalN«(n))
w(n) = (1—e)" " {w(n) — i} + @ is evaluated by the sequence

showing that the trajector(n) linearly approaches in the R(n) = Ryen(i(n)), n=1,2---. (19)

neighborhood ofw.
We call the trajectoryiw(n) a ray which approachesy
linearly whenr is large. An interesting question is from which

direction the rayiv(n) approachesy. Even if the initial w(0) . A ) L

is uniformly distributed, we cannot say thé{n) approaches gg“m.al stopping timen at which R(@) IS m|n|m|z§d. Tbe
o . ; . S : . stopping timen.,, is a random variable depending an

w isotropically, since dynamics (16) is highly nonlinear in d the initialw(0). We evaluate the ensemble average of
an early stage of learning. In other words, the distribution ag(n ) '

w(n') is not isotropic but may have biased directions, Th(épttru'ewo and the m.l.esw are in general different, and

Although the rays are not isotropically distributed arounﬁ!1eir distance is of ordet /v, Let us compose a sphete

besais s pUt el tf . This mplies tht th relative O1 YHICh he center is a(1/2)(u + ) and which passes
puteq o P through bothwy andw, as is shown in Fig. 1. Its diameter is

direction of a ray with respect to the isotropically distributed denoted byd where

is isotropically distributed. This gives us the following lemma,

which helps to calculatéR,.,,(w(n))) and (Riain(w(n))). o )
Lemma 2: Although @(n) does not necessarily approach d° = i — o (20)

w isotropically, the ensemble averagéf.,(w(n))) and

(Ruzain(i(n))) are the same as those calculated by assumiagd

that w(n) approachesy isotropically.

It is believed thatR(n) decreases in an early period of
learning but it increases later. Therefore, there exists an

Eo[d?] = Eo[(w — wo)* (i —

4lts dynamical behavior was studied by Amari [1], Heskes and Kappen 0[ ] 0[(111 wo) (w wo)]

[17], and recently by Barkagt al. [8] and Solla and Saad [28]. =E, [tr(ﬁl _ wo)(ﬁl _ wo)T] ~ ltrf — m (21)
50r to 4, but the subscript is omitted hereafter. t
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Theorem 1: The average generalization error at the optimal
stopping point is asymptotically given by

(Blnop)) = Ho + 57 (m = 3 ): (24)

sin 6

2t 2

Proof: When ray A is at angled(0 < #<x/2), the
optimal stopping pointw* is on the spheres. It is easily
shown that

X-

--l_—’

|lw* — wg| = dsinb.

~

S" This is the case wherd approaches from the left-hand

side in Fig. 1, which occurs with probability 0.5, and the
average of(dsin #)? is

1

Fig. 2. Distribution of the angl@.

Let A be the ray, that is the trajectorp(n) starting at Ey[(dsin6)?] = 7

/2
Eo[d?] / sin? #sin™ "2 0 df
w(0), which is far from the neighborhood af,. The optimal m=2 0

stopping pointw™* that minimizes - ?Ilm .
m—2
R(n) = Ho + 3li(n) —wol> + O,(t™>*)  (22)  Since we have
I, 1
is given by the following lemma. I =1- -

Lemma 3: The optimal stopping poink* is asymptotically

the first intersection of the rayt and the spheré. Eo[(dsin 9)2] = <1 — _>_
Proof: Sincew™* is the point onA such thatwy — w* is

orthogonal to4, it lies on the spheré (Fig. 1). When rayA’ When# is 7/2 < 6 < =, that is A approachesy from the

is approachingw from the opposite side ab, (the right-hand opposite side, it does not stop until it reachizsso that
side in the figure), the first intersection pointis itself. In

* 2 5y _ g2
this case, the optimal stopping never occurs until it converges " —wol” = | —wo| = d".

to w. u This also occurs with probability 0.5. Hence, from (22), we
Let 6 be the angle between the ray and the diameter proved the theorem. u

wo — w of the spheres. We now show the distribution of The theorem shows that, when we could know the optimal

when the rays are isotropically distributed relativedto stopping timen,,,,, for each trajectory, the generalization error

Lemma 4: When ray A is approachingy from the side in  decreases byl/4¢, which has an effect of decreasing the
which wyq is included, the probability density @0 < 6 < effective dimensions by/2. This effect is negligible whem:
T/2), is given by is large. The optimal stopping time is of ordeg t. However,

it is impossible to know the optimal stopping time. If we stop
r(6) = sin™ 249 (23) learning at an estimated optimal ting,,;, we have some gain
m—2 when ray A is from the same side ag, but we have some
loss when rayA is from the opposite direction.
Wanget al. [30] calculated{R(n)) in the case of lineat-
w2 m machines and defined the optimal average stopping tigpe
Im = /0 sin™ 6 df. that minimizes(R(n)). This is different from the present,p.,
since ourn,; is defined for each trajectoryt. Hence it is a
Proof: Let us compose a unfin—1)-dimensional sphere random variable depending a0) and. Our average
S’ centered atw (Fig. 2). Since rayA is considered to N
approachd isotropically (Lemma 2), its intersection t8’ (Rlnop)) = (R(W(nop)))
is uniformly distributed onS’, when A is approaching from is different from (R(7iopt)), Sincemiop, is common to all the
the side ofwo. Let us consider the area off’ such that trajectories whilen,, are different. We can show
the angles are betweghand 6 + df. Then, the area is an _
(m — 2)-dimensional spheré” on S’ whose radius isin ¢ {B(nopt)) < (E(Mop))-
(Fig. 2). Hence, its volume i8,,_» sin™ "2 §, wherec,,,_ is We can prove
the volume of a unitm — 2)-sphere. By normalization, the (R(fiop)) = (R(@)) — O(2)

density of @ is
in agreement with Wangt al. [30]. This shows that the gain

where

r(6) = 7 sin™%09, 0<6< g m becomes much smaller by using the average stopping time
m—2 Tlopt- HOwever, the point is that there is no direct means to
estimaten,,; except for cross-validation. Hence, we need to
Now we have the following theorem. analyze cross-validation early stopping.
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Let S be the sphere whose center ié@t+w)/2 and which
passes through boty andw. Its diameter is given by

d = |w— ). (29)

Then, the optimal stopping poimé* is given by the inter-
section of the trajectoryl and spheres. When the trajectory
comes from the opposite side @ (right-hand side in the
figure), it does not intersed until it converges tap, so that
the optimal point isw* = @ in this case.

The generalization error ab* is given by (12), so that we
calculate the expectation ¢fv* — wol?.

Lemma 5:

m 1/1 1
. . N o Bllw" —wol’l=— - (> = ).
Fig. 3. Optimal stopping poinis™ by cross-validation. tr 2L\ r r

Proof is given in Appendix B. It is immediate to show
Lemma 6.

In order to find the optimal stopping time for each trajectory, Lemma 6: The average generalization error by the optimal
an idea is to divide the available examples into two disjoirtross-validated early stopping is asymptotically
sets; the training set for learning and the cross-validation

. 2 . 2m—1 1
set for evaluating the generalization error. The training er- (R(w*,7)) ~ Hy + + .
ror monotonically decreases with iterations, but according to drt dr't
the folklore the generalization error evaluated by the cross-We can then calculate the optimal division ratg,;, of
validation set decreases in an early period but it increases a#igamples which minimizes the generalization error.
a critical period. This gives the optimal time to stop train- Theorem 2:The average generalization error is minimized
ing. The present section studies two fundamental problemagymptotically at
1) Givent examples, how many examples should be used

V. OPTIMAL STOPPING BY CROSSVALIDATION

(30)

in the training set and how many in the cross-validation set? o =1 Vv2m—1-1 (31)
2) How much gain can one expect by the above cross-validated : 2(m—1)
stopping?

The theorem shows the optimal division of examples into
training and cross-validation sets. Whenis large

1

Topt = 1 — —=—
o Pt V2m
Letw be the m.l.e. fronr¢ training examples, and lek be
the m.l.e. from the other’t cross-validation examples, that isshowing that only(1/v/2m) x 100% of examples are to be

Let us dividet examples intort examples of the training
set andr’t examples of the cross-validation set, where

r+r =1 (25) (32)

@ andw minimize the training error function used for cross-validation testing and remaining most examples
1 are used for training. Whem = 100, this shows that 93% of
Rirain(w) = Tt Zlogp(iﬂi,yi%w) (26) examples are to be used for training and only 7% are to be
i kept for cross-validation. From this we obtain
and cross-validation error function Theorem 3: The asymptotically optimal generalization er-
1 ror is
Rey(w) = —— Z log p(=:, 9 w) (27)

mmmwwgm+iw%tiuﬁ (33)
respectively, where summations are taken owertraining

examples and’t cross-validation examples. Since the training Whenm is large, we have

examples and cross-validation examples are independent, both

w and w are asymptotically subject to independent normal . ~ m 2

distributions with meanw, and covariance matrices=*/(rt) (R(w, rop)) = Ho + 2t <1 + \/;> (34)

and G~1/(+'t), respectively.

Let us compose the triangle with vertices,,w and w This shows that the generalization error increases slightly by
(Fig. 3). The trajectoryA starting atw(0) enters#w linearly ~cross-validation early stopping compared with learning which
in the neighborhood ofy. The pointw* on the trajectory4 uses all the examples for training. That is
which minimizes the cross-validation error is the point.4n . )
that is closest tap, since the cross-validation error defined by (D(wollw*)) > (D(wo||w)) (35)

(27) can be expanded from (13) as for the optimal cross-validated* and the m.l.eiw based on

Rey(w) ~ Ho — |w — wol* + 3w — @] (28) all the examples without cross-validation.
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noninformative distributioh which is given by \/g(w)/V
where ¢ = det |G| is the Riemannian volume element of
W. In most neural network architectures, the voluie=

J v/ g(w) dw is finite and this implies that the effect of the
distribution of initial w(0) cannot be neglected wheris not
asymptotically large.

It is possible to construct a theory by takind into
account. However, for the theory to be valid wheres not
asymptotically large, the nonlinear learning trajectories cannot
be neglected and we need higher-order corrections to the
asymptotic properties of the estimatr(cf. Amari’).

Fig. 4. Geometrical picture for the intermediate range. VIl. SIMULATIONS

We use standard feedforward classifier networks with
VI. INTERMEDIATE RANGE inputs, H sigmoid hidden units and/ softmax outputs
So far we have seen that cross-validation stopping is asynfplasses). Them network parametersv consist of biases
totically not effective. Now we would like to discuss from¢ = {#}',95} and weightsw = {w]],w$;}. The input
several viewpoints why cross-validation early stopping igyer is connected to the hidden layer wig’, the hidden
effective in the intermediate range. Note however that ol@yer is connected to the output layer vi#’, and no short-
explanations are not mathematically rigorous, but rather ske# connections are present. The output acti¢iyof the ith
three possible lines along which our theory can be generalizZgtput unit is calculated via the softmax squashing function
for the intermediate range: 1) a geometrical picture; 2) the

SN - _ = P p(y = Cilz;w)

distribution of the initiakw(0); and 3) the nonlinearities of the b
trajectories. %, I=1,-- M —1,

In order to have intuitive understanding, we draw another 14+ exp(hy)
picture (Fig. 4). Herew is distributed uniformly on the sphere =0 = k 1
S whose center is the true value. l1e¢0) be the initial weight —, =M
and let D be the distance between(0) and wo. We draw 1+ ZeXP(hk)

k

tangent rays fromw(0) to the sphereS. Then, the tangent

points onS form an(m~—1)-dimensional spherf that divides whereh, = E]Hﬂwgsg’ -99(1=1,---,M —1) is the local
S into two partsS;. (shaded, left side) and_ (right side). field potential and

Whenw lies onS,., early stopping is not necessary, but when .

w lies on S_ then early stopping improves the solution. N H H )

In the asymptotic range wheteis very large, whatevep  $i = |1 +exp{ — Zwﬂﬂ’k +7; »oJ=Le A
is, it is far larger than the radiul/+/# of S. This implies that k=1
w(0) is located almost infinitely far, so that tife: — 1)-sphere is the activity of thej-th hidden unit, given inpus.

K dividing S into Sy and S_ is equal to thgm — 1)-sphere  Each outputO; codes thea posteriori probability of be-

L which is the vertical cut of5 (the cut atw, orthogonal to ing in classC;. Although the network is completely deter-
the line connectingw(0) andwy). In this case,S is divided ministic, it is constructed to approximate class conditional
into two partsS, and S_ with an equal volume. Moreover, probabilities ([13]).

whenm is large, the most volume of is concentrated in a  Therefore, each randomly generated teacher repre-
neighborhood ofL so that the effect of early stopping is nosents by construction a multinomial probability distribution
remarkable. q(Cilz,wo) = Prob{z € C;} over the classes’; (I =

In the intermediate range whefis not so large, the spherel - - M) given a random inpu. We use the same network
K is different from L and is located on the left side gf. architecture for teacher and student. Thus, we assume that the

Since most volume is concentrated in a neighborhood. of model is faithful, i.e., the teacher distribution can be exactly
the measure of . is negligible in this case. This implies that'€Presented by a studeptCi|z) = p(Cilz, wo).

early stopping improve# with a probability close to one. In Ap trflnmg_ almd cros_s-val|dat|on dset (:jf thle fg"% =
the extreme case whe#® is very small andw(0) is insideSS, {(#?, cP)p = 1,---,t} is generated randomly, by drawing

immediate stopping without any training is the best :strategys.amples otz from a uniform distribution and forward prop-

: ) . agatingz? through the teacher network. Then, according to
This shows that, wher is not asymptotically large, we the teachers’ outputg(C?|z”) one output unit is set to one
cannot neglect the distribution of the initia(0) which is not putsley P
so far fromwy. Let W = {w} be the parameter space. What ®Note also that the Bayes estimatdg.y.. with the Jeffrey prior,/7 is
is the natural distribution ofun and w(O)') If we assume a better than the m.l.e. from the point of view of minimizing Kullback—Leibler
. . . 0 ’ ) . divergence, although they are equivalent for latge
uniform distribution over a very large convex regiab, is

) - . ) " Differential Genetical Methods in StatisticsNew York: Springer-Verlag,
very large. However, a natural prior distribution is the Jeffrepyecture Notes in Statistics no. 28, 1985.
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2
& 0.1
> 0.08
Z
0.06
0.04
0.02 Lig¥
0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005
Fig. 5. New coordinate system 1/t

(@

stochastically and all others are set to zero leading to the ¥ 7
target vectory? = (0,---,1,---,0). A student networkw 0.045 b 20% o
is then trying to approximate the teacher given the example ooa | l_,-i%j .

set D;. For training the student networly we use—within
the backpropagation framework—conjugate gradient descent ¢g3s
with a line-search to optimize the training error function (26),
starting from some random initial vector. The cross-validation
error (27) is measured on the cross-validation examplesqo 0.025
stop learning. The average generalization ability (4) is ap-

nostopping 4

0.03

proximately estimated by 0.02
0015
1 K
Reese(t) = =2 D plei y;wo) log plei yw)  (36) 001
=1 0.005 L L ! ) ! L L 1 '

5e-5 led 15e-4 2e-4 2.5c-4 3e4 3.5e-d ded 45e4 Sed
on a large test sefX = 50000 patterns) and averaged "
over 128-256 trials.We compare the generalization error for (b)
the settings: exhaustive training (no stopping), early stoppifg. 6. Shown isk(w) plotted for different sizes’ of the early stopping
(porrlled by the cross-valdaon exampies) and optigLls 523 csster tiok "t .00 ) Sy e
stopping (controlled by the large test set). The SimUIatiog pping set of 20% means: 8)(1)%p0f thpa?terns in theutraining set are uysed
were performed on a parallel computer (CM5). Every curver training, while 20% of the patterns are used to control the early stopping.
in the figures takes about 8 h of computing time on @pt denotes the use of a very large test set (50 000) and no stopping addresses
128, respectively, 256 partition of the CMS5, i.e., we perforrwe case where 100% of the training set is used for exhaustive learning.
128-256 parallel trials. This setting enabled us to do extensive
statistics (cf. [4], [24]). From Fig. 6(b) we observe clearly, that saturated learning
Fig. 6 shows the results of simulations, whé¥e= 8, H = without early stopping is the best in the asymptotic range
8,(M—1) = 4, so that the number. of modifiable parameters of ¢ > 30m, a range which is due to the limited size of the
ism = (N+1)H + (H+ 1)(M — 1) = 108. In Fig. 6(a) data sets often unaccessible in practical applications. Cross-
we see the intermediate range of patterrs3om (see [24]), validated early stopping does not improve the generalization
where early stopping improves the generalization ability toeror here, so that no overtraining is observed on the average in
large extent, clearly confirming the folklore mentioned abovenis range. This result confirms similar findings bylSgrg and
From Fig. 6 we note that the learning curves and variancefing [29]. In the asymptotic area [Fig. 6(b)] we observe that
are similar in the intermediate range no matter how the splitige smaller the percentage of the cross-validation set, which
choosen. Only as we get to small numbers of patt@frs3m) s used to determine the point of early stopping, the better the
we find a growing of the variances for the small splits, whicBerformance of the generalization ability. Fig. 7 shows that the
is to be expected. learning curves for different sizes of the cross-validation set
1several sample sets have been used with changing initial vectors. In e@t® in good agreement with the theoretical prediction of (30).

trial a sample of size is generated, the net is trained starting from a random Three systematic contributions to the randomness arise 1)
initialization w(0). As the number of patterns is in subsequent experiments d les: 2) initializati f th tudent iahts:
increased ta’, the newly generated patterns are added to the old set ofandom examples; ) Iniializaton o € stugent weights;

patterns. and 3) local minima. The part of the variance given by
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0.015
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0.01 : * . ! 0.035
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1/t 0.03
Fig. 7. Shown isR(w) from the simulation plotted for different sizes 0.025
of the cross-validation stopping set for a 8-8-4 classifier network in the 0.02
asymptotic regime as a function @f't. The straight line interpolations are E :
obtained from (30). Note the nice agreement between theory and experiment.  0.015
0.01
th_e_ e_xamples_ is bounded by the Cramer—Rao bofiind). 0.005 exp.vs.1/t
Initialization gives only a small contribution since the results

do not change qualitatively if we start with initial weights 0 0 0.000L 0.0002 0.0003 0.0004 0.0005
far enough outside the circl8 of Fig. 1. Finally there is a 1/t
contribution to the variance from local minima distributed )

around the m.le. solution. Note that local minima do not _ _ _

change the valdiy of our theory. Our simulations essentialff, [ Pote; =2 eier. o spima soporn, ) Soner,
measure a coarse distribution of local minima solutions arouggl then /2t fit in the asymptotic regime. Shown is data for a 8-8-4 classifier
the m.l.e. and contains a variance due to this fact (for a furthestwork.

discussion on local minima in learning curve simulations

see [24]). o _ if we perform early stopping, even if we have access to
In Fig. 8(a) we show an exponential interpolation of thghe optimal stopping time. For cross-validation stopping we
learning curve over the whole range of examples in thgmputed the optimal split between training and validation
situation of optimal stopping (controlled by the large te%xamples and showed for large that optimally onlyr’, . =
set). The fitted exponent af"* indicates al/v/# scaling, 1/v/2m examples should be used to determine the point of
In the asymptotic range as seen from Fig. 8(a) and (b) 18y stopping in order to obtain the best performance. For
1/+/t fit fails to hold and am/2t scaling gives much better example, if m = 100 this corresponds to using roughly

interpolation results. An explanation of this effect can bgso, of thes training patterns for training and only 7% for
obtained by information geometrical means: early StopPPNGsting where to stop. Yet, even if we use,; for cross-

gives per definition a solution, which is not a global ofjijation stopping the generalization error is always increased

local minimum of the empirical risk function (11) on theq,ynaring to exhaustive training. Nevertheless note, that this

training_ patterns. Theref(_)re the gradienfc terms in the “ke”hoggymptotic range is often unaccessible in practical applications
expansion (see Appendix A) are contributing and have t0 BEs 5 the limited size of the data sets

considered carefully. For an intermediate range the gradienqn the nonasymptotic region our simulations confirm the
term in the expansion, which scales g5/t gives the dom- ¢, ore that cross-validated early stopping always helps to

inant contribution. Asymptotically the gradient term fails 1 nance the performance since it decreases the generalization

give large contributions because the solution taken is Vel¥ror. We gave an intuitive explanation why this is observed
close to a local minimum and thusra/2¢ scaling dominates. (see Section VI, Fig. 4)

Furthermore for this intermediate range our asymptotic
theory provides a guideline which can be used in practice as

We proposed an asymptotic theory for overtraining. The heuristic estimate for the choice of the optimal size of the
analysis treats realizable stochastic neural networks, traireafly stopping set in the same sense as NIC ([21]-[23]) is used
with Kullback—Leibler divergence. However a generalizatioas a guideline for model selection.
to unrealizable cases and other loss functions can be obtainebh future studies we would like to extend our theory—along
along the lines of our reasoning. the lines of Section VI—to incorporate the prior distributions

It is demonstrated both theoretically and in simulations thaf the initial weights and the nonlinear learning trajectories
asymptoticallythe gain in the generalization error is smalhecessary to understand the intermediate range.

VIIl. CONCLUDING REMARKS
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APPENDIX A 3) the z; and z, axes are chosen such that
PROOF OF (13)

Since Riyain(w) is minimized atw, we have

N>
)
I
N
)
\zl

and (4) all the other axes are orthogonal to the triangle.

IRrain() —0. (A.1) Moreover, we assume, > 7. The opposite case is analyzed
ow in the same way, giving the same final result for symmetry
Its second derivative reasons.

9 8 1 o The sphere5’ is written in this coordinate system as

- —— Rirain(wo) ;Za—a—logp Tis Yis Wo) S ={zlz1 =2, (22 —2)2 + 23+ 4+ 22, = R*sin? 20}
converges to its expectatidii(wg) = G by the law of large where Rsin 26 is the radius of the sphere

i : i d 1
numbers. Hence, by expanditi},,i,(w) at @, we have R— s = §|ﬁ] — |
Rizain(w) = Rirain(®) + 5 (w — @) G(w — @) and
+ 0, (3?), (A.2)  n+a
= — Rcos26.

In order to evaluateR;,.i,(w). we expand it as

OR rain\ W ~
t 8111( e (@ — wo)

Hence
Rtrain(ﬁ]) = Rtrain(WO) +
1

+ Q(ﬁ] - wO)TG(ﬁI - 1110) + Op(t_g/Q).
(A.3) /{71 + (=2 4224+ 22
Expanding (A.1) aroundvy, we have ds’
+ 227 — 2o
a-Rtra,in(TUO) ~ |S |
— (tr — wo) ds’
w = /{(zf) + R?sin® 20 + 2(z2 — 2)Z + 2°} 75
— (i — wo) Gl — wo) + O,(t~?). (A4) 15|
s ~ 2
By substituting this in (A.3), we have = <Zl —;Zl — Rcos 29) + R?sin’® 20 + 72
Ripain() = Ho — (i — wo)¥ Gliv — wo) + O, (t7/?). s 5 \2
_ . 2 . ’ =<m) + R? — (%1 + 1) Rcos 20 + 22
Again by substituting this in (A.2), we have (13). 2
1 ~ ~ 2 1 A~ ~ 2
=|z(w+w)||" +|z(w—w
APPENDIX B I15( M= +115(¢ |
PROOF OF LEMMA 5 1(,3 — 7)) cos 26
We have the trianglavoww, and letS be the(m — 1)- 1 2 P R
sphere whose diameter is spannediband. Let A be a = ZHerwH + ZHW — |
ray approachingy from the left-hand side, which intersects 1oy o
S at w*. This is the optimal stopping point. L&t be the - §{||w|| — [lw]|*} cos 26
angle between the ray and the diametedw. The probability - e Lo .
densityr(#) of 8 is given by (23). Let us consider the s&t = 5”“’” + 5”“’” - 5{”“’” — |[w]|"} cos 26.

of points onS whose angles are betweérand 6 + d6 when

. : Here, we used the following properties:
w* ison S’. Itis a(m — 2)-sphere onS. We then calculate g prop

the average of the square of distarfeg — wo|* whenw* is 2+ 51) 122 = ||(@ )||2
on S’ (that is, when the angle i8) 2
,dS’ 7 -3 =3 +7) - (#H+7) = ol - [lo]?
s(0) = [ [w* —wol
15| d 1, .
R:§ = 5(21 —Zl)

where the integration is taken ovér.

This is the case wherel is from the same side a®,.
For calculation, we introduce an orthogonal coordinate system El|@|*] = = El|l@|* = i
z = (%) in the space ofw (Fig. 5) such that 1) its origin is rt 't
put atw, SO thatwo = 0; 2) its z; and z, axes are on the We obtain

From

plane of the trianglavy@ww, so that E[s(6)] = mf{l 1 (1 l o8 20
b =(% % AR roor
111—(21722707---70) m
w = (%1, 7,0, -+,0); = 50 {1—=(1-2r)cos26}.
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Therefore, from

1
Irn—?

/2
/ cos20sin™ 2 df
0

1 77/2
=— (1 —2sin® ) sin™ 2 0 df

Irn 0
1 1
= (Ipo—2L)=1-2(1-=
Irn—Q( 2 ) < m)
2
=—14+=
m

when ray A arrives from the left side, we get

El|lw* = wol|]
- /077/2 E[s(0)]r(8) d6 = t?: {7,, 1 ;1 27,}'

When ray A arrives from the right sidew* = v, so that

* N m
Eflw” = wol*] = Eflli — woll*] = -~
holds. Hence, by averaging the above two, we have

m 1-—2r m 1-=2r
R * — 2 J _ - 7 _
(Rlw™ 7)) 2trr! { ! m } tr 2ty

m 11 1
Tt 2\r )’

In order to obtainr,,;, we evaluate

d . m 1 1 1
o W) == st gt g

giving

=0

VIm=1-1
2(m—1)

which can be expanded for large as

1

TOPt =1 - —.

V2m
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