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Abstract—A statistical theory for overtraining is proposed.
The analysis treats general realizable stochastic neural networks,
trained with Kullback–Leibler divergence in the asymptoticcase
of a large number of training examples. It is shown that the
asymptotic gain in the generalization error is small if we per-
form early stopping, even if we have access to the optimal
stopping time. Considering cross-validation stopping we answer
the question: In what ratio the examples should be divided into
training and cross-validation sets in order to obtain the optimum
performance. Although cross-validated early stopping is useless in
the asymptotic region, it surely decreases the generalization error
in the nonasymptotic region. Our large scale simulations done on
a CM5 are in nice agreement with our analytical findings.

Index Terms—Asymptotic analysis, cross-validation, early stop-
ping, generalization, overtraining, stochastic neural networks.

I. INTRODUCTION

M ULTILAYER NEURAL networks improve their behav-
ior by learning a set of examples showing the desired

input–output relation. This training procedure is usually carried
out by a gradient descent method minimizing a target function
([1], [27], and many others).

When the number of examples is infinitely large and they
are unbiased, the network parameters converge to one of the
local minima of the empirical risk function (expected loss)
to be minimized. When the number of training examples is
finite, the true risk function (generalization error) is different
from the empirical risk function. Thus, since the training
examples are biased, the network parameters converge to a
biased solution. This is known as overfitting or overtraining,1
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1The concept of overfitting refers to fitting specific examples too much,

thus loosing generality. Overtraining addresses the issue of using too many
iterations in the learning procedure, which leads to overfitting (see, e.g., [29]).

because the parameter values fit too well the speciality of the
biased training examples and are not optimal in the sense of
minimizing the generalization error given by the risk function.

There are a number of methods of avoiding overfitting.
For example, model selection methods (e.g., [23], [20], [26]
and many others), regularization ([25] and others), and early
stopping ([16], [15], [30], [11], [4] and others) or structural
risk minimization (SRM, cf. [32]) can be applied.

Here we will consider early stopping in detail. There is
a folklore that the generalization error decreases in an early
period of training, reaches a minimum and then increases
as training goes on, while the training error monotonically
decreases. Therefore, it is considered better to stop training
at an adequate time, a technique often referred to as early
stopping . To avoid overtraining, the following simple stopping
rule has been proposed based on cross-validation: Divide all
the available examples into two disjoint sets. One set is used
for training. The other set is used for validation such that
the behavior of the trained network is evaluated by using the
cross-validation examples and the training is stopped at the
point that minimizes the error on the cross-validation set. Note
that dividing the available examples into two fixed sets is a
strongly simplified implementation of k-fold cross-validation
(cf. [12]).2 In our study we will consider only the above
described two set cross-validation and we will refer to it as
cross-validation in the following.

Wang et al. [30] analyzed the average optimal stopping
time without cross-validation in the case of linear-machines.
For the regression case Sjöberg and Ljung [29] calculated
asymptotically that the number of efficient parameters is linked
1) to the regularization parameter if a specific regularization
is applied and 2) to the number of iterations of the learn-
ing algorithm if early stopping is used. They denote early
stopping as implicit regularization. Bishop [9] showed that
regularization and early stopping lead to similar solutions and
stressed the analogy between the number of iterations and the
regularization parameter. Barberet al. [6], [7] considered the
evaluation of the generalization error by cross-validation for
linear perceptrons.

Recently Guyon [14] and Kearns [18] derived a VC bound
for the optimal split between training and validation set, which
shows the same scaling as our result. The VC result scales
inversely with the square root of the VC dimension (cf. [31])

2For example in leave one out cross-validation, a pattern is drawn randomly,
its error is validated, then another pattern is drawn and so on. Finally the
validation error is determined by averaging over all chosen patterns.
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of the network, which in the case of realizable rules coincides
with the number of parameters Their result was achieved
by bounding the probability of error of the recognizer selected
by cross-validation using both classical and VC bounds; the
resulting bound is then optimized with respect to the split
between training and validation set.

There are various phases in the overtraining phenomena
depending on the ratio of the numberof examples to the
number of the modifiable parameters (see [24]). When

is smaller or nearly equal to the examples can in
principle be memorized and overfitting is remarkable in this
phase, in particular around ([19], [10]). However, the
application of simple two set cross-validation stopping has
serious disadvantages in this case. The simple splitting of
an already small set of examples decreases the scarce and
valuable information in the small data set. In order to avoid
overtraining in this case, we need to use global methods like
the above mentioned regularization, SRM or k-fold cross-
validation rather than simple two set cross-validation stopping.

In an intermediate phase (cf. [24]) of larger than
simulations show that cross-validation stopping is effective in
general. However, it is difficult to construct a general theory
in this phase (see also Section VI for discussion).

In the asymptotic phase whereis sufficiently large, the
asymptotic theory of statistics is applicable and the estimated
parameters are approximately normally distributed around the
true values.

As the first step toward elucidation of overtraining and
cross-validation, the present paper gives a rigorous mathemat-
ical analysis of overtraining phenomena for 1) a realizable
stochastic machine (Section II); 2) Kullback-Leibler diver-
gence (negative of the log likelihood loss); and 3) a sufficiently
large number of examples (compared with the numberof
parameters).

We analyze the relation between the training error and
cross-validation error, and also the trajectory of learning using
a quadratic approximation of the risk function around the
optimal value in the asymptotic region (Section III). The effect
of early stopping is studied on this basis. It is shown that
asymptotically we gain little by early stopping even if we
had access to the optimal stopping time (Section IV). Since
we never have access to the optimal stopping time, the gen-
eralization error becomes asymptotically worse, which means
that the gain achieved through early stopping is asymptotically
smaller than the loss of not using the cross-validation examples
for training.

We then answer the question: In what ratio the examples
should be divided into training and cross-validation sets in
order to obtain the optimum performance (Section V). We give
a definite analytic answer to this problem. When the number

of network parameters is large, the best strategy is to use
almost all examples in the training set and to use only
examples in the cross-validation set, e.g., when , this
means that only 7% of the training patterns are to be used in
the set determining the point for early stopping.

Our results are confirmed by large-scale computer simula-
tions of three-layer feedforward networks where the number

of modifiable parameters is When the

theory fits well with simulations, showing cross-validation is
not necessary, because the generalization error becomes worse
by using cross-validation examples to obtain an adequate
stopping time. For an intermediate range, where
overtraining occurs surely and the cross-validation stopping
improves the generalization ability strongly (Section VII).
Finally, concluding remarks are given in Section VIII.

II. STOCHASTIC FEEDFORWARD NETWORKS

Let us consider a stochastic network which receives input
vector and emits output vector The network includes
a modifiable vector parameter and the
network specified by is denoted by The input–output
relation of the network is specified by the conditional
probability It is assumed that input is randomly
chosen from an unknown probability The joint probabil-
ity of of is given by

(1)

We assume the following.

1) There exists a teacher network which generates
training examples.

2) The Fisher information matrix defined by

(2)

has a full rank and is differentiable with respect to
where denotes the expectation with respect to

3) The training set

consists of i.i.d. examples generated by the distribution
of

Let us define the risk and loss functions. When an in-
put–output pair is an example generated from network

its loss or error is given by the negative of the
likelihood,

(3)

The risk function of network is the expectation
of loss with respect to the true distribution

(4)

where denotes the expectation with respect to
The risk function is called the generalization error, since
it is evaluated by the expectation of where the test
pair is newly generated by It is easy to show

(5)
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where

(6)

is the entropy of the teacher network and

(7)

is the Kullback–Leibler divergence from probability distribu-
tion to or the divergence of from

Obviously, and the equality holds
when, and only when, Hence, the risk measures
the divergence between the true distribution and
the distribution of except for a constant term

which denotes the stochastic uncertainty of the teacher
machine itself. Minimizing is equivalent to minimizing

and the minimum is attained at
In the case of multilayer perceptrons with additive Gaussian

noise, the output is written as

(8)

where is the analog function calculated by the mul-
tilayer perceptron with a set of parameters and
is Gaussian noise. When its componentsare independent
subject to we have

(9)

Hence the loss is the ordinary squared error

(10)

where does not depend on

III. A SYMPTOTIC ANALYSIS OF LEARNING

The maximum likelihood estimator (m.l.e.) maximizes
the likelihood of producing the training set

or equivalently minimizing the empirical risk function

(11)

This empirical risk is called the training error since it is
evaluated by the training examples themselves. In order to
avoid confusion, is denoted by when necessary.

The asymptotic theory of statistics proves that the m.l.e. is
asymptotically subject to the normal distribution with mean

and variance

under certain regularity conditions, where is the inverse
of the Fisher information matrix

By expanding the risk functions, we have the following
asymptotic evaluations of and in the neigh-
borhood of

Lemma 1: When belongs to the -neighborhood
of

(12)

(13)

where denotes the transpose of the column vectorand

and represents the average with respect to the distribution
of the sample [3].

The relation (12) is the Taylor expansion of (4), where the
identity

is used. The proof of (13) is given in Appendix A.
By putting in (12) and (13), we have the asymptotic

evaluations of the generalization and training errors of
They depend on the examples from which the m.l.e. is
calculated. We denote by the average with respect to
the distribution of the sample which determines We
then obtain the following universal relation concerning the
generalization error and training error. This was first proved
by [3]. A similar but different universal property is proved by
Amari [2] for deterministic dichotomy machines.

Corollary 1: For the m.l.e. the average training error
and generalization error are asymptotically evaluated by the
AIC3 type criterion [3]

(14)

(15)

independently of the architecture of networks, whereis the
number of modifiable parameters (dimension number of
and is the number of training patterns.

Murataet al. [22], [23] obtained more general versions and
proposed the NIC (network information criterion) for model
selection by generalizing the AIC [5].

Let us consider the gradient descent learning rule, where the
parameter at the th step is modified by

(16)

where is a small positive constant. More precisely,
should be denoted by since it depends on but we
omit the subscript for the sake of simplicity. This is batch
learning where all the training examples are used for each

3Akaike’s information criterion.
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iteration of modifying . We can alternatively use on-line
learning4

(17)

where is randomly chosen at each step from the
training data set The batch process is deterministic and

converges to ,5 provided the initial is included
in its basin of attraction. For large is in the -
neighborhood of , and the gradient of is approximated
from (13) as

Hence, by neglecting the term of order (16) is
approximated by

This gives the asymptotic evaluation

where is the identity matrix and is assumed to be
large.

In order to make the analysis easier, we take the coordinate
system such that the Fisher information matrixis equal to
the identity matrix

(18)

at This is possible without loss of generality, and the
results of the following analysis are the same whichever
coordinate system we use. Under this coordinate system, we
have

showing that the trajectory linearly approaches in the
neighborhood of

We call the trajectory a ray which approaches
linearly when is large. An interesting question is from which
direction the ray approaches Even if the initial
is uniformly distributed, we cannot say that approaches

isotropically, since dynamics (16) is highly nonlinear in
an early stage of learning. In other words, the distribution of

is not isotropic but may have biased directions.
Although the rays are not isotropically distributed around

the quantity is isotropically distributed around
because is put equal to at This implies that the relative
direction of a ray with respect to the isotropically distributed
is isotropically distributed. This gives us the following lemma,
which helps to calculate and

Lemma 2: Although does not necessarily approach
isotropically, the ensemble averages and

are the same as those calculated by assuming
that approaches isotropically.

4Its dynamical behavior was studied by Amari [1], Heskes and Kappen
[17], and recently by Barkaiet al. [8] and Solla and Saad [28].

5Or to ŵwwt; but the subscript is omitted hereafter.

Fig. 1. Geometrical picture to determine the optimal stopping pointwww
�
:

Proof: The distribution of the ray is not necessarily
isotropic but is distributed isotropically around The
average is the expectation with respect to the
unknown initial which determines the ray and with
respect to which determines Let us fix a ray and take
average with respect to that is with respect to Since
the relative direction between the fixed ray and all possible
is isotropically distributed, it follows that taking the average
with respect to for a fixed ray is equivalent to taking the
average with respect to isotropically distributed rays and a
fixed Therefore we may calculate the averages by using
the isotropically distributed rays instead of the isotropically
distributed

IV. V IRTUAL OPTIMAL STOPPING RULE

When the parameter approaches as learning goes on,
the generalization behavior of network

is evaluated by the sequence

(19)

It is believed that decreases in an early period of
learning but it increases later. Therefore, there exists an
optimal stopping time at which is minimized. The
stopping time is a random variable depending on
and the initial We evaluate the ensemble average of

The true and the m.l.e. are in general different, and
their distance is of order Let us compose a sphere
of which the center is at and which passes
through both and as is shown in Fig. 1. Its diameter is
denoted by where

(20)

and

(21)
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Fig. 2. Distribution of the angle�.

Let be the ray, that is the trajectory starting at
which is far from the neighborhood of The optimal

stopping point that minimizes

(22)

is given by the following lemma.
Lemma 3: The optimal stopping point is asymptotically

the first intersection of the ray and the sphere
Proof: Since is the point on such that is

orthogonal to it lies on the sphere (Fig. 1). When ray
is approaching from the opposite side of (the right-hand
side in the figure), the first intersection point is itself. In
this case, the optimal stopping never occurs until it converges
to

Let be the angle between the ray and the diameter
of the sphere We now show the distribution of

when the rays are isotropically distributed relative to
Lemma 4: When ray is approaching from the side in

which is included, the probability density of
is given by

(23)

where

Proof: Let us compose a unit -dimensional sphere
centered at (Fig. 2). Since ray is considered to

approach isotropically (Lemma 2), its intersection to
is uniformly distributed on when is approaching from
the side of Let us consider the area on such that
the angles are between and Then, the area is an

-dimensional sphere on whose radius is
(Fig. 2). Hence, its volume is where is
the volume of a unit -sphere. By normalization, the
density of is

Now we have the following theorem.

Theorem 1: The average generalization error at the optimal
stopping point is asymptotically given by

(24)

Proof: When ray is at angle the
optimal stopping point is on the sphere It is easily
shown that

This is the case where approaches from the left-hand
side in Fig. 1, which occurs with probability 0.5, and the
average of is

Since we have

When is that is approaches from the
opposite side, it does not stop until it reachesso that

This also occurs with probability 0.5. Hence, from (22), we
proved the theorem.

The theorem shows that, when we could know the optimal
stopping time for each trajectory, the generalization error
decreases by which has an effect of decreasing the
effective dimensions by This effect is negligible when
is large. The optimal stopping time is of order However,
it is impossible to know the optimal stopping time. If we stop
learning at an estimated optimal time we have some gain
when ray is from the same side as but we have some
loss when ray is from the opposite direction.

Wanget al. [30] calculated in the case of linear -
machines and defined the optimal average stopping time
that minimizes This is different from the present
since our is defined for each trajectory Hence it is a
random variable depending on and Our average

is different from since is common to all the
trajectories while are different. We can show

We can prove

in agreement with Wanget al. [30]. This shows that the gain
becomes much smaller by using the average stopping time

However, the point is that there is no direct means to
estimate except for cross-validation. Hence, we need to
analyze cross-validation early stopping.
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Fig. 3. Optimal stopping pointwww� by cross-validation.

V. OPTIMAL STOPPING BY CROSS-VALIDATION

In order to find the optimal stopping time for each trajectory,
an idea is to divide the available examples into two disjoint
sets; the training set for learning and the cross-validation
set for evaluating the generalization error. The training er-
ror monotonically decreases with iterations, but according to
the folklore the generalization error evaluated by the cross-
validation set decreases in an early period but it increases after
a critical period. This gives the optimal time to stop train-
ing. The present section studies two fundamental problems:
1) Given examples, how many examples should be used
in the training set and how many in the cross-validation set?
2) How much gain can one expect by the above cross-validated
stopping?

Let us divide examples into examples of the training
set and examples of the cross-validation set, where

(25)

Let be the m.l.e. from training examples, and let be
the m.l.e. from the other cross-validation examples, that is

and minimize the training error function

(26)

and cross-validation error function

(27)

respectively, where summations are taken overtraining
examples and cross-validation examples. Since the training
examples and cross-validation examples are independent, both

and are asymptotically subject to independent normal
distributions with mean and covariance matrices
and respectively.

Let us compose the triangle with vertices and
(Fig. 3). The trajectory starting at enters linearly
in the neighborhood of The point on the trajectory
which minimizes the cross-validation error is the point on
that is closest to since the cross-validation error defined by
(27) can be expanded from (13) as

(28)

Let be the sphere whose center is at and which
passes through both and Its diameter is given by

(29)

Then, the optimal stopping point is given by the inter-
section of the trajectory and sphere When the trajectory
comes from the opposite side of (right-hand side in the
figure), it does not intersect until it converges to so that
the optimal point is in this case.

The generalization error of is given by (12), so that we
calculate the expectation of

Lemma 5:

Proof is given in Appendix B. It is immediate to show
Lemma 6.

Lemma 6: The average generalization error by the optimal
cross-validated early stopping is asymptotically

(30)

We can then calculate the optimal division rate of
examples which minimizes the generalization error.

Theorem 2: The average generalization error is minimized
asymptotically at

(31)

The theorem shows the optimal division of examples into
training and cross-validation sets. Whenis large

(32)

showing that only of examples are to be
used for cross-validation testing and remaining most examples
are used for training. When , this shows that 93% of
examples are to be used for training and only 7% are to be
kept for cross-validation. From this we obtain

Theorem 3: The asymptotically optimal generalization er-
ror is

(33)

When is large, we have

(34)

This shows that the generalization error increases slightly by
cross-validation early stopping compared with learning which
uses all the examples for training. That is

(35)

for the optimal cross-validated and the m.l.e. based on
all the examples without cross-validation.

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on August 18,2010 at 03:05:02 UTC from IEEE Xplore.  Restrictions apply. 



AMARI et al.: ASYMPTOTIC STATISTICAL THEORY 991

Fig. 4. Geometrical picture for the intermediate range.

VI. I NTERMEDIATE RANGE

So far we have seen that cross-validation stopping is asymp-
totically not effective. Now we would like to discuss from
several viewpoints why cross-validation early stopping is
effective in the intermediate range. Note however that our
explanations are not mathematically rigorous, but rather sketch
three possible lines along which our theory can be generalized
for the intermediate range: 1) a geometrical picture; 2) the
distribution of the initial ; and 3) the nonlinearities of the
trajectories.

In order to have intuitive understanding, we draw another
picture (Fig. 4). Here, is distributed uniformly on the sphere

whose center is the true value. Let be the initial weight
and let be the distance between and We draw
tangent rays from to the sphere Then, the tangent
points on form an -dimensional sphere that divides

into two parts (shaded, left side) and (right side).
When lies on early stopping is not necessary, but when

lies on then early stopping improves the solution.
In the asymptotic range whereis very large, whatever

is, it is far larger than the radius of This implies that
is located almost infinitely far, so that the -sphere

dividing into and is equal to the -sphere
which is the vertical cut of (the cut at orthogonal to

the line connecting and In this case, is divided
into two parts and with an equal volume. Moreover,
when is large, the most volume of is concentrated in a
neighborhood of so that the effect of early stopping is not
remarkable.

In the intermediate range whereis not so large, the sphere
is different from and is located on the left side of.

Since most volume is concentrated in a neighborhood of
the measure of is negligible in this case. This implies that
early stopping improves with a probability close to one. In
the extreme case where is very small and is inside
immediate stopping without any training is the best strategy.

This shows that, when is not asymptotically large, we
cannot neglect the distribution of the initial which is not
so far from Let be the parameter space. What
is the natural distribution of and ? If we assume a
uniform distribution over a very large convex region, is
very large. However, a natural prior distribution is the Jeffrey

noninformative distribution6 which is given by
where is the Riemannian volume element of

In most neural network architectures, the volume
is finite and this implies that the effect of the

distribution of initial cannot be neglected whenis not
asymptotically large.

It is possible to construct a theory by taking into
account. However, for the theory to be valid whereis not
asymptotically large, the nonlinear learning trajectories cannot
be neglected and we need higher-order corrections to the
asymptotic properties of the estimator(cf. Amari7).

VII. SIMULATIONS

We use standard feedforward classifier networks with
inputs, sigmoid hidden units and softmax outputs
(classes). The network parameters consist of biases

and weights The input
layer is connected to the hidden layer via the hidden
layer is connected to the output layer via and no short-
cut connections are present. The output activityof the th
output unit is calculated via the softmax squashing function

where is the local
field potential and

is the activity of the -th hidden unit, given input .
Each output codes thea posteriori probability of be-

ing in class Although the network is completely deter-
ministic, it is constructed to approximate class conditional
probabilities ([13]).

Therefore, each randomly generated teacher repre-
sents by construction a multinomial probability distribution

over the classes
given a random input We use the same network

architecture for teacher and student. Thus, we assume that the
model is faithful, i.e., the teacher distribution can be exactly
represented by a student

A training and cross-validation set of the form
is generated randomly, by drawing

samples of from a uniform distribution and forward prop-
agating through the teacher network. Then, according to
the teachers’ outputs one output unit is set to one

6Note also that the Bayes estimatorŵwwBayes with the Jeffrey prior
p
g is

better than the m.l.e. from the point of view of minimizing Kullback–Leibler
divergence, although they are equivalent for larget:

7Differential Genetical Methods in Statistics. New York: Springer-Verlag,
Lecture Notes in Statistics no. 28, 1985.
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Fig. 5. New coordinate systemz.

stochastically and all others are set to zero leading to the
target vector A student network
is then trying to approximate the teacher given the example
set For training the student network we use—within
the backpropagation framework—conjugate gradient descent
with a line-search to optimize the training error function (26),
starting from some random initial vector. The cross-validation
error (27) is measured on the cross-validation examples to
stop learning. The average generalization ability (4) is ap-
proximately estimated by

(36)

on a large test set patterns) and averaged
over 128–256 trials.1 We compare the generalization error for
the settings: exhaustive training (no stopping), early stopping
(controlled by the cross-validation examples) and optimal
stopping (controlled by the large test set). The simulations
were performed on a parallel computer (CM5). Every curve
in the figures takes about 8 h of computing time on a
128, respectively, 256 partition of the CM5, i.e., we perform
128–256 parallel trials. This setting enabled us to do extensive
statistics (cf. [4], [24]).

Fig. 6 shows the results of simulations, where
so that the number of modifiable parameters

is In Fig. 6(a)
we see the intermediate range of patterns (see [24]),
where early stopping improves the generalization ability to a
large extent, clearly confirming the folklore mentioned above.
From Fig. 6 we note that the learning curves and variances
are similar in the intermediate range no matter how the split is
choosen. Only as we get to small numbers of patterns
we find a growing of the variances for the small splits, which
is to be expected.

1Several sample sets have been used with changing initial vectors. In each
trial a sample of sizet is generated, the net is trained starting from a random
initialization www(0): As the number of patterns is in subsequent experiments
increased tot0; the newly generated patterns are added to the old set oft
patterns.

(a)

(b)

Fig. 6. Shown isR(www) plotted for different sizesr0 of the early stopping
set for a 8-8-4 classifier network(N = 8;H = 8; (M � 1) = 4) (a) in the
intermediate and (b) in the asymptotic regime as a function of1=t. An early
stopping set of 20% means: 80% of thet patterns in the training set are used
for training, while 20% of thet patterns are used to control the early stopping.
opt. denotes the use of a very large test set (50 000) and no stopping addresses
the case where 100% of the training set is used for exhaustive learning.

From Fig. 6(b) we observe clearly, that saturated learning
without early stopping is the best in the asymptotic range
of a range which is due to the limited size of the
data sets often unaccessible in practical applications. Cross-
validated early stopping does not improve the generalization
error here, so that no overtraining is observed on the average in
this range. This result confirms similar findings by Sjöberg and
Ljung [29]. In the asymptotic area [Fig. 6(b)] we observe that
the smaller the percentage of the cross-validation set, which
is used to determine the point of early stopping, the better the
performance of the generalization ability. Fig. 7 shows that the
learning curves for different sizes of the cross-validation set
are in good agreement with the theoretical prediction of (30).

Three systematic contributions to the randomness arise 1)
random examples; 2) initialization of the student weights;
and 3) local minima. The part of the variance given by
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Fig. 7. Shown isR(www) from the simulation plotted for different sizesr0

of the cross-validation stopping set for a 8-8-4 classifier network in the
asymptotic regime as a function of1=t. The straight line interpolations are
obtained from (30). Note the nice agreement between theory and experiment.

the examples is bounded by the Cramer–Rao bound .
Initialization gives only a small contribution since the results
do not change qualitatively if we start with initial weights
far enough outside the circle of Fig. 1. Finally there is a
contribution to the variance from local minima distributed
around the m.l.e. solution. Note that local minima do not
change the validity of our theory. Our simulations essentially
measure a coarse distribution of local minima solutions around
the m.l.e. and contains a variance due to this fact (for a further
discussion on local minima in learning curve simulations
see [24]).

In Fig. 8(a) we show an exponential interpolation of the
learning curve over the whole range of examples in the
situation of optimal stopping (controlled by the large test
set). The fitted exponent of indicates a scaling.
In the asymptotic range as seen from Fig. 8(a) and (b) the

fit fails to hold and a scaling gives much better
interpolation results. An explanation of this effect can be
obtained by information geometrical means: early stopping
gives per definition a solution, which is not a global or
local minimum of the empirical risk function (11) on the
training patterns. Therefore the gradient terms in the likelihood
expansion (see Appendix A) are contributing and have to be
considered carefully. For an intermediate range the gradient
term in the expansion, which scales as gives the dom-
inant contribution. Asymptotically the gradient term fails to
give large contributions because the solution taken is very
close to a local minimum and thus a scaling dominates.

VIII. C ONCLUDING REMARKS

We proposed an asymptotic theory for overtraining. The
analysis treats realizable stochastic neural networks, trained
with Kullback–Leibler divergence. However a generalization
to unrealizable cases and other loss functions can be obtained
along the lines of our reasoning.

It is demonstrated both theoretically and in simulations that
asymptoticallythe gain in the generalization error is small

(a)

(b)

Fig. 8. R(www) plotted as a function of1=t for optimal stopping. (a) Exponen-
tial fit t�0:49 in the whole range oft and (b) comparison of the exponential
and them=2t fit in the asymptotic regime. Shown is data for a 8-8-4 classifier
network.

if we perform early stopping, even if we have access to
the optimal stopping time. For cross-validation stopping we
computed the optimal split between training and validation
examples and showed for large that optimally only

examples should be used to determine the point of
early stopping in order to obtain the best performance. For
example, if this corresponds to using roughly
93% of the training patterns for training and only 7% for
testing where to stop. Yet, even if we use for cross-
validation stopping the generalization error is always increased
comparing to exhaustive training. Nevertheless note, that this
asymptotic range is often unaccessible in practical applications
due to the limited size of the data sets.

In the nonasymptotic region our simulations confirm the
folklore that cross-validated early stopping always helps to
enhance the performance since it decreases the generalization
error. We gave an intuitive explanation why this is observed
(see Section VI, Fig. 4).

Furthermore for this intermediate range our asymptotic
theory provides a guideline which can be used in practice as
a heuristic estimate for the choice of the optimal size of the
early stopping set in the same sense as NIC ([21]–[23]) is used
as a guideline for model selection.

In future studies we would like to extend our theory—along
the lines of Section VI—to incorporate the prior distributions
of the initial weights and the nonlinear learning trajectories
necessary to understand the intermediate range.
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APPENDIX A
PROOF OF (13)

Since is minimized at we have

(A.1)

Its second derivative

converges to its expectation by the law of large
numbers. Hence, by expanding at we have

(A.2)

In order to evaluate . we expand it as

(A.3)

Expanding (A.1) around we have

(A.4)

By substituting this in (A.3), we have

Again by substituting this in (A.2), we have (13).

APPENDIX B
PROOF OF LEMMA 5

We have the triangle and let be the -
sphere whose diameter is spanned byand . Let be a
ray approaching from the left-hand side, which intersects

at . This is the optimal stopping point. Let be the
angle between the ray and the diameter . The probability
density of is given by (23). Let us consider the set
of points on whose angles are betweenand when

is on . It is a -sphere on . We then calculate
the average of the square of distance when is
on (that is, when the angle is

where the integration is taken over
This is the case where is from the same side as

For calculation, we introduce an orthogonal coordinate system
in the space of (Fig. 5) such that 1) its origin is

put at so that ; 2) its and axes are on the
plane of the triangle so that

3) the and axes are chosen such that

and (4) all the other axes are orthogonal to the triangle.
Moreover, we assume The opposite case is analyzed
in the same way, giving the same final result for symmetry
reasons.

The sphere is written in this coordinate system as

where is the radius of the sphere

and

Hence

Here, we used the following properties:

From

we obtain

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on August 18,2010 at 03:05:02 UTC from IEEE Xplore.  Restrictions apply. 



AMARI et al.: ASYMPTOTIC STATISTICAL THEORY 995

Therefore, from

when ray arrives from the left side, we get

When ray arrives from the right side, , so that

holds. Hence, by averaging the above two, we have

In order to obtain we evaluate

giving

which can be expanded for large as
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