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Abstract 

Dualistic properties of a gradient flow on a manifold M associated with a dualistic structure (g, ~,  V* ) is studied from 
an information geometrical viewpoint. Some useful applications are also investigated. 

1. Introduct ion  

Recently, dynamical systems that solve some op- 
timization problems have been proposed and studied 
actively, which seems to be motivated mainly by the 
hope of analog parallel computing. Since Karmarkar 
[ 1 ] proposed the projective scaling algorithm, a kind 
of interior point method for solving linear program- 
ming problems, its modifications and analyses have 
been made by many researchers. Further, some gra- 
dient flows on a Lie group are usefully applied for 
solving optimization problems, such as sorting of lists 

(Brockett [ 2] ), diagonalization of matrices (Brock- 
ett [ 2 ], Nakamura [ 3 ] ), matching problems (Brock- 
ett [4] ), etc. In analyzing these dynamical systems, 
differential geometry played an essential role (Bayer 
and Lagarias [5], Brockett [6] ), which is the same as 
in classical mechanics [7] or in nonequilibrium sta- 
tistical physics [8]. 

On the other hand, infomation geometry, originated 
from the geometric study of the manifold of probabil- 
ity distributions (Amari [9,10], Nagaoka and Amari 
[ 11 ], Amari et al. [ 12], Chentsov [ 13], etc), has been 
successfully applied to many fields, such as statisti- 

cal inference (Amari [ 10], Kumon and Amari [ 14], 
Amari and Kumon [ 15], Okamoto et al. [ 16] ), con- 
trol systems theory (Amari [17], Ohara and Amari 
[ 18] ), multiterminal information theory (Amari and 
Han [ 19], Amari [20] ), and neural networks (Amari 
et al. [21] ), etc. It is tempting to apply information 
geometry to the analysis of dynamical systems men- 
tioned above. Obata et al. [22] applied it, though very 
naively, to some nonequilibrium processes, to find that 
the Uhlenbeck-Ornstein process is a geodesic motion 
with respect to the exponential connection on a Gaus- 
sian model. Nakamura [ 23 ] also pointed out that cer- 
tain gradient flows on Gaussian and multinomial distri- 
butions can be characterized as completely integrable 
Hamiltonian systems. It seems that these results are 
important suggestions toward the connection between 
two seemingly unrelated fields, information geometry 
and integrable dynamical systems. 

In this paper, general dualistic properties of a gradi- 
ent flow on a manifold M associated with a dualistic 
structure (g, V, V*) is studied from an information 
geometrical point of view. In order to demonstrate the 
importance of the information geometrical viewpoint 
in analyzing dynamical systems, some applications are 
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given to such fields as statistical inference, neural net- 

works, EM algorithms, linear programming problems, 

and mathematical biology. 

these potentials, we define the V-divergence D from 

Pl E M t o p 2  E M a s  

D(pl  II p2) = 0 ( 0 2 )  + , ~ ( m )  - 8 2 . m ,  

2. Dualistic geometry 

We first give a brief summary of  dualistic geome- 

try. For details, consult [ 10,24]. Mathematicians are 

also studying the dualistic geometry (see Nomizu and 

Simon [25] ,  Kurose [26] ). Let M be a Riemannian 

manifold with metric g. Two affine connections rep- 

resented by covariant derivatives V and V* on M are 

said to be dual with respect to g if, for any vector field 

A, B, and C on M, 

Ag( B[C) = g ( V  ABIC) + g( B[V*aC), (1) 

where g(B[C)  denotes the inner product of  B and C 

with respect to the metric g. If  the torsions and the 

Riemannian curvatures of  M with respect to the con- 

nections V and V* vanish, M is said to be duallyflat 
or simply flat. This does not imply that the manifold is 

Euclidean, because the Riemannian curvature due to 

the Levi-Civita connection does not necessarily van- 

ish. For a dually flat manifold M, a pair of  divergences 

are defined in the following way. We first construct 

mutually dual affine coordinates on M. Since M is flat 

with respect to V and V*, M has V-affine coordinate 
0 = [8 i] and V*-affine coordinate r / =  [r/i] such that 

VAOi = 0 for the natural basis vector field Oi = 0/00 i 
and that V*AOJ = 0 for the natural basis vector field 

OJ = O/Or/j. Moreover, we can choose 8 and r/ such 

that 

g(Oil 0 j )  = 8 j (2) 

holds at any point in M. Then it was proved that there 
exist such potential functions ~ ( 0 ) ,  ~b(r/) on M sat- 

isfying 

0 ~ = Oi~b(rt), r/i = 0 # ' ( 8 ) ,  

0 ( 0 )  + 4,(r/) - 8 .  r / =  0, 

where 0 • r / =  8ir/i and the Einstein's summation con- 
vention Oir/i = ~-~i OiT']i is assumed hereafter. By using 

where r/T and 82 are the 7/- and 8-coordinates of  points 

Pl and P2, respectively. According to the duality, the 

V*-divergence D* is given as 

D*(pl II p=) = D(p= JI m) ,  

Note that our nomenclature of  divergences is different 

from the convention in Amari 's  book [ 10], where the 

V-divergence D from pl C M to P2 C M is defined 

in a converse manner as 

D ( p l  II p2)  = ~ ( 8 1 )  + q~(r/2) - 81 -r/2. 

The statistical manifold, which is a family of  proba- 

bility distributions, is a good example o f  such a struc- 

ture. In this case, the V-divergence is proved to be 
equal to the Kullback-Leibler information. 

Next, we tackle the converse problem. When a po- 

tential U(O) is given on a manifold M, where 0 = 

[8 i] is a local coordinate system of  M, we construct 

a natural dually flat structure on it. In the following, 

we restrict ourselves to a domain O in which the po- 

tential U(O) is a convex function with respect to 0. 

We first define another coordinate system r/ = [r/i] 

and the corresponding potential V(r/) by a Legendre 

transformation as 

rlj = OjU(8),  V(r/) = max {8irli - U(8)} .  
OEO 

Then 0 j = 3Jv(r l )  holds, and the pair (0, r/) satisfies 

the identity 

U(8)  + V(r/) - 8 .  r~ = O. 

The metric h on M is defined by 

hij = OiOjO(8 ).  

This definition can be rewritten as 

h i j -  cgr/j 
c)O i , 

which readily leads to the relation 

08J 
hiJ = = oioJv(r / ) ,  

Orli 
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where (h  q)  is the inverse of  matrix (h j i ) .  This indi- 

cates that the coordinate systems 0 and r /a re  mutually 
dual with respect to h in the sense of  Eq. (2) .  Further 

let us set 

T~jk = a 2  jOkU ( O ) , 

and define the a-connection ~7 (a) by its parameters 

a 
~i.jkr(") = h ( V ~ ) a i  I a k ) ,  . = [i j;  k] - ~Tijk,  

where [ i j ;  k] is the Levi-Civi taconnect ion of  the met- 

ric h. Then the corresponding covariant derivatives 

V (") and ~7(-~) are dual with respect to h, so that M 
has a dualistic structure (h,  ~7 (~), ~7(-'~) ). In particu- 

lar, when a = + l ,  M is dually fiat, and 0 and 7/become 

a = + 1 and - l affine coordinates respectively, which 
can be affirmed by a straightforward computation. In 
this way, a dualistic structure (h,~7(+1),~7 (-1))  on 

M is derived in a natural manner from the potential 
U(0 ) .  The ( + l )-divergence is defined as follows: 

D( ~l)(Pl {I P2) = U(02) + V(r/t) - 0 2 ''0'1 

= U(02)  - U ( O j )  - (02 - Oj) .OoU(01) ,  

converges to the point q along the V*-geodesic,  where 

0 is the ~7-affine coordinates of  point p, and U(O)  = 

U ( p ( O ) ) .  

P r o o f  Let us denote the mutually dual affine coor- 

dinates of  the points p and q by (0,7/) and (0~,'ql), 

respectively. Since V-divergence D (q I I P)  becomes 

D ( q  II P) = (p(O) + & ( r f )  - O. ~7 I, 

the gradient flow can be expressed in the form 

0 i = - g i j { o j O ( O )  - rl~}. 

By multiplying gii to both sides and using the identity 

gjiOi - 3rlj dO i _ drlj 
30 ~ dt  d t '  

we have 

which can readily be integrated to obtain 

n j ( t )  = ,7~ + { n j ( 0 )  - n j } e - ' .  

This proves the theorem. [] 

where (01, r/1 ) and (02, 7"]2) are  the dual affine coor- 
dinates of  the points P l ,p2  E M ,  respectively. Note 
that the point whose r /coordinates vanish corresponds 
to the minimum of  the potential U(O) .  

3. Dualistic dynamical  systems on a flat manifold 

In this section, dualistic structures of  a gradient sys- 

tem on a dually flat manifold is studied. 

Theorem 1. Let M be a dually flat manifold with re- 
spect to the dualistic structure (g, V,  ~7"), in which a 

potential function U ( p )  on M is defined by 

U ( p )  = D ( q  I1P),  

where D ( q  I1 P)  is the V-divergence and q ¢ M is an 
arbitrarily prefixed point. Then the gradient flow [ 27, 
p. 205] 

0 i = - g i j o i u ( o )  (3) 

Here we give some examples of  Theorem 1. Let us 
consider the family of  Gaussian probability distribu- 
tions with mean / z  and variance 0-2: 

P(X;/'t"0-2) - V/~-~O . exp  ~ 7  " 

This is a typical example of  an exponential family 

since it can be represented in the form 

l o g p ( x ; # , o  .2 ) = Ol f l ( x )  + OZ f e ( x )  -- 0 ( 0 ) ,  

where 

01 /z 02 = 1 
= ~ ,  20-2' 

and 

f l  (x)  = x, f 2 ( x )  = - x  2, 

/..t 2 
0 ( 0 )  = ~ + log v / ~ 0 - .  (4) 

Since the cumulant generating function 

= log f exp { 0 t f l  ( x )  + O Z f e ( x ) }  d x  4 , (0)  
J 
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is a convex function in 0 = (01,02),  the dually flat 

structure is naturally defined. The metric 

go = OiOjO ( O ) 

is the Fisher information metric, 27(1) is the exponen- 

tial or e-connection, and 27(-1) is the mixture or m- 

connection [10].  Throughout this example, g is the 

Fisher metric, 0Jq are the e-affine coordinates of  the 

point q, and Po ( x )  = p ( x ;  It,  o-2). 

We first let V and 27* be exponential and mixture 

connections, respectively. Further let us set q as a 6- 

distribution concentrated on the origin. Then the po- 
tential becomes 

U(O)  = D ( e ) ( q  [[ Po) = K ( q ,  po)  = 0 ( 8 )  + const., 
(5) 

where K is the Kullback-keibler information defined 

by 

K ( p l ,  p~) = f pl (x) log pz(x)  pJ ( x )  dx.  

The corresponding gradient flow coincides with Naka- 

mura's dynamics [23] ,  which converges to the 6- 

distribution q along an m-geodesic. Strictly speaking, 

some suitable renormalization is needed in (5) since 

the constant diverges in this case. 

Conversely, let 27 and 27* be mixture and exponen- 

tial connections, respectively. Further let us set q as a 
2 vanishes and i remains uniform distribution, then Oq Oq 

indefinite. In this case, 27-affine parameters are the ex- 

pectation parameters r/i = E o [ f i ( x ) ]  where Eo[ • ] 

denotes expectation at po, and the dynamics takes the 

form 

~]i = - gijOJ u ('q ) . (6) 

Since the potential becomes (after some renormaliza- 

tion) 

U(r l )  = D ( m ) ( q  II Po) = K ( p o , q )  

= - [  entropy of  Po ] - oiq~h + const., (7) 

the dynamics is a steepest ascent flow of  entropy, 

which converges to the uniform distribution q along 
an e-geodesic. Moreover, if we rescale the time loga- 
rithmically such as 

( t  + 7-) ili = - - g i j O J u ( ~ )  (t  > 0, 7- > 0),  (8) 
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then the dynamics, which traces the same trajectory 

but in a different speed, can be integrated easily in the 

e-affine parameters and is given by 

oJ( ) + 

where OJ(O) is the e-affine coordinates of  the ini- 

tial point. This solution can be expressed also in the 

(It ,  o-) space as 

I t ( t )  - 202(t) 282(0) 27-82(0) 

o-2(t) ( t + 7 - ) .  
202(t)  27-02(0) 

Here we used the relation 0~ = 0. If  we set 

01(0) - 
I t 0 -  282(0) , v - 27-02(0~, 

1 
D - - -  

47-02(0) ' 

o ' ( t ) _  8'(0)  - ( t+7- ) ,  

(9) 

then we have 

I t ( t )  = Ito + v ( t  + 7-), o-2(t) = 2 D ( t  ÷ 7"), 

which shows that the dynamics (8) is nothing but a 

Uhlenbeck-Ornstein process [ 22].  

We next consider an example in the linear program- 

ming problem of the form 

minimize c . x ,  
subject to A x  <_ b. ( lO)  

In order for the constraints A x  < b to be satisfied au- 

tomatically, we introduce a convex potential function 
on N n by 

- E log (bi - U ( x )  Ai jx  j ) 
i 

(see also Lagarias [28] ) .  From this potential, we 
can derive a dualistic structure ( h, V( + 1 ), V( - l ) ), in 

which x = ( x  i) forms a V(+l)-affine coordinate sys- 

tem. The dual V(- l ) -aff ine coordinate system y = 

( y j )  is 

Ak.i . 
YJ = E bk --"Akl x l '  

k 
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q 

/ 
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/ 

// V*-geodesic 
/ 

Fig. I. Constrained dynamics on a submanifold. 

and the metric h is 

AkiAkj 
hij = ~ ( bk ~---~ktXt) 2" 

k 

Let us consider a gradient flow with respect to the 
potential ~p ( x )  = c .  x : 

jc i = -hiJ c?,jO ( x ) = -hiJ c j. 

Then it is shown that the flow converges to the 
opt imum point for the problem (10) along ( - l ) -  
geodesic. Indeed, 

d 
~ b (  x ) = c S  = -hiJ c,c/ < O. 

The reason why the potential ~/, ( x )  = c. x is used here 

instead of the divergence is clarified in Section 5.3. 

4. Constrained dynamics on a submanifold 

In this section, we investigate a dynamical system 
which is induced on a submanifold N = {p( ; ( c 

C R n } embedded in a flat manifold M with re- 

spect to a dualistic structure (g, V , V * ) .  Theorem 1 
indicates that the gradient flow in M with respect to 

the potential U ( p )  = D ( q  [I P) is a dynamical sys- 
tem whose gradient vector is the tangent vector along 

V*-geodesic connecting the two points p and q (for 

short, V*-tangent vector).  Therefore we can construct 
a constrained dynamics on N by projecting the gradi- 
ent V*-tangent vector onto the tangent space Tv(N)  
with respect to the metric g, see Fig. 1. Such a dynam- 
ical system on N induced from a gradient flow on M 
is also a gradient flow on N of the form 
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s~i i ,9 = - ~ , g - ~ D ( q  II P~), (1 1) 

where s ¢ is an arbitrary local coordinate system of  N, 

and 

0 
gij = g( + l ~ ) 

is an induced metric on N and (~,/J) is the inverse ma- 

trix of  (~ij). Let us examine geodesic characterization 

of such restricted dynamics. In general, the dualistic 

structure (g, V, V*)  on a manifold M naturally in- 

duces a dualistic structure (~,, V,  V*)  on a submani- 
fold N of M by projection with respect to the metric 

g onto the tangent space T ( N ) ,  i.e., for every vector 

fields A, B, C on N, ~'  and V* are defined by 

g( '~ AB[C) = g(~T aBlC)  = ~(~T ABIC ), 

g(V*aBIC) = g(V*ABIC)  = ~ ( V ; B t C ) .  

Duality of  ~ '  and ~7, follows directly from the defini- 

tion ( 1 ). A submanifold N is called autoparallel with 

respect to the connection V if for all A, B ~ T ( N ) ,  

V AB ~ T( N) holds. 

Theorem 2. If  N is V-autoparallel,  then the gradient 

flow (1 1 ) converges to a unique stationary point in- 
dependent of  the initial point along V*-geodesic.  

Proof  Since N is V-autoparallel, Pythagorian theo- 
rem [ 10] assures that there exists a unique point p(0) 

on N satisfying 

D ( q  II P~:) = O ( q  II p(0)) + O(p(O) II PC)- 

Then 

0 O_D(_(o) II P~) 8 ~ j D ( q  11P() = c)~J 4" 

Moreover, the following lemma indicates that 

D(P  (0) It P~:) = D(P  (°) II P~:), 

w h e r e / )  denotes the Q-divergence on N. Therefore, 

the theorem can be proved in the same way as Theorem 
1 by taking ~ as an ~'-affine coordinate system without 
loss of  generality. [] 

Lemma 1. Given a flat manifold M with respect to 
( g , V , V * ) .  If  a submanifold N embedded in M is 
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27 or V*-autoparallel, then N is also intrinsically fiat 
with respect to (~, V, ~r.) and for every two points 
pl,P2 E N, 

D(p,  t1 ])2) ---- D(pl ][ p2), 

where D and /) are V-divergence on M and ~'- 
divergence on N, respectively. 
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(,(~) = O(  o ( ( )  ) - c~£, 

3 ( ~ ' )  ---- ( ~ ( ~ ( ~ ' ) )  - -  b i n i ( ( )  • 

Then we have 

47(~,) + 6 ( ( )  - ~'. 

= { O ( O ( ~ z ) )  - - C i (  i} --}- { ~ ( ' / 7 ( b Y ) )  --  b i ~ i ( ~ ) }  

Proof First, we show the flatness of N. A straight- 
forward calculation shows that the connection coeffi- 
cients of ~' and ~'* with respect to an arbitrary co- 
ordinate system of N become f'ijk = F i j k  and/~jk = 
F~k. Then if M is torsion free with respect to 27 and 

V*, N is automatically torsion free with respect to ~r 
and ~'*. To evaluate the Riemanian curvatures of N, 
we first let N be V-autoparallel. Then the following 
commutative diagram: 

Tm(M ) v_~ Tt,:(M ) 
id. T J. id. 

"It, , (N)  , Tt, 2 (N)  

indicates that the parallel transports of tangent vectors 
of N with respect to ~' does not depend on the choice 
of the path connecting two points Pl and P2 since M 
is V-curvature free. Therefore, N is Q-curvature free. 
Moreover, in general, when one of the dual connec- 
tions is curvature free, the other is automatically cur- 
vature free. Hence N is flat. In the same way, 2 7*- 
autoparallel case can be proved. 

Next, we derive the divergence equality. Let the dual 
affine coordinate systems of M be (0, r/) and the cor- 
responding dual potentials (0 (0) ,  &(r/) ). Suppose N 
is 27-autoparallel, then N can be parameterized with a 
~'-affine parameter ( = [ ~ i ]  of N as 

Oi(~) = a!j~ j + b i (3a~, 3bi E R) .  

The accompanying dual ~r*-affine parameter s r = [(i] 
satisfies 

a o__)  _ ao k 07; a o__) = kank 
6~ =g(~-~7 I O~; O(~ a ( j g ( ~  I O'Ol ai O---~j " 

Integration of this equation yields 

aft /k(()  = ¢i "31- Ci (3C i ~ R ) .  

Further, let us define two functions on N by 

and 

_ £~-; 

O( O(() ) + dP(rl(() ) - (ci + (i),~ i - birh(()  

~O( R(( )  ) + cb(rl(() ) - ( a ~  i + bk)rlk( ;~) 

O(0(~))  + 4 , (~ ( ( ) )  - 0 ( ( ) .  ~ ( ( )  

0, 

0 ~ O000k ~lkaki Ci ~i, 

O~/q~(C) = ( 0q~0~'lk - -bk )  °%'lk=(ak(j)O~'lk='i'~i ~ i  

These relations imply that the two functions 47 (~:) and 
q](() form the dual potentials on N with respect to 
the dualistic structure (g,, V, ~r,). Then 

b(p, II p2) 

= ~(~'2) + $(¢,) - ¢2" ¢, 

---- {///(0(~:2) ) -- Ci#~} "4- {#(~(~'I)) -- biT~i(¢l)} 
i 

-- sC2~',i 

= 0 ( o ( ( 2 ) )  + ~ ( r ; ( ( r  ) ) (c ;  + (1;)sc~ - b;r;/(~'~ ) 

- - - - / ] t ( 0 ( ~ Z ) )  + ~ b ( T ] ( ~ ' I ) )  - -  0 ( ~ 2 )  ' ~(~I) 

= D ( m  I[ p 2 ) .  

On the other hand, when N is V*-autoparallel, then 
the above proof leads to 

D*(pl [1P2) = / ) * ( P l  11P2), 

which shows D(p2 ]1 Pl ) = / ) ( P 2  11 Pl) according to 
the duality. [] 

Note that Theorem 1 can be derived directly from 
Theorem 2 by setting M = N. 
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In this section, we give some examples which can 

be viewed as gradient systems on submanifolds em- 

bedded in manifolds having dualistic structures. 

5. I. Maximum likelihood estimation 

We first give a rather trivial example from statistical 

inference. Let M = { P o } o ~  be a parametric statistical 

model embedded in the set of  all the positive proba- 

bility distributions 79 on a finite set X'. The maximum 

likelihood estimation is a method to estimate the pa- 

rameter 0 from n observed data (xl . . . . .  xn) E 2¢ TM 

such that 
M 

max I - I  Po(Xi). 
0 

i=1 

It is easy to derive another equivalent formulation 

which takes the form 

rain K(qn ,po ) ,  
0 

where K is the Kullback-Leibler information which 

is identical to the divergence with respect to the expo- 

nential connection, and q~ is the empirical distribution 

defined by 

{ 1 ,  i f x = x i ,  
I fix~(X), 6 x ( X )  = 0, otherwise. - -  i q . ( x )  = n i=J 

Consider the dynamics of  the tbrm 

oi = _giJ OjK ( qn, po ) ' (12) 

where gig is the inverse of  the Fisher metric on M. 

Corollao' I. The gradient flow (12) converges to a 

local maximum likelihood estimate on M. If M is an 
exponential family, then it converges to the unique 

maximum likelihood estimate independent of  the ini- 

tial point along an m-geodesic. 

5.2. Boltzmann machines and EM algorithms 

We next consider a neural network called Boltz- 

mann machine with n visible units and m hidden units 
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[29].  Let Xv = (x  v . . . . .  x v)  ~ {0,1}" and xH = 

(xff . . . . .  x~)  E {0, 1} m be the states of  visible and 

hidden units, respectively. The stationary distribution 

of  the Boltzmann machine is written as 

p( x v ,  xH; w) = exp{- -E(  xv ,  xH; w) - @( w) }, 

where ~ ( w )  is the normalization factor and 

E ( x v ,  x H ; w ) = ~  TM2__._, ij V V ij H ft WvX i x j + Z W~tX i Y j  
i>j i>j 

~-~. O ..v..n + wVH~ i ~j ( 1 3 ) 
i,j 

is the "energy" of  the state x = ( x v , x t t )  and w = 
ij ij i j .  " w v, w H, w w )  The coefficients w~, w~, i/ • wVN are con- 

nection weights among the visible units, among the 

hidden units, and between the visible and the hidden 

units, respectively. The thresholds are included in the 
i0 and w~ by emvisaging virtual units x v = terms w v 

x~ -= 1. Let us denote the set of  all the probabil- 

ity distributions on x = ( x v ,  x . )  by 7'. Then 7" is 

a manifold having a dualistic structure as a statistical 

manifold with dim 79 = 2 n+m - 1. The Boltzmann ma- 

chine is trained by examples given from a stationary 

distribution Q ( x v )  on the visible units• The purpose 

of  this learning is to approximate Q ( x v )  by p ( x v )  = 

~ x .  P (Xv,  XH; w) of  the stationary distribution of  the 

Boltzmann machine by modifying the parameter w. 

Amari et al. [21 ] proved that learning of  Boltzmann 

machines is equivalent to the divergence minimization 

problem of the form 

rain K ( q , p ) .  (14) 
pGB, qGE c, 

Here, K is the Kullback-Leibler information, B is the 

set of  all the probability distributions in 7" realizable 

by the Boltzmann machine, i.e., 

B = {p(xv , ,XH;W)  E 7" ; w ij ~ R} ,  

and EQ is the set of  all the probability distributions in 

7" that have the same marginal distribution Q ( x v )  on 

the visible units, i.e., 

EQ = { q ( X v , X H )  E 79 ; Z q ( X v , X n )  = Q ( x v ) } .  
XII 

It is easy to see that B is an exponential family with 
d imB = l ( n  + m ) ( n  + m + 1) and EQ is a mixture 
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E Q  
e-geodesic./-~.// 

/ / /  m-geodesic / 

Fig. 2. Geometrical structure of  Boltzmann machine learning. 

5.3. Linear programming 

Let us consider a general linear programming prob- 
lem in a canonical form 

minimize c . x ,  
subject to A x  = b, x > O. (16)  

The problem considered in Section 3 is of course in- 
cluded. In this formulation, the domain of the problem 
can be regarded as a submanifold M of the enveloping 

space II~_, where 

family, since EQ is defined by a linear constraint, with 
d imEo =2n(2  m -  1). 

We propose simultaneous gradient flows to solve 

the minimization problem (14), 

{w 
,7 _gij, kt 0 K 

= ~ (q ,P) ,  

c~ 
Ok = -gkt  ~qtK( q, P ) ,  

(15) 

+ ; x > _ 0 } ,  

M = { x E R ~ +  ; a x = O } .  

Let us construct a dualistic structure on R~_ in which 

x becomes a ( +  1 )-affine coordinate system. In order 

for the nonnegativity constraints x _> 0 to be satisfied 
automatically, we introduce a convex potential func- 

tion on 11~_ by 

n 

U ( x )  = - ~--~logx i. 
i=1 

where w ij are e-affine parameters of p E B, qk are 

m-affine parameters of q E EQ, gij, kt is the inverse of 

the Fisher metric on B, and gkl is the Fisher metric 
on EQ. Since K ( q , p )  = D(e ) (q  a p)  = D(m)(P ]1 q) 

where D (e) and D (m) are divergences with respect to 

the exponential and the mixture connections, the dy- 
namical system (15) has a geometrical interpretation 

in the sense of Section 4: The dynamics for p is a re- 
stricted gradient flow on B under the influence of the 

"force" from q ( more precisely, m-tangent vector ), 
while the dynamics for q is a restricted gradient flow 
on EQ under the "force" from p ( e-tangent vector ), 

each flow being coupled through the Eq. (15) to form 
a two body dymanics, see Fig. 2. 

If  there are no hidden units, then dim EQ = 0 and 
the gradient system (15) is reduced to the same situ- 
ation as in the maximum likelihood estimation. In the 
general case, the dynamics converges to a local mini- 
mum. Observing the fact that the dynamics (15) can 
be solved simultaneously, it is expected that its con- 
vergence is much faster than the conventional nested 
iterative EM algorithm or its modifications [ 30]. 

By using the general scheme presented in Sec- 

tion 2, we can derive a natural dualistic structure 
(h, ~7 (+1), ~7{-1)). For instance, the metric is 

aij 
h i j ( x  ) = c~iOjU(x ) = ( x i )  2 ,  

the ( - I )-affine coordinate system 

1 
yj = 3 j U ( x )  = - - -  

x j  ' 

and ( + 1 )-divergence 

' II p )  = - l o g  - n .  

i=1 

Setting aside the constraints A x  = b, we have the 
trivial explicit solution of the problem (16) as 

• ( 0 (Ci ~ 0), 
x'° = ,. +cx~ (ci < 0). (17) 

Let P0 be this optimal point. We then have a (formal) 
gradient system 

jci = -h iJa jD(+l ) (p  o [[ p ) ,  (18) 
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which converges to the P0 along a V(-l)-geodesic.  
Returning to the original constrained problem, the sub- 
manifold M determined by the affine constraints A x  = 

b is ~7 ( +l)_autoparallel since x is ( + 1 ) -affine coordi- 

nate system. So we have 

Corollary 2. Let an arbitrary coordinate system on M 

be ~: = [~:"]. Then the constrained dynamics 

on M converges to the optimum solution of the linear 
programming problem (16) along a ~'( - ~ )-geodesic. 

However, since (17) is singular, this result seems quite 

formal. A realistic modification of the dynamics (18) 

may be 

~ = -h~Jaj{c • x }  = -h~Jcj, 

whose gradient vectors are parallel to those of (18) 
but always finite. This is a steepest descent flow of the 

potential ~/,(x) = c.  x with respect to the metric h in 
R% and is also a Y7(-1)-geodesic motion. Therefore, 
the corresponding gradient flow constrained on the 

submanifold M 

has the same properties as in Corollary 2. This is the 

continuous version of the affine scaling method [ 31 ] 

famous in the linear programming problem. 

5.4. Replicator equation in mathematical biology 

It is well known that the dynamical system on a 
~ + 1  . ~ 7 ~ x  i 1} of the form simplex S, = {x  E ~+ , = 

.#i = x i ( a i j x  j _ arsxr x s) ( 1 9 )  

is often encountered in mathematical biology, which 
is called the replicator equation [32]. In social biol- 
ogy, this is a game dynamical equation that describes 
the evolution of competing phenotypes. In the sym- 
metric case a 0 = a)i, it describes a continuous version 
of the selection equation in population genetics. Fur- 
ther, there exists a close connection between (19) and 
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the Lotka-Volterra equation, i.e., there exists a natu- 

ral diffeomorphism on S, to ]I~] which maps the tra- 
jectory of (19) to the solution of the Lotka-Volterra 
equation [32]. Let us examine (19) in view of infor- 

mation geometry. We first define a potential function 

~ + 1  by o n  ~ +  

n 

U ( x )  = ~ x i log x i" 

i=1 

From this potential, we derive a natural dualistic struc- 
ture (h, Y7 (+I), V (-j~) in that x is (+I ) -af f ine  coor- 

dinate system. In particular, the metric 

hij (~ij 
x i 

is called Shahshahani metric [33]. It can be shown 
that if aij = aji, then (19) is a steepest ascent flow 
of the potential ~9(x) = lai jxixJ with respect to the 

Shahshahani metric restricted on the simplex Sn [ 32]. 

In this case, however, the dynamics does not trace a 

Q(-l)-geodesic in general since O j ~ ( x )  = aikx k is 

not a ~7(-I~-tangent vector, i.e., it is not parallel to 

ajO~+l)(Po II P) = log(xJ/xJo) • 

6. Other related topics 

It is possible to characterize the dualistic gradi- 
ent flow as a completely integrable Hamiltonian sys- 

tem, which gives a generalization of Nakamura's work 

[23]. 

Theorem 3. If N is ~7-autoparallel and dim N is even, 

say 2k, then the dynamical system (11 ) can be re- 
garded as a compeletely integrable Hamiltonian sys- 

tem with generalized positions Qi = a2iD( q I[ P( ), 

generalized momentums p i  = _ 1/02i- 1D ( q II P~ ), 
and Hamiltonian 7Y = - Q i  P i ,  provided s c is taken, 
without loss of generality, a ~r-affine coordinate sys- 

tem. The k quantities 7Yi = c~2iD(q II p¢)/O2i- tD(q II 
p¢) are mutually independent constants of motion. 

Proof. As was mentioned in the proof of Theorem 3, 
the dynamical system (11 ) can be rewritten in the 
Q*-coordinate system ( as 
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~'J = - ( ( i -  ~)o)), (20) 

where ~(o) is the (-coordinate o f p  (°). Further, in this 
dual coordinate system, 

Qi --~ '2i  - ~2(? ) ,  e i  -= - I / ( ~ ' 2 i - 1  - •(0)2i_1), 

~'2i - -  Z (0 )  b2i  7-(i- 
r 2 / _ l  __ ( ( 0 )  " 2i--1 

Then 

1 {((2/ ~(0),~ -- b2i )~2i-1 
( ( 2 i - 1  - -  /,-(0) "~2 S2i--1 : 

--~"2i(  ~"2/- 1 - -  ~ i021 ) } = O. 

Involutivity is shown as follows: 
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It is well known that this dynamics can be derived by 
the variational principle with Lagrangian 

£ = ½gijOiO j - U(O) .  

In the same way, if we consider a dynamical system 
of the form 

(-~)toioJ _htJOju(a), 51 -~- I~ij 

where 0 is a (+  1 )-affine coordinate system of N, then 
we have 

' e u , /  0 ~t'/i a~- / j  0~ ' / i  
{7-t,, 7-t j} = ~ '  t oP' eQ, oQ, ~ J 

/=1 

_ 07-[i 07-lj 0 ~ i  07-lj = O. 

OP i ooi oQi c)P i 

Independency of 7-/i is trivial. By straightforward com- 
putation, Hamilton's equations 

dQi 07-[ d P  i 07-[ 

d t  OP i ' d t  OQi 

are reduced to 

~2i = - - ( ~ ' 2 i  - -  ~'2(/0>), ~2i--1 = - - ( ~ 2 i - - 1  - -  b2i--12"(0)), 

which reproduce the original dynamical Eq. (20). [] 

The condition for dim N to be even is not essen- 
tial. Indeed, if N is V-autoparallel and dim N is odd, 
then the dynamical system ( 11 ) can be regarded as a 
subdyn~axics of a higher dimensional completely in- 
tegrnble Hamiltonian system by combining it with an 
independent odd dimensional gradient system. 

In a naive sense, a 2k dimensional Hamiltonian sys- 
tem is equivalent to a k dimensional Lagrangian sys- 
tem. From this analogy, we can imagine a 2nd order 
dynamics of the form 

( l }o ioJ=-g lJOjU(O) .  
~l + i j  

This is the equation of motion of a particle constrained 
on a submanifold N associated with a potential U(O) .  

~ i  = --71i 

in the dual affine coordinate system, which indicates 
that the system is composed of k independent har- 
monic oscillators and can be regarded as a completely 
integrable Hamiltonian system. In this case, however, 
it is not yet clear whether the system can be derived 
by a certain variational principle. 

7. Conclusions 

We first constructed the gradient flow on a fiat mani- 
fold M with respect to a dualistic structure (g, V, V*) 
which converges to an arbitrarily prefixed point along 
the V-geodesic. We next derived a constrained dy- 
namics on a submanifold N embedded in a flat man- 
ifold M, and investigated its geodesic characteriza- 
tion. Some examples followed, which are collected 
from various regions of optimization problems such as 
statistical inference, neural networks, EM algorithms, 
linear programming problems, and mathematical bi- 
ology. Finally, we showed that the dualistic gradient 
flow can be characterized as a completely integrable 
Hamiltonian system. 
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