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Abstract-The problem of model selection, or determination 
of the number of hidden units, can be approached statistically, 
by generalizing Akaike’s information criterion (AIC) to be ap- 
plicable to unfaithful (i.e., unrealizable) models with general loss 
criteria including regularization terms. The relation between the 
training error and the generalization error is studied in terms 
of the number of the training examples and the complexity of 
a network which reduces to the number of parameters in the 
ordinary statistical theory of the AIC. This relation leads to a 
new Network Information Criterion (NIC) which is useful for 
selecting the optimal network model based on a given training 
set. 

I. INTRODUCTION 
N engineering fields, one of the most important application I of artificial neural networks is modeling a system with 

an unknown input-output relation. Usually, we do not have 
accurate information of the system and we can utilize only 
observations form the system. Usually in such a case, given 
a fixed architecture of networks, parameters are modified 
by the stochastic gradient descent method which eventually 
minimizes a certain loss function. Learning is carried out based 
on a training set which consists of a number of examples 
observed from the actual system [1]-[3]. For instance, the 
backpropagation method is used for learning of multilayered 
perceptrons with sigmoidal functions [4]. 

An important but difficult problem is to determine the 
optimal number of parameters. In other words, we wish to 
determine the number of hidden units needed to mimic the 
system by using only input-output examples. The difficulty is 
because an increase in the number of the parameters lessens 
the output errors for the training examples, but increases the 
errors for novel examples. Such a phenomena is often called 
“over-fitting.” For instance, let us think about multilayered 
perceptrons. Suppose that we have two networks, one which 
has ten hidden units and another which has one hundred 
hidden units. After enough training with a thousand examples, 
the large network, which has a hundred hidden units, may 
produce better outputs for the training examples than the 
small one, but it may emit worse outputs for inexperienced 
inputs. Generating accurate outputs for known inputs competes 
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against predicting accurate outputs for unknown inputs. Such a 
disparity between known and unknown inputs increases as the 
number of parameters to be estimated is getting large. In order 
to solve this problem, we need to consider the relation among 
the complexity of a model, the performance for the training 
data and the number of examples, for example using Akaike’s 
Information Criterion (AIC) [5] and the Minimum Description 
Length (MDL) [6]. There has been some research intending 
to apply these principles (e.g., [7]-[lo]). The present paper is 
a detailed version of a short note by Murata et al. [ 111, giving 
a most general solution to this problem. 

The present paper treats a family of stochastic neural 
networks of the feed forward type, which means that a 
network does not have any recurrent connections. Systems 
and networks are regarded as stochastic machines. A system, 
which is mimicked, produces an output y for an input z, based 
on a conditional probability q(ylx), and a network, which 
mimics the system, produces an output y for an input z, 
based on a conditional probability p(y(x, e),  where 19 is the 
parameter vector which specifies the network, that is, weights 
and thresholds. The problem is to find the optimal model 
in a family of networks and find the optimal parameter to 
approximate the system’s conditional distribution from which 
a set of training examples is produced. 

Within this framework, this problem is regarded as a sta- 
tistical problem. We take the AIC approach, but generalize it 
as two points. The first is that the true distribution q(y1x) is 
not necessarily included in any of the model {p(ylx, e) } .  In 
such a case, the true distribution is said to be an unrealizable 
rule and the model is said to be unfaithful. The second is 
that we introduce a notion of general loss functions including 
regularization terms. The regularization term was introduced 
to the loss by Moody [8], and it gives the smoothness condition 
and fits well with the purpose of neural information processing. 
These loss functions include the negative of the likelihood as a 
special case which leads to the maximum likelihood estimator. 

In Section 11, we define a general loss function which 
measures differences between the system and the model. 
Once the training set is fixed, we can only use the empirical 
distribution of the training set instead of the true unknown 
distribution. We then formulate a leaning procedure based on a 
repeated resampling plan from a fixed training set of examples 
sampled from the true distribution. 

Section I11 is devoted to the evaluation of the network 
parameters after learning. Two kinds of evaluations are 
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necessary: one is in how well the learned parameter 
approximates the quasi-optimal parameter which is optimal 
to the empirical distribution of the training set, and the other 
is in how well the quasi-optimal parameter approximates the 
true optimal parameter for the unknown distribution. These 
evaluations elucidate the relation between the training error 
and the generalization error in terms of the complexity of a 
network and the number of training examples (see also [12], 

In Section IV, based on this relation, we propose the 
Network ‘Information Criterion (NIC), which reduces to the 
AIC in an ordinary statistical setting. The criterion leads to 
the effective number m* of parameters which is the same as 
one introduced by Moody [8] in the case of additive noise. 
We finally give an important remark on how the criterion is 
applicable only for comparing models within a hierarchical 
set. This constraint originates from the fact that the stochastic 
fluctuation in the training error cannot be evaluated solely by 
its ensemble average. However, in the case of a hierarchical 
set, this fluctuation term is common to all members, and 
hence the terms cancel out. This restriction, on evaluating the 
generalization error in terms of the training error, is still not 
well recognized. 

~ 3 1 ) .  

11. DISCREPANCY FUNCTION AND LEARNING RULE 
Let us consider a stochastic system which receives an input 

vector x E Rk and emits an output vector y E R’. An input 
vector x is generated subject to a probability q(x) and an 
output vector y is emitted subject to a conditional probability 
q(y1x) specified by x. In the following discussion, we identify 
the target system with the conditional probability q(ylx), or a 
joint probability distribution q(x, y) which is a product of the 
given input distribution q(x) and the conditional distribution 

In the same way, a network is considered to have a 
conditional distribution p(ylx, e ) ,  where 0 E R” is an 
m-dimensional parameter vector that specifies the network, 
such as a set of weights and thresholds. Thus, a group of 
artificial neural networks that have the same architecture can 
be regarded as a parametric family of conditional distributions. 
For example, we can think that inside of a conventional 
multilayered perceptron the output probability is calculated 
and the average is emitted as the output of the network. 
Hereafter, an individual network p(ylx, e )  shall be called 
a “machine,” and this family of conditional distributions 
{p(ylx, e ) ;  B E R”} shall be called a “model.” 

When the target system q(y1x) belongs to the model 
{p(ylx,Q);B E R”}, that is, when there exists a 8 which 
satisfies 

4(Y 1x1. 

9(Y 1x1 = P(Y 1x7 8) 
the system is said to be realizable and the model is said 
to be faithful. In the present paper, we do not assume the 
realizability of the system or the faithfulness of the model. 

The following is a typical form of p(ylx.19) for a multi- 
layered perceptron. The network calculates a function f(x,  e ) ,  
where components of the parameter vector f? correspond to 

weights and thresholds, and then a noise term [(x) is added 
to produce the output 

Y = f (x .  0) + ((4. 
The noise is said to be additive when its distribution is 
independent of x. In this additive noise case, the conditional 
distribution is given by 

P(YlX3 0) = $(Y - f (x .  0)) 

where $ ( E )  is the probability density function of the noise I. 
In the general case, the noise distribution $([lx) depends on 
x, so that 

P(YlX, 0) = $(Y - f (x ,  Q>lx). 

When the network is noiseless, it is deterministic and the 
function $([lx) reduces to the delta function. 

In order to evaluate the performance of the network, let us 
define a discrepancy function D ( q , p ( B ) )  which measures the 
difference between the target conditional distribution q(y Ix) 
and the conditional distribution p(ylx, 0) of the machine. To 
this end, we first introduce a loss function s(x, y. e )  which 
measures a loss when an input x is processed by a machine 
specified by parameter 0, where y is the true output. In the 
case of a multilayered perceptron we usually take the mean 
square error as the loss 

S ( X , Y .  6 )  = 5 IIY - Y’l12P(Y’IX. W Y ’  ‘s 
= 1 IIY - f(x,  0)  - E112~(llx)dE 2 

1 
2 

= - {  IIy - f (x> Q ) l I 2  + variance of ([(x))}. 

In the deterministic case, the squared loss reduces to 

1 
2 s(x,y: e )  = -1Iy - f ( X >  l9)1I2. 

Another candidate is the log likelihood ratio or the log loss, 

or 

S ( X , Y ;  0) = - logP(YIx, 6). 

We can treat many other types of loss functions [2], [3] .  It 
is possible to add a regularization term .(e) to the loss. The 
regularization term was introduced by Moody [SI. It gives a 
penalty to complex machines and makes the parameter vector 
stay in an appropriate region. And so we have d(x, y; 0) = 
s(x! y, 19) + r (0 )  as a new loss function. 

Definition 1: A discrepancy function or the expected loss 
D ( q , p ( O ) )  between two distributions, a target q and a machine 
p ( B ) ,  is defined by the expectation of a loss plus a regularization 
term 
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In the simplest case, the discrepancy function is 

where the mean square error is taken as the loss, the noise 
is additive and no regularization term is added. However, our 
theory holds in the general case. 

The optimal parameter, the one which gives the optimal 
machine with respect to the discrepancy function, depends on 
the true distribution q(x, y) of the target system. However, we 
do not know this distribution, and instead we can use only a 
training set consisting of t examples generated by the target 
distribution. In other words, we can use only the empirical 
distribution constructed from the training set of t examples 

where {(xi,yi);i = l,...,t} is a training set. It is well 
known that, if t is large enough, then the empirical distribution 
q* (x, y) approximates the true distribution q(x, y) in the weak 
sense, and hence it is reasonable to evaluate the network model 
by using q*(x,y) instead of q(x,y). However, for a finite 
number t of examples, it is necessary to take the difference 
between q(x, y) and q* (x, y) into account. 

The difference is briefly shown as follows. Let Oopt be the 
optimal parameter in the sense of minimizing the discrepancy 
function D(q, p ( B ) ) ,  that is 

D(Q,P(Bo , t ) )  = mjnD(n,P(w.  

Similarly, let 8* be the quasi-optimal parameter which mini- 
mizes the discrepancy between the empirical distribution and 
the machine 

Usually Oopt and 8* are different, and it is quite important to 
evaluate the difference. 

Before evaluating this difference, we describe the stochastic 
descent learning procedure for searching for the quasi-optimal 
parameter vector as follows. 

Definition 2: In an each learning step, a new example is ran- 
domly chosen from the training set. This is called the resampling 
plan. The parameter vector 8, at time n is modified according 
to the following rule, 

= 8, - E,,Vd(x,,,Yn,on) (3) 

where V denotes the gradient with respect to the parameter vector 
8 and E,  is a positive value called a learning coefficient. Here 
(x,, , yn) is an example at time n independently chosen from the 
training set. 

This learning rule, which is called the stochastic gradient de- 
scent method, was studied by many researchers (e.g., [2]-[4]) 
for multilayered perceptrons and more general models. Gen- 
erally the learning coefficient E, may be changed depending 

on time n, but in the following we fix E,  at a positive value 
E (E,  = E ,  E > 0). The asymptotic accuracy of this learning is 
discussed in the next section. 

In the case of the deterministic multilayered perceptron, this 
method leads to the backpropagation method. For a training set 
of t observed examples, the discrepancy function is given by 

l t  - S(X - xi, y - y;)dydx 
i=l  

1 
t 

= -E(&’) 

where E(8) is sometimes called the energy function. The 
modification rule of the parameter 8 is given by 

and it is shown that 8, approaches 8* as n --f m and E + 0. 

111. ASYMPTonC ACCURACY OF LEARNING 

In this section we consider the asymptotic properties of 
the estimated parameter 6, after n modifications by using t 
examples repeatedly. We also study the relation among e,, Bopt 
and 8*. 

The parameter 8, obtained at time n is a random variable 
which depends on the resampling plan. In other words, 8, 
differs according to the order of examples which are resampled 
during the learning procedure. Hence 8, is a random variable, 
even when the training set is fixed. The training set itself, or 
its empirical distribution q* (x, y), is also a random variable, 
because it depends on observed t examples subject to the true 
distribution q(x, y). Let ..,(e,) be the probability distribution 
of 8,. The distribution ~ ~ ( 8 , )  converges to some probability 
distribution %(e), that is 

%(e) = lim .,(e). (4) 

Therefore, when n is large enough, the random variable 8, 
is subject to the distribution %(e,). In the following, Ep and 
V p  denote the expectation and the variance of a probability 
distribution P ( X ) ,  respectively. We now evaluate the behavior 
of the learned parameter 8, when the learning time n is large. 
The following lemma shows how 8, deviates from the quasi- 
optimal parameter 8*. We fix the learning coefficient E at a 
small positive constant and we assume that an initial value of 
the parameter 8 before learning is taken in a neighborhood of 
the optimal parameter Bopt by certain means. 

L e m m  1: Let 8 be the parameter after sufficient learning. 
F e n  8 is subject to ir and the expectation and the variance of 
8 are given by 

&[8] = 8’ + O(E) ,  and Vj[t?] = EE:Q:G* + O(E’) (5 )  

where 
G* V,* [Vd(x, y, 8*)], 

Q* E E,* [VVd(x, y, e* ) ]  
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and ZQ* is a linear operator defined as 

E Q * M  E Q*M + (Q*M)' ,  hf E R''X"'. 

The proof is given by Amari [ 2 ] .  It should be noted that 
Q* can be written as 

Q* = VVD(q*,p(B*)).  

Moreover it can be shown that the distribution of 8 ap- 

Lemma 2: The distribution ?(e)  approaches the normal dis- 
proaches a normal distribution as E i 0 [141. 

tribution 

N ( 0 * ,  &E$ G*) (6) 

as t + m and E i 0. 
A brief proof of this lemma is given in Appendix-A. 
Roughly speaking, this lemma shows that the estimated 

parameter 4 (= e,) has a Gaussian distribution whose ex- 
pectation is the quasi-optimal parameter d* and variance is 
proportional to E .  

Since O* is different from Oopt, we next consider the 
fluctuation of 0* around Oopt caused by substituting y* (x, y )  
for y(x ,  y )  in the training procedure. The empirical distribution 
q*(x. y )  is composed of t examples which are randomly and 
independently generated subject to g(x, y ) ,  hence the quasi- 
optimal parameter 8* is a random variable which depends on 
the choice of the training set. Let .*(e*) be the probability 
distribution of B * .  It can easily be shown that the distribution 
.*(e*) has the following properties. 

Lemma 3: When t is sufficiently large, then 

1 
t 

E,*[B*] = O u p ( ,  and V,*[0*] = -Q-lGQ-' (7) 

where 

G 3 V,[Vd(x,y,O,,,,,)], and Q = E,[VVd(x.y.k, ,)] .  

This lemma is known in statistics and a sketch of the proof 
is given in Appendix-B. 

When the model is faithful, there are some special cases in 
which simple relations hold between G and Q ,  and between 
G* and Q*. One example is the case of a single output 
multilayered perceptron with unbiased additive noise. Under 
the mean-square error loss, if the model is faithful, then we 
can easily deduce the relations 

where cr2 is the variance of the additive noise. Another 
example is the case when the negative of the log likelihood 
is taken as the loss, 

If the model is faithful, the matrices G and Q coincide and 
the matrices G* and Q* approximately coincide, namely 

G = Q .  and G* = Q* + O  - . (2 

IV. NETWORK INFORMATION CRITERION 

Since we have studied the asymptotic behavior of the 
estimator e obtained by resampling learning, we can apply 
these results to the problem of model selection for learning 
from given examples. Let us consider two parametric models, 
one denoted by {pl(ylx,Ol);Ol E R"'}, and the other by 
{ p z ( y l ~ ,  8 2 ) ;  8 2  E Rm2}: (ml < m2). We assume that one is 
a submodel of the other: 

{ P l ( Y l X , W  c {PZ(YlX,82)1. 

This implies that, by projecting 82 into R"' using some 
appropriate relation, we obtain the first submodel. In the case 
of multilayered perceptrons, for example, the numbers of units 
in the input layer and output layer are the same in two models, 
but the numbers of units in the hidden layers of the second 
model are larger than those of the first model. By putting the 
connection weights and thresholds of the extra units equal to 
0, we obtain a smaller submodel._ 

When the parameters 01 and 02 of the two models are 
estimated by using the common training set, the problem is 
to decide which model is better. We have already defined 
the discrepancy function D ( y , p ( 0 ) )  and the learning rule 
for minimizing this discrepancy. Therefore, one idea is to 
choose the model which has a smaller discrepancy value 
D(q ,p i (B i ) ) .  However we do not know-the true system y(x, y )  
so that we cannot calculate D(q,pi(Bi))  directly. We know 
only the _empirical distribution y-*(x, y) ,  and so we estimate 
D ( q , p ; ( O ; ) )  by using D(y*,pi(Bi)). Hence our purpose can 
be reduced to-evaluating the difference between D( y*, pi  (e,)) 

From lemma 1 and lemma 3 we can derive the following 
relation. 

Theorem 1;  The average discrepancy between the system 
q(x, y )  = q(ylx) q(x) and the machine p(ylx,  0) learned from 
t examples is given by 

( D ( q , p ( e ) ) )  = ( D ( q ' . p ( e ) ) )  + tr(GQ-l) + O ( t - s )  (8) 

where (.) denotes the expectation subject to both ?(e) and 

Proof is given in Appendix-C. This relation gives the 
following Network Information Criterion for selecting the 
optimal architecture of neural networks. 

A .  Network Information Criterion: Let Mi = {pi(ylx, e i ) ;  

Oi E R".} be a hierarchical series of models: 

and D(q,p i (&)) .  

.*(0*). 

M , c M 2 c M 3 c  . . .  

where n/l, is a submodel of Mj (i < j ) .  Let $i be the parameter 
of model Mi obtained by learning based on a common training 
set of t examples. We call 

1 
NIC(pi) = D ( y * , p i ( & ) )  + ; tr(Gz(&)Q;(8;)-1) (9) 

the Network Information Criterion, where 

Gt(Bi) E Vp* [Vd(x, 1 ~ :  gi) ] ,  
and 

Qf(eXi) E Ep* [VVd(x, y ,  e,)] 
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Fig. 1 .  The geometrical relationship between the system and network mod- 
els. This figure shows the simple image of the relation among the true 
system, the empirical system, the model MI and the model Mz. Distributions 
q ( x , y )  and q * ( x , y )  denote the system and empirical distributions. In this 
case, the smaller model is enough to approximate the true system and the 
parameter {Olopt, i = 1,2}  represents the optimal parameter for the true 
distribution and {e: ,  i = 1,2}  represents the quasi-optimal parameters for 
the models M, = {p(ylx,@;,i = 1,2}  under the empirical distribution 
and { e , ,  i = 1,2}  are obtained by learning. The thick solid lines show the 
discrepancy between the true distribution and those of the learned networks. 

The model which minimizes NIC is optimal in the mini- 
mum averaging loss s_ense, that is, minimizing the expected 

Fig. 1 shows the geometrical relationship between the sys- 
discrepancy (D ( 4 ,  Pi (0i ) ) ) . 
tem and the models. 

V. DISCUSSION 

It is important to compare the NIC with other results related 
to this problem. When the model is faithful and the loss 
is given by the negative log loss, the problem is exactly 
the' same as selecting a statistical model for estimating the 
joint distribution q(x,y). In this case, the matrices G and Q 
coincide with the Fisher information matrix so that 

is the number of parameters in the model Mi. The NIC is 
exactly the same as the AIC except for the coefficient. Hence 
the NIC is a natural generalization of the AIC. 

Moody [8] proposed a generalization of the AIC by intro- 
ducing the effective dimension m* of a model with additive 
noises. It is given by 

0 2  
m* = -tr(TQT). 

t 

It is easy to show that G = a 2 Q  and that 

1 
t - t r ( T T ) = Q - l + O  

Therefore, the NIC reduces to Moody's in the case of additive 
noise. See also [9]. 

The NIC, as well as the AIC, is effective for model 
selection among a sequence of hierarchical models where 
one is included in another as a lower-dimensional submodel. 
This remark is usually not stated explicitly when discussing 

the AIC, or generalizations thereof (e.g., [SI). This restriction 
originates from the following fact. 

In deriving F e  NIC, we haye evaluated the difference be- 
tween D(ql ~ ( 0 ) )  and D( q*, p ( 0 ) )  in the sense of the ensemble 
average of training sets. However, when we apply the ccterion 
in selecting a model, we need to evaluate D ( q l p ( 0 ) )  and 
D(q* , ~ ( 0 ) )  by using only one training set. Roughly speaking, 
D ( q , p ( 0 ) )  can be decomposed into following (see appendix 
C): 

1 1 
+-U + - tr G Q - ~  + 0, 

f i t  

where 

is a random variable of order 1 with zero mean, so that U / &  
dominates the effective dimension term of order l/t .  However, 
we can prove that the U is common to all the models within 
a hierarchical structure. Therefore, it is not effective to apply 
this type of criteria to non hierarchical models. This fact was 
pointed out by Takeuchi [ 151 and is known to specialists of the 
AIC but is still not well known by those who apply the AIC. 

Recently, Hagiwara et al. [I61 have cast doubt on validity 
of applying the AIC method to multilayered perceptrons. They 
pointed out that there are some critical values of parameters 
where multilayered perceptrons are reduced to smaller models. 
For example, when two hidden units have the same weight 
values from all units of the lower layer, the multilayered 
perceptron perform the same as the perceptron of fewer hidden 
units. A similar situation can occur when some weight values 
between hidden units and output units vanish. In these cases, 
matrices G and Q degenerate, and the effective dimension 
term can not be calculated because there does not exist Q-l. 
But we expect that the effective dimension can be defined as a 
limiting value when parameters approach critical values, i.e., 

m* G lim GQ-I 
&+critical values 

and that it is still valid. 

VI. CONCLUSION 

We investigated the problem of determining the optimal 
number of the parameters in neural networks from a statistical 
point of view. We have generalized Akaike's Information 
Criterion to be applicable to non-faithful models under a 
general loss function including a regularization term. The 
proposed NIC criterion measures the relative merits of two 
models which have the same structure but different number of 
parameters. In other words, when applied to neural networks, 
the criterion determines whether or not more neurons should 
be added to a network. 
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APPENDIX D(q*,p(H*)) and satisfies 

VD(q*,p(H*)) = 0: 
A.  Proof of Lemma 2 

Let & ( z )  be the characteristic function of n,(O - 0.). 
According to Amari's lemma [2], we can obtain the equation 

then 

Letting p(z) be the characteristic function at n -+ 00: By the law of large numbers 

p(z)  lim p,(z) 
n-cO 

= Q(Oopt). 
we have 

ZTQ*'dz) a 2  = -:zTG*zp(-Z) + (12)  From the central limit theorem, we know that 5 Et=, 
Vd(x, y l  e,,,) has a normal distribution 

Suppose we wish to express p(z) in the following form: 

l t  

lh i=l 
P(Z) = exp{ho(z) + E~I(Z)  + O ( E ~ ) } .  (13) - ~ V d ( x , Y ,  oopt) 

Then we find that ho(z) and h l ( z )  must satisfy the following: N(JiE,[Vd(X.Y, Hopt)]? V,[Vd(X,Y? Qopt,]) 

= N ( 0 .  G )  

d 
az 2 

zTQ-hl (z )  = -EzTG*z.  

(14) where the equation follows because 

Solving these equations, we obtain 
and 

v,[Vd(x,Y,O,pt)] = G. 
hob)  = 0, (16) 

(17) h l ( z )  = ---Z -,,G*Z. 
2 

These indicate that the distribution rn(O - e*)  approaches a 
normal distribution N(O,&Z.Q:G*) as n -+ 00 and E -+ 0. 0 

TE-1 

Therefore 

0 B .  Proof of Lemma 3 

Let us consider the expansion of VD(q*,p(P*))  at oopt 
C. Proof of Theorem I 

VD(q*,p(O*))  = E,* [Vd(X,Y, e*)]  The expansion of D(qlp(8)) at Oopt is given by 

m P ( @ )  = ~(q:p(Oo, t ) )  
l t  

l t  

= - Vd(x,, Y Z l  e*)  

51 - 

z = 1  + VD(q.p(Bo,t))(H - eo,,) 
t 

+ i ( 8  - Hopt)TV ~ d ( x t  : Ya : Oopt) 
z = 1  

t 

I t  
V q q % P ( ~ , , t ) ) ( ~  - Qopt) + . . ' 

+ ; VVd(xz,yz, Qopt) ' (e* - Bopt). 
1 = l  where T denotes the transpose of a vector. Since 

If the parameter H *  minimizes the discrepancy function VD(q,p(~opt)) = 0 
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e*)* 

The third term can be rewritten as 
1 T ( S  - ~ o p t ) T ~ ~ ~ ( ~ l ~ ( ~ o p t ) ) ( ~  - Oopt) 

1 
2 

1 
2 

= - tr [~{(e“  - e*)  - (eopt - e * ) }  
((8 - e*> - @opt - e*)}* ]  

+ (eopt - e*)(eopt - e*)* 
+ (e - e*)(eop, - e*)* 

= - tr[Q{(e” - 0*)(6  - 

+ (80pt - O*)(e - e* ) * } ] .  
Averaging each term subject to %(e) and x*(O*) and using 

((e - e*)(e - e*)*)  = EQ*-~G*,  
2 
1 
t ((eopt - e*)(eopt - e*)T)  = - Q - ~ G Q - ~ ,  

((e” - e*)(eopt - O*)T) = 0 

we get the required relation. 0 
The value U reflects the basic structure of the model. 

For example, the values for a multilayered perceptron and 
a radial basis function network differ, but the value for two 
multilayered perceptrons is equivalent if one model includes 
the other. If the smaller model {pl(ylx, 191)) approximates 

the true system sufficiently, the U1 and the UZ for models 
{ ~ ~ ( y l x ,  61)) and { p ~ ( y ( x ,  e,)} respectively are approxi- 
mately equivalent. That is 

In the special case where the condition 

holds, U, and U2 are exactly equivalent 

On the other hand, when the smaller model cannot approximate 
the true system sufficiently, the discrepancy D(q, p l ( e 1 ) )  is 
much larger than the discrepancy D(q1p2(&) ) ,  the difference 
between the discrepancy functions is dominant, and so we do 
not have to consider Ui in this case. Thus U can be ignored 
in evaluating the performance of models which have the same 
structure but differ in the number of parameters. 
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