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Abstract

Amari, Shun-ichi, Backpropagation and stochastic gradient descent method, Neurocomputing 5 (1993)
185-196.

The backpropagation leaming method has opened a way to wide applications of neural network research.
It is a type of the stochastic descent method known in the sixties. The present paper reviews the wide
applicability of the stochastic gradient descent method to various types of models and loss functions. In
patticular, we apply it to the pattem recognition problem, obtaining a new leaming algorithm based on the
information criterion. Dynamical propei.ies of leaming curves are then studied based on an old paper by
the author where the stochastic descent method was proposed for general multilayer networks. The paper
is concluded with a short section offering some historical remarks.

Keywords. Stochastic descent; generalized delta rule; dynamics of leaming; pattern classification; multi-
layer perceptron.

1. Introduction

Backpropagation learning opened a way to a wide variety of applications of neural networks.
It has prevailed all over the world and proved capabilities of the new information processing
technology based on neural networks. It can be regarded as a generalization of the Widrow
adaline learning rule to the perceptron to be applicable to multilayer architecture. However,
more generally it is a version of the stochastic descent learning method for parameterized
networks, an idea which existed as far back as the 1960s.

In the present short paper, a new result on Kullback information learning is presented in this
framework. We will also review the old paper by Amari [2] in which the stochastic descent
method (or the generalized delta rule) was proposed for multilayer networks. Learning by
hidden units was demonstrated by computer simulation in the sixties (Amari [3]). However,
the present paper is not mere retrospection. Instead, we should like to examine, from a current
point of view, several old ideas, some of which have been rediscovered, but some of which
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still remained unexplored. They include, for example, the asymptotic behavior of accuracy
and speed of learning, and the dynamic response of a learning network, when the optimal
target changes with time.

The present paper is a supplement to the review paper by Amari [5], which stresses the
mathematical foundations of statistical neurodynamics.

2. Stochastic descent learning rule

Let us consider an information processing system which receives a vector input signal x
and emits an output signal z. The system includes feedforward type connections, but not
feedback connections. It defines a mapping from the set X = {z} of input signals to the set
Z = {z} of output signals,

z=F(z). (2.1)

When the system includes a number of modifiable parameters ¥ = (¥4, ..., 9, ), the input-
output function (2.1) is specified by 9,

g = Flag d) . (2.2)

Here, we assume that F' is differentiable with respect to 9.

When an input signal z is processed by a system specified by 9, a loss is caused because
the system might not be optimally tuned. The loss is denoted by /(z; ¥J). In some case, a
desired output y accompanies 2. In this case, the loss is written as [(x, y; ), denoting the
loss when & with a desired or teacher signal y is processed by the network specified by 4.

Let us assume that the input signal « is generated subject to a fixed but unknown probability
distribution p(x) each time independently. The accompanying desired output ¥ is usually a
function of x

Y =y4(x)

called the desired output. It is sometimes disturbed by noise. In this case, y is generated
subject to the conditional probability p(y | =) and the expectation of y,

ya(z) = Ely|z] =f yp(ylz)dy, (2.3)

where E [y | z] is the conditional expectation of y under the condition that the input z is the
desired signal [24]. The stochastic y is its noisy version. In the noiseless case, y is written as

p(y|z) = 6(y - yy())

by using the delta function.

In the case of learning without a teacher (i.e. self-organization), the accompanying signal
y is missing, so in this case the loss I(x, J) does not include y.

The risk () of using a network specified by 4 is given by the expectation of the loss,

R(9) = Eli(e,y; 9)) = [ (2,5 9)p(a)p(y| =) dzdy 24)



Backpropagation and stochastic gradient descent method 187

The network that minimizes the risk is said to be optimal and the optimal parameter is denoted
by ’190 ;

By receiving an mput-output pair (@¢,y,) attime ¢, t = 1,2, ..., the stochastic descent rule
modifies the current parameter 9; at ¢ to

Ol(zs, Yy Vi)

v ’
where o is a positive constant which may depend on ¢, C is a positive-definite matrix and
d/07 is the gradient operator. Since

Bl(a: v; 19)] 8R(19)

Dy = 9 — ouC

2.5)

z|

bl

the above rule modifies the current 9 in the direction of decreasing R(7}) on average depending
on the randomly generated (z,y). This is the reason why it is called the stochastic descent
method [2]. In the simplest case, the a; is put equal to a constant o and C is merely a unit
matrix E.

3. Examples of learning systems
3.1 Adaline and potential function method

Let us consider the simplest case where output 2 is a scalar. An adaptive neuron introduced
by Widrow [23] is the following linear element,

= Fleyld) =9« &,
with the loss functlon
l( ' Y5 19) - 2 {yd(m) - Z}Z

where yy typically takes the values 1 or —1.
Let

e(z) = ya(z) - 2(z)
be the error signal. The learning rule (2.5) is then written as
Vi1 = Ot + Ce(z)z .

The potential function method by Aizerman et al. [1] uses a number of fixed non-linear
functions a;(x) as elements to produce the output

= Flad) = Z Yiai(z) .
The loss is also
Ww,y;9) = § {ya(z) — 2}2.

The learning rule is
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Yiq1 = 9 + ¢Ce(z) a(x) ,
where

a(z) = (a1(2), .., aa()) -
It should be remarked that the above loss functions, and hence the risk functions, are
quadratic in 9. Hence, there are no local minima except for the global minimum in R(%9).

3.2 Backpropagation

Consider a multilayer neural network with analog neurons. Let mg-m*l) be the jth input to

the neurons of the mth layer (m = 1,2, ..., k), where a:((,mml) = 1.01is the required bias input.

The ith element of the mth layer calculates the weighted sum of inputs,

u{™ = Zw(m) (m-1)

where wt(Jm) are the connection weights of the mth layer, and emits the output

(m) = f(u} m)) ,
(m)

where f is a sigmoidal function. This z;" in turn becomes the ith input of the next (m + 1)th
layer. The overall input to the network is given by

(0)

:EJ'=CCJ

and the overall input is given from the kth layer by

zi =2 = f(u").

1

The above equations, therefore, give the input-output relation
z = F(wz,)

recurrently, where the parameter ¥ is composed of all the w( ™). When the squared error is
used as the loss,

1
W@,y 0) =5 > (3= 2)",
the stochastic gradient method gives the learning rule of the type,

(m) _ _, 9=y 9) (1)
f_".\wt-j = T uozel :cj ;

Here, egm) is called the error signal of the ith neuron of the mth layer. The error signals are
given recurrently by

k ’ k
4)=Hﬂ5,

f(um))z (M efmtl) - m=1,.,k-1.
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It is remarkable that the error signals efm) can be recurrently calculated from the last layer

by backpropagating them. This fact was discovered by Werbos [22], Parker [18], and Rumel-
hart, Williams and Hinton [20], so that the method is called backpropagation.

3.3 Radial basis function method

Given a scalar function h(z), consider a function given by a weighted sum of functions
h(z — b;),

2= Flae, ¥)= Z wih(z - b;) .
i=1
This is called the radial basis function expansion. Here, the modifiable parameter ¥ is a vector
consisting of
9 = (Why ey We By erny ba) -

The Gaussian function is typically used as h(z), and its superiority was shown by Poggio
and Girosi [16]. When an appropriate loss function is used (typically the squared error), the
stochastic descent rule is easily applied to this case.

3.4 Learning vector quantization

Consider the problem of dividing the signal space X = {x} into n regions D;,
UF,':X, D,‘ﬂDj:@(i#j).
=1

This is called the vector quantization of the signal space X. Let w; be the representative of
region D;.
Given n representatives w; (i = 1, ..., n), we calculate the distance between input @ and
w,
di(z) = 1|z — wi.
An input signal @ is decided to belong to D;, when w; is the closest representative to @, that
is

di(z) < dj(@), J#i.
In other words, regions D; are defined by
Di = {z|di(z) < dj(=), J # i} .

Consider a system consisting of n representatives ¥ = (w, ws, ..., wy, ), which quantize
X into n regions. The quantization error

[(2,9)= m}n d;(x)

can be regarded as the loss function when a is processed by a system with parameter J. The
risk function R(%) is written as
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n
R(%) =" f p(z) |z~ w;i?dx .
1=1 D;
The quantization which minimizes R() is said to be optimal. Kohonen [13] proposed the
following learning method called the learning vector quantization method,
Aw; = —a;C(w; —z), z€D;,
Aw; =0 zg D;.
No specific teacher signals y are given, so that this is a type of self-organization. This
learning rule is also given by the stochastic descent method. The calculation of *ae gradient

R(9) is not immediate, because the regions D; depend on . However, it was proved in the
old paper by Amari [2]. See also Kohonen [14].

4. Information-theoretic approach to learning pattern classifier

Let us consider a pattern classification problem with k pattern classes C; (1 = 1, ..., k).
Signals x belonging to C; are assumed to be distributed subject to p(x | C;). Let p; be the
prior distribution of class C;.

Let gi(x), 1 = 1, ..., k, be a set of discriminant functions to classify signals. When z is
input, calculate g;(z), and if

max gi() = gio(@)

decide that the pattern x belongs to Cj,. The discriminant functions partition the signal space
X into the regions

D; = {z|gi(z) > g;(z), J # i}, (4.1)
and a signal & € D; is classified into C;. It is well known that the best classification rule is
given by

gi(@) = logp(C;| ), “.2)

where p(C; | z) is the posterior distribution of C; under the condition that z is observed, and
is given by

p(Ci]2) = f—’—p%-l , (43)
plat) = Z pip(x| C;) . (4.4)

This rule minimizes the expected misclassification rate.

Now we consider a neural network whose ouput units correspond to the categories C;. Let
z;(x,9) be the output of the ith element, where ¥ summarizes all the modifiable parameters
of the network. It is expected that the outputs z;(z, V) approximate the optimal discriminant
functions by learning. More precisely, we try to approximate the logarithm of the conditional
probability p(C;| ) by z;(, ¥) such that the conditional probability suggested by the network
is written in terms of the output z;(z, ) as
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z(Ci|z; 9) = c(9, z) exp {z(z,7)} . ' (4.5)

Here, (9, z) is the normalizing constant to satisfy
k

Z 2(Cs|w; 9 =1

i=1
It is written as

(9, @) = exp {~2(z, )}, 46)
where

k
z(z, V) = log [Z exp {z(z, 19)}] ; 4.7)

i=1
The natural divergence measure between two probability distributions p = (p(C,-)) and
# = (Z(C;)) is given by the Kullback-Leibler information [15],
| R N ()
D(p:z)= Z p(Ci)log 2(Cy) (4.8)

A differential geometrical theory of the divergence is given by Amari [4], and Amari, Kurata
and Nagaoka [8]. We search for the learning rule which minimizes the expectation of the
divergence between {p(C; | )} and {2(C; |z, 9)},

E[D(p: 2)] = / p(z) D[p(C; | 2) : AC; | =, 9)]dw. 4.9)

When a signal @ € C; is input, we define a loss of processing it by the network with
parameter ¥ by

(z,Ci; 9) = —zi(z; 9) + 2(x,9) . (4.10)

Here the true class y = C; is given as the accompanying teacher signal. The stochastic
descent learning rule is '

AV = -y C 5% (z(z,9) — z;(z; 9)}, (4.11)
and is easily calculated from the input-output relation of the underlying network. When the
network is multilayer, the error signals backpropagate as before.

In order to show that the above learning rule minimizes the expected divergence E [D(p :
z)], we calculate the risk function

R(9) = E[l(=,C;; )]
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Theorem.
R(9) = Eli(2,y; 9)) = E[D(p: z; 9)] + H(C) - H(X), (@.12)
where
D(piz;9) = ¥ pCile)log il
H(C) = - pilogp;,
H(X) = - [ (@) logp(a)de.

The proof is straightforward, but not simple. This implies that by the learning rule (4.11)
the network approximates the conditional probability p(C; | ) in the sense that it minimizes
the information D(p : g). This is a natural measure of the divergence of two probability

distributions.
There are some other possible loss functions. One is to use the squared error of decision

1
ax,y; 9) = 5 Z |2(Ci|z; 9) - 6yi|2,

where ,, = 1 when y = C; and 0 otherwise. This minimizes the risk function
1 n
R@) =5 Y [ p@)=(Cil 2, 9) - p(Ci2)Pda
1=1

Another candidate is to minimize the difference in p(C; | z) and 2(C; |z, ) for each i by
using an information-theoretic measure,

R(9)=Y" [ o(e) DIo(C:) s s(Coldz,
=1

1—2"

Each of them also leads us to a stochastic descent learning rule. These rules are studied by
Hampshire and Pearlmutter [12]. (See also Richard and Lippmann [17] and others). However,
(4.12) is a more natural loss function for approximating the class probability distributions.

D¥[p: 2] = plog g +(1—p)log

5. Dynamic properties of learning

Since the learning rule is stochastic, it is not necessarily guaranteed that J; converges to the
optimal o, even if we consider only a neighborhood of 9 in order to avoid the convergence
to a local minimum. It is known from stochastic approximation (see e.g. [21]) that, when «;
is chosen to satisfy

o0 o0
Y o=, Y o<, (5.1
t=1

t=1



Backpropagation and stochastic gradient descent method 193

9; converges to g with probability 1 under regularity conditions, provided R(+) is unimodal.
For example, (5.1) is satisfied by

_c
O = " .

This result is theoretically good, but practically not so useful. Because, when the optimal
1 deviates slightly, training time would be very long for adjusting the deviation because o
might have become too small. In this sense, it is desirable to keep « to a small constant.

When « is a constant, Amari [2] analyzed the dynamic behavior of 7J; in the neighborhood
of 9 and obtained the convergence speed to ¥y and the fluctuation of 9; around 9. It is
surprising that these results are not yet well known in the neural network community. We
show the results in the following. The proof is not difficult and is omitted (see the original
Amari [2]). We need some preparation for stating the results.

Let us define two matrices A and B: A is the Hessian matrix of R(}) at o,

32
A= 5959 R(Jo) . (5.2)
B is the covariance matrix, that is the second moments of 9l(z,y; 9)/09 at Jg
aly 7 OI\T
5= (%) (&) 5

where 1/89 is a column vector and T denotes the transposition. Furthermore, let .5 be a
linear operator which transforms a matrix M to

SM = CAM + (CAM)T, (5.4)

where C is the matrix from Eq. (2.5). Since ¥; is a random variable depending on the
randomly generated training sequences (x;,v;), ¢ = 1,2,..., we evaluate its expectation
and covariance under the assumption that « is small and the initial value ; is in a small
neighborhood of ¥q.

Theorem. The expectation of ¥, is given by

E[9;] = 90+ (E — aCA)~1(¥1 — o) . _ (5.5)
The covariance matrix of U, is given by

Cov[¥] =20 {E - (E — aS)"1} §"1CBCT, (5.6)
where E is the identity operator.

The theorem shows that 9; converges to ¥y on average and fluctuates around Jp with
covariance

208-1CBCT .

Let \o be the minimum eigenvalue of the matrix C'A. Then, the convergence speed is
(1 - a)\o)‘, so that it is quicker when a is larger. However, the accuracy of convergence is
given by the covariance matrix 2a.5-1C BCT, showing that ¥; fluctuates around 9 in the
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order of 4/a. This implies that the accuracy is better when a is small. This trade-off between
the accuracy and speed of convergence was pointed out in the old paper by Amari [2]. See
also a recent paper [11] for a more modern treatment.

Learning is especially useful when the environment changes with time. We consider the
case where the optimal ¥y changes with time as

do(t) = Jo + d sin wt (5.7

where w is the angular frequency of deviation. We assume that d is small, that w is small,
and that d is an eigenvector of C A corresponding to an eigenvalue A. The general case can
be obtained by superposition. We search for the condition that 9J; can follow this change of
Jo(t) well.

Theorem. The expectation of 9, is given by

E [9¢] = Jg + ad sin(wt — @), (5.8)
where the damping coefficient a and the phase lag © are obtained by
1
a=—, 5.9
A (5.9)
@=—tan"lz, (5.10)
w
7= —. | (5.11)

When z is small, that is, when w is smaller than o), 9J; can follow the change of the optimal
Yo(t) well by learning.

There are many ideas to accelerate the learning process. The above analysis gives a method
of choosing . Heskes and Kappen [11] did a similar analysis independently, and make use
of this information to choose a adaptively. Amari [2] proposed a method of increasing a
when two successive Aw;, Aw;; have a positive inner product

Awt C A’UJH.l >0

and decreasing o when Aw; - Aw;4; < 0. However, this idea appeared again and again but
has not yet been fully studied.

6. Historical remarks and future perspectives

In the early sixties, many researchers enthusiastically studied learning capabilities of neural
networks consisting of linear elements or nonlinear elements. The multilayer perceptron
and back-coupled perceptron were also studied as models of various types of information
processing (Rosenblatt [19], Block, Knight and Rosenblatt [10]). One may then ask the
reason why such natural learning as backpropagation was not proposed at that time. We can
point out two reasons.

The backpropagation method is a stochastic descent method, and it can easily be generalized
from Widrow adaline learning. However, an adaline is a linear element so that the input-
output relation of a network of adalines is also linear. Therefore, a multilayer adaline network
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can be reduced to a single layer network, and it is not effective to introduce hidden layers. The
situation is the same in the potential function method where the output is non-linear in  but
linear in the parameters 9. On the other hand, the risk function is a quadratic function of ¥,
so that the convergence to the global minimum is always guaranteed in these models. If non-
linearity in the parameter is introduced, there is no such guarantee of global convergence. The
backpropagation method suffers from the existence of local minima. Therefore, researchers
were not brave enough to enter in such an unknown non-linear realm. Moreover, computers
were too limited at that time for trying large-scale simulations.

A multilayer perceptron network is non-linear in the parameters . Therefore, it was not
easy to introduce general learning rules. Even for a simple one-layer perceptron, some years
were needed before the perceptron convergence theorem was proved [9]. Moreover, the
learning rule was not written in the gradient descent form, because the output function is not
differentiable. The greatest difficulty in introducing learning of hidden units in a multilayer
perceptron layed in the fact that the outputs of perceptrons are binary signals taking on values
of 0 and 1. Thus, the output is not differentiable with respect to the parameters.

Amari [2] began his study by rewriting the perceptron learning rule in the form of gradient
descent even when binary output signals are used. A sigmoid function was then naturally
introduced. It was then immediate to reach the general stochastic descent method including
learning of hidden units. Amari [2] analyzed mainly the properties of linear discriminant
functions and the dynamical properties of their learning, and the generalization to multilayer
and more general models was explicitly presented. The error signals can be calculated by this
gradient method, but it was not remarked that the error signals backpropagate in the process
of practical calculations. Therefore, while the generalized delta rule was presented in this
1967 paper, the backpropagation algorithm itself was not given.

General stochastic descent learning was explained in detail in a 1968 Japanese book [3],
where an example of learning by hidden units was presented by computer simulation. The
network has two input units, four hidden units and one output unit with fixed weights. It was
not possible to perform a larger size experiment by using a Japanese computer in the sixties.

By 1968 it was understood that there were local minima in (%) in many examples. This
was the main reason why I did not go further along this line at the time. Instead, I devoted
myself to more general mathematical research on neural networks such as statistical neuro-
dynamics, associative memory, self-organization, etc. (see e.g. [5, 7]). Over the past 10 years
the information geometrical method (Amari [4]) has been developed and is now being applied
to analysis of neural manifolds [6, 8]. This will hopefully help open a new chapter of neural
network research.
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