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Abstract—A new statistical neurodynamical method is proposed for analyzing the non-equilibrium dynamical -
behaviors of an autocorrelation associative memary model. The theory explains strange dynamical behaviors in '
recalling processes which are observed by computer simulations: Starting with an initial state close to a memorized
pattern, the state monotonically approaches the memorized one. Starting with an initial state which is not so close
to a memorized one, the state once approaches it but then goes away from it. The theory not only gives the relative
and absolute capacity of the memory network without using the spin glass analogy, but it explaing the non-equilibrium
or transient dynamical behaviors of the recalling process by taking the long-term correlation effects into account. It
. thus explains the strange behaviors due to strange shapes of the basins of atractors.
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INTRODUCTION

The autocorrelation type associative memory network,
proposed more than fifteen years ago, has recently at-

tracted much attention. In spite of the recent theoretical

progress based on the statistical dynamical spin glass

analogy, we have not yet succeeded in explaining its -

behaviors, in particular non-equilibrium dynamical
properties in the recalling processes. Computer simu-
lation shows interesting dynamical behaviors of recall-
ing processes: When the network starts with an initial
state which is within a critical distance from one of the
menrefized . patterns, the state monotonically ap-
proaches the memorized one, and is trapped in a state

. very close to it. When the network starts with an initial

state beyond a critical distance, the state once ap-
proaches the closest memorized one and their distance
becomes shorter than the critical distance in many
cases, but the state then goes back apart from it and is
trapped in some spurious state. This is the normal be-
havior when the memorized pattern ratio is smaller
than some critical value which is about 0.15. When the
pattern ratio is larger than 0.15, the state may approach
a memorized one, but always goes away from the mem-
orized state and is trapped in a spurious one. This sug-
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Lo
gests that (a) the basin of the attractor of a memorized
pattern has a strange shape, and (b} the distance is not
& proper macroscopic state to explain the transient dy-
namical behaviors of the recalling process. We also need
to derive the critical pattern ratio (the relative capacity)
and the critical initial distance which guarantees the
success of recalling, The present paper proposes 2 new
statistical neurodynamical method without using the
spin glass analogy. The method is applicable to a wide
range of associative memory networks other than one
treated in the present paper, in which we assume that
memorized patterns are randomly generated and fixed,
but the state transition is synchronous and determin-
istic.

The correlational associative mermory has a long
history going back to the early seventies. A number of

important papers appeared in 1972, although these -

works are seldom referred to recently, but some results
have been refound again. Nakano (1972), Anderson
{1972), and Kohonen (1972) independently proposed
the correlation type associative memory in this year.
Amari (1972a) gave a mathematical analysis of the sta-
bility of memorized patterns. He studied not only the
stability of equilibria of memorized patterns in sym-
metric connections, but also analyzed the dynamical
behaviors of associative networks of asymmetric con-
nections in which dynamical pattern sequences were
memorized and recalled. Uesaka and Ozeki (1972) also
gave the (relative) capacity of such a network. Since
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then there have appeared a number of important con-
tributions to the associative memory model. Little
(1974) introduced stochastic behaviors and gave statis-
tical dynamical treatment (see also Little & Shaw,
1978). Kohonen and Ruchonen (1973) proposed the
generalized inverse type associative memory. Amari
{1977a) proposed a natural implementation of the gen-
eralized invetse learning and analyzed its resolution and
dynamical behavior, A similar method was used by
Kinzel (1985) and Shinomoto (1987) (see also Koho-
nen, 1977 for various applications of the associative
memory). Rolls (1987) proposed a model of the hy-
pocampus having the associative memory mechanism.

Hopfield (1982, 1984) introduced asynchronous be-
haviors and gave the spin glass analogy. This opened a
way to a new theoretical method, and interesting papers
followed (e.g., Toulouse, Dehane, & Changeux, 1986,
Peretto, 1984, Kinzel, 1985). Amit, Gutfreund, and
Sompolinsky (1985a, 1985b) gave a statistical analysis
of the associative memory model based on the equilib-
rium theory. However, this excellent theory is still un-
satisfactory because it is applicable only to the network
of symmetric connections with stochastic behaviors,

and it does not elucidate the dynamic recalling pro- .

cesses but only gives the equilibrium distributions.
We develop in the present paper a new statistical
neurocdynamical method to elucidate the dynamical
properties of the associative memory. The statistical
neurodynamical method has been so far applied to the
macroscopic dynamical analysis of randomly connected
neuron networks. Randomly connected neuron net-

works were studied by many researchers long years ago, -

and their multistable characteristics were analyzed by
Harth, Csermely, Beek, and Lindsay (1971) and by
Amari (1971, 1972b), and their oscillatory behaviors
were analyzed by Amari-(1971, 1972b) (cf. Wilson &
Cowan, 1972). The macroscopic state transition equa-
tions were derived in these papers from the microscopic
neuronal state transition equations by using the central
limit theorem and the law of large numbers. However,
there is a mathematical difficulty in deriving these
macroscopic state transition equations, because the
~ long-term temporal correlations of random variables
might not be neglected. This is the same difficulty we
encounter when we derive the Boltzmann equation in
statistical mechanics (see Kac, 1959), as was pointed
out by Rozonoer (1969). Amari (1974) and Amari,
Yoshida, and Kanatani (1977) studied this problem
mathematically and solved it in some cases.

The macroscopic behavior of the associative network
can also be analyzed by the statistical neurodynamical
method. However, we need to evaluate the long-term
temporal correlational effects, which can be neglected
in the previous applications. Roughly speaking, the
temporal correlations are explained as follows. Let x4
= Twx, be the microscopic state transition equation,
where Ty is the non-linear state transition operator of
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a net whose connection weights are given by the matrix
W = (wy). When W is a randomly determined matrix,
we can derive macroscopic equations concerning the
state transition by considering the law of large numbers,
provided x, is independent of W, However, x, = Tyx,,
also depends on the same random matrix W, so that
we need to take the correlations of two {or more) 7,.’s
in x51 = Tl Twx,— Y into account, and so on, This is
the problem we should solve for analyzing the behaviors
of associative memory networks.

The present paper gives a mathematical method for
studying associative memory networks, in which in-
formation is encoded in a distributed manner: The
neural systemn also has another possibility of forming
localized information representations in the form of a
cortical map. There have been proposed systematic
mathematical studies which elucidate the properties of
self-organizing local representation of information.

“They consist of the dynamics of excitation patterns in

neural fields (Amari, 1977b; Kishimoto & Amari,
1979), learning and self-organizing characteristics of
neural systems (Amari & Takeuchi, 1978), and the
geometrical and topological properties of formation of
information maps in the brain (Amari, 1980, 1983;
Takeuchi & Amari, 1979). The third interesting pos-
sibility is information representation by back error
propagation learning rule (Rumelhart, Hinton, & Wil-
liams, 1984). It should be remarked that the generalized
delta rule was proposed in the sixties (Amari, 1967),
and was applied to learning of hidden units, although
only a very small scale computer simulation was done.

After the final version of the present paper was com-
pleted, we found two interesting papers related to the
subject, Meir and Domany (1987), and McEliece &f al.
(1987). '

' AUTOCORRELATION ASSOCIATIVE
MEMORY

Let us consider a formal neuron which recelves 1
input signals xy, . .., X, and emits one binary output
signal z by calculating the sign of the weighted sum of
inputs, as :

n
z = sgn{ 2, wp). (2.1)
: I=1
Here, sgn(z) = 1 when u > 0, .and sgn{x) = —1 when
@ < 0. The neuron is in the excited state when z = 1,
and is otherwise in the quiescent state. Let us consider
a network consisting of # mutually interconnected for-
mal neurons, and let wy be the synaptic efficacy or the
weight of connection from the jth neuron to the ith
neuron. The present state of the network is represented
by a column vector x = (x;, ..., X,) whose ith com-
ponent x; s the state, that is, the output, of the ith
neuron. We assume that every neuron changes its state
at discrete times ¢ = 1, 2, + + + synchronously, and let
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x, be the state of the net at time ¢. We then have the
following state transition equation,
xft = sgn(Z WyXj)s
where x} is the jth component of the state vector x, at
time ¢. We may abbreviate this equation as
X1 = TX ) (2.2)

Here T is the non-linear state transition Operatozf' de-

fined by

Tx = sgn(Wx), (2.3)

where W = (wy) is the connection matrix and sgn is
operated componentwise, that 1s, the /th component of
Tx is given by

(Tx); = sgn( 2, wyxp).
J
A net has 2" states. A state x is an equilibrium state,
when it satisfies
x = Tx.

The basin B(x) of an cquilibriuin.state x is the set of
* those states each of which falls in the state x after a
finite number of state transitions, that is, .

B(x) = {xo |there exists an N such that T¥g = x}.

Lets!, s% ..., s™ be mstate vectors. If we can choose

the connections W such that all of them are equilibrium -

states,
Ts*=s* a=12,...,m

we say that these vectors are “memorized” in the net-
work in the form of its equilibria, A vector s is *“re-
called” from any vector X, belonging to its basin B(s*),
because”the sequence of states x, beginning with an
initial state x € B{s"), '

x.r+l=Txu t=os 1:2:"'

converges to the memorized s* within a finite number
of state transitions.
The autocorrelation associative memory uses the
following connection matrix

l Fod
=- 2 5%%,
T
where x’ is the transposition of x, in other words.

m

S
wy = p 2 sisf 2.4)

=l

in the component form, 52 being the ith component of
vector 5% We usually put w;; = 0. When 5% are mutually
orthogonal th1s scheme works very well, because

- ] Ws* =s"
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holds for any e, so that
Ts® =s"

However, when the memorized vectors are not orthog-
onal, Ts" = s* does not necessarily hold, because of
mutual interference of the memorized patterns s®,
Moreover, the interference may produce many spurious
memories s other than s* which also satisfy Ts =
There are some methods to overcome this difficulty.
One is to encode memory items into randomly gen-
erated patterns s, so that the orthogonality holds ap-
proximately. Another way is to use the generalized in-
verse (see Amari, 1977a; Kohonen, 1977).

The present paper studies the dynamical character-
istic of recalling processes when s* are randomly gen-
erated, or more precisely, 5§ are independent random
variables taking 1 and —1 with probability }.each.. We
search for asymptotic properties which hold when the
number 7 of neurons and the number m of memory
patterns are large. More precisely, we consider an en-
semble & of networks whose connection matrices are
determined from m randomly and independently gen-
erated patterns. Each network behaves in a determin-
istic manner. There are infinitely many such networks
generated by the same probability law. We search for
those properties which are valid for “almost all” net-
works in & as n and m tend to infinity. We put r = m/
n, and call it the patterdi ratio. This is because the be-
havior of the associative net might be determined solely
depending on the ratio r, when n and m are large.

ABSOLUTE STABILITY .

We first evaluate the probability P,{r) that any ran-
domly generated pattern s° is an equilibrium state of
the net. When

lim P(m) =1, 3.0

the net is capable of memorizing m patterns in the
form of its equilibria. Therefore, the least upper bound
C, of r = m/n for which Equation (3.1) holds, gives the
absolute capacity of the associative memory net. This
implies that at most m = nC, patterns can be memo-
rized in a net. Unfortunately, it is known that C, = 0
(see, e.g., Weisbuch, 1985). We prove it briefly, by eval-
uating P,(m) a little more precisely than before.

Given a memorlzed vector s%, its next state Ts* is
written as T

1 1 o
Ts* = sgn(; §7%s%-5° + = z.u s"sﬂos“) = sgn{s* + N),
where sgn is operated componentwise, - is the inner

product, and T} denotes the summation over 8 which
is not equal to «, that is,
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Here
N=-~ Z "s" 5T 3.2

represents the interf‘erence term originating from the

superposition of many vectors s°. The ith component -

N;of N is written as
1 .
Ny==~ A %} sisfsg,

where s7 are randomly generated independent variables.
Hence, by applying the central limit theorem, each
component N; of N is regarded as normally distributed
with mean 0 and variance '

n(im — 1)/?1;‘; =

The ith component of 75% is a_Itered by the noise, when
N;is smaller than —1 (if 5§ is equal to 1), or N;is larger
than 1 (if 57 is equal to —1). The probab111ty that this

error occurs is given by
D = Prob{V; < 1} = erfin/m),

where erf is the error 1ntegra.1

erf{y) = f (211-) "zexp{- f—}dt

Since T5* = s* holds when none of the n cornponents

are altered by the noise, we have

. Pofm) = (1 —-py={1—- erf(n/m)}". (3.3y

By evaluating this probability (Appendix A), we have
lim Py(m) = 1,

when m/n is no larger tha}ﬁ

m 1
rin)= n 2logn—loglogn’ (3:4)

This shows that the absolute memory capacity is 0,
C, =10

Theorem 1. A pattern is exactly memorized as an
equilibrium state of the net, when

n
2 log n —loglog it

It should be noted that the term loglog » should not
be neglected even when n = 10,000. For example, when

= 1,000, r(n) = 0.084, while 1/(2 log n) = 0.072;
when n = 10,000, r(n) = 0.062, while 1/(Z log n)
=0.054.

The absolute stability is a strong criterion. Even if
C. = 0, it is not necessary to be so pessimistic, If we
do not require absolutely precise recalling of s%, but
require only the convergence to one that is *‘sufficiently
close™ to the memorized s%, we have another definition
of the capacity (cf. Amit et al.,, 1985a, 1985b). This

- + smaller order terms.
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capacity is calculated through another more detailed
statistical analysis of the dynamics of recalling pro-
cesses. We show computer simulated experiments be-
fore we give the theoretical analysis.

DYNAMICAL BEHAVIORS OF ASSOCIATIVE
NET—COMPUTER SIMULATION

Let us consider the dynamical process of recalling
one of the memorized patterns, say s'. Let a(x) be the
direction cosine between x and s! defined by

1 i
a(x) =—s'vx =~ slx;.
n n

It is connected with the normalized Hamming distance
d(x) between x and s' by

afxy =1 - 2d(x),

d(x);—zl;ZIx,—s,l
. !

Given an initial state xq, we study how it approaches
s! in the recalling process. That is, we study the dy-
namical change of

a = a(x:): d, = d(x,)
where _ '
X = Tx = T%0

is the state of the net at time £.

Figure 1 shows a typical result, where n = 5,000, m
= 400, r = 0.08. The ordinate is time ¢, the abscissa is
the direction cosine a,, and the curves show the dy-
narmical processes of recalling, starting at various initial
ay. Any curve is cut off at the time when the state x;
falls in an equilibrium state which is not necessarily
equal to s'. Figure 2 shows another typical result with
r=10.2.

We can observe the following facts from the simu-
lation experiments.

1. The patterns's* themselves are not equilibria, so -
that almost all processes fail to find the memorized one
in the exact sense. This is in good agreement with the
theoretical result C, = 0, because, for n = 5,000, m
= 400,

I

0'08=_>210gn—loglogn=

2. In spite that n = 5,000 is very large, the state
converges very quickly to an equilibrium. This is the
fact noticed and studied theoretically in statistical neu-
rodynamics (Amari, 1974). No limit cycles are found
in the experiments, in agreement with the asynchronous
state transition case where the non-existence of limit
cycles was proved (Hopfield, 1982).

3. In the case of r = 0.08 (Figure 1), we observe the
following threshold phenomenon: There exists a
threshold h(r) such that any recalling process a, con-
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DIRECTION COSINE
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FlGURE 1. Dynamic behaviors of recalling processes; simulation with n = 5000, /v = 400, r = 0.08.

verges to a value a(r) which is close to 1, when the
initial direction cosine g is greater than A{r). When
the initial gy is smaller than A{r), the direction cosine
goes up in the beginning but eventually decays and stops
at various values, falling into equilibria. We may there-
fore say that the pattern s’ is recalled correctly in the
macroscopic or relative sense, if the initial direction
cosine g is larger than A(7). The threshold A(r) and the
finial recalléd a depend on r. This dynamical property
holds for r = 0 ~ 0.15. However, the situation changes
as r becomes larger than some critical value 7, which is
about 0.15 in good agreement with Hopfield's obser-

DIRECIION COSINF

vation (1982) or the theoretical result of Amit et al.
(1985b). ' _

4. Figure 2 shows a typical behavior in case with r
> F. The direction cosine never reaches a value close
to 1. Even if it increases in the beginning of the recalling
process, it soon decreases and stops at various values.
Therefore, there is no thresholding effect which we see
in the case of r < 7, and the recalling process fails to
reach in a small neighborhood of s'. One may say that
the threshold value h{r) becomes larger than- 1 in this
case, This is because too many patterns are memorized
in the net and the net is overload. '

1

0

TIME

FIGURE 2. Dynamic behaviors of recalling processes; simulation with n = 3000, m = 600, r = 0.2,
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The critical value 7 defines another capacity C, of
the associative memory in the relative or macroscopic
sense,

C=r

If the memory pattern ratio is smaller than C,, the
recalling process is relatively successful if the initial
direction cosine is larger than A{r), in the sense that
the final recollected pattern 5 is very close tos'. The re-
called § is sufficiently useful in the later information
processing in the neural system. However, if r is larger
than C,, the recalling process fails even in the relative
. sense. This observation suggests that a bifurcation oc-
curs at 7 (see Figure 3) concerning the macroscopic
dynamical process to be studied theoretically.
The present paper proposes 2 method of statistical
neurodynamics to explain the threshold phenomenon
and to calculate A(r) and C, theoretically.

TRANSITION OF DIRECTION COSINE

We begin with a naive approach to the dynamics of
direction cosine. Given an initial state x, the ith com-
ponent of the next state x’ = Tx is given by

xi = sgn(uy),

-

1 1
= 2w = - Zsisix)y=ax)+ N. (5.1)

The noise term

1 o _
N = p E;_}.'s,‘i'sfa} (5.2)
is the sum of a large number of independent and iden-
tically distributed random variables sfsfx;, so that it
is asymptotically subject to the normal distribution M0,
r) with mean 0 and variance r. Hence, we can put

x5 = slsgn(a + Yre)

14
£ olr}
hir)
0 L1 1 1 > r
0.1 0.18

FIGURE 3. Equilibrium and threshold direction cosine versus
pattern ratio rj theoretical curve.
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where ¢ is subject to M0, 1). Although w; are not mu-
tually independent, the law of large numbers guarantees
that the next direction cosine a’ = a(x'),

1 1
a'=— T sixi=— % sgaa + Vre),

converges to the (ensemble) average of sgnfa -+ V;'e,-),
which is given by

o’ = Elsgn(a + Vre)] = 2 Probfa + Yre> 0} — 1= F(-;:)
-

where E denotes the expection and

F(s) = u—z}du. (3.3

!
— expi—
- Var p{ 2
iIf we substitute x, for x, then x" = X,+;. This leads
to the following dynamical equation

@ = Fla/Vr), (5.4)

which was studied by Amari {19772) and also by Kinzel
(1985), and Shinomoto (1987). This equation is quite
correct for ¢ = 0, However, the simulated results show
that this does not hold for¢ = 1, 2, .. .. This is because
x, depends on s®. This can easily be understood by
writing the noise term as

Nf_ (l/ﬂ) z SI Sﬂ “ Xy

where x, = T%,., is determined- from %, depending
on s”. This shows that &, is not a sum of independent
random variables but depends on s® in a very compli-
cated manner. Hence, when we evaluate the probability
distribution of N;, we need to take the correlations of
s?and X, into account. This shows that the probability
distribution might be different from N0, r), unless ¢
=Q.

It has been proved in statistical neurodynamics of
random nets with independently and identically dis-
tributed random variables wy that such long-term cor-
r-lations can be neglected in a weak sense (Amari et
al, 1977). However, this is not the case in the present
associative memory, although the direction cosine a(x)
or the distance d(x) satisfies the macroscopic state con-
dition (Amari, 1974).

As we see in Figure 1, starting with o < A(r), a
= a} may become larger than A(r), but it eventually
decreases, However, starting with an initial direction
cosine equal to this ah which is larger than A(r), the
direction cosine converges nearly equal to ! in almost
all cases. This shows clearly that a, is not a macroscopic
state variable (cf. Amari, 1974; Amari et al., 1977),
because a,4 is not determined from g, but determined
depending on the past history. We explain this in Figure -
4: Let S be the set of states whose direction cosine o
s'isequaltoa. Leta’ = Fa/Vr), &' = Fla'/Vr), and
let S’ and S” be the sets of states whose direction cosines
are a' and a”, respectively. Almost all states in .5 enter

[LIP
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FIGURE 4, Transition af direction cosine.

into S', and almost all states in .S’ enter into S” by the
state transition. However, the image 7S = {x'Ix’= T¥,
X € S} is concentrated on a negligibly small special
part of &', and those special states in S’ never enter into
5” but behave quite differently from other members of
S”. This is possible only when the number | 7S] of those

states is negligibly small compared tothe number [$"].

In other words; x,= 7%, belongs to the set of these
special states. This consideration also shows that the

_ attractor basin B(s") of s! has a strange shape asshown
in Figure 5. . ] o : .

STATISTICAL- NEURODYNAMICS
Although the simple normal assumption (5.2) does

not hold, it is still plausible to assume that ¥¢ is nor- .

mally distributed in the weak sense. The “weak sense”
implies that it holds up to some time ¢ =7(n) when »
is large (cf. Amari et al., 1977), T(n) tending to infinity
as n — 00. We assume that

Ni== 3, S sfsfx) (6.1)

J’ .
is normally distributed with mean 0 and variance o?.
We show later that the mean b, of Njis not equal to 0.
However, here we assume that wy; = 0, 5, = 0 and obtain
a simplified equation for the macroscopic dynamical
behavior. Since b, is small, this gives a good approxi-
mation,
The direction cosine a,.; is given by

a = Fa/e).

We calculate g, as 2 function of ¢, and ¢, in Appendix
B, by taking the correlations of wy and x, into account,

o = Gla, o).

This shows that a vector (a,, ¢,) forms a macroscopic
state variable governing the'recalling processes of the
associative memory network.
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Theorem 2. The simplified macroscopic state equa-
tion is given by

e = Fla,/ay), (6.2)

_ ol = r+ @) + 4radp@)aw, {6.3)
where

a, = afa., (6.4)

P = (1/V2m)exp{—u?2}. (6.5)

As stated previously, NV, has a bias term depending
on x{°!, that is, N; is subject to N(s!xi"'b,, o) con-
ditioned on x{~!, This gives a more precise macroscopic
equation, which has three macroscopic variables (a,
b;, ;). Tts derivation is given in Appendix C.

Theorem 3. The macroscopic state equation is given
by _
st = {FE)), B (6.6)
bg-z-] = (2)’/0’;)@(&;)), (6.7)
ﬂ'tzd.-l =r+ 4<P(E:)>2 :+ 4"Er<P(E:)>ﬂ:+l : (6.8)

where the operator { ) implies

Y@y =+ a )@+ (bledV2 .
U= an)flE - (B2 (69)

BEHAVIORS OF MACROSCOPIC
.. % STATE EQUATIONS

The dynamical behaviors of the simplified macro-
scopic state equations (6.2), (6.3) are shown in Figure
6, where r = 0.08. The critical direction cosine is A(r)
= 0.16 in this case. When the initial activity is above
this value, the direction cosine a, increases monoton-
ically, When the initial activity is below k(r), a, still
increases in the beginning but decays later. The behav-
iors are at least qualitatively in good agreement with

. the simulated results (Figure 1). One big difference is

that the process stops within a finite number of time
steps in simulation because the state is trapped in an
equilibrium, while the theoretical curves run without
time limit. This is because the number of the neurons
is assumed to be infinitely large in theory. When n is
finite, any state falls.in an equilibrium within the

FIGURE 5, Basin of attractor.
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DIRECTION COSINE
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1

/

TIME

FIGURE 6. Dynamic behaviors of recalling processes: Theory with r = 0.08.4

average transient time T{(#n), which tends to infinity as
n — co. If we cut off the theoretical curves at a finite
number of time steps, Figure 6 and Figure ] seem to
resemble each other.

Figure 7 shows the behaviors of the theoretical mac-
roscopic equations with r = 0.2, which is larger than
the relative capacity. The curves are similar to those in
Figure 2, if we cut them off at a finite number of tran-
sient times, say ¢ = 10.
~ Figure 3 shows the equilibrium states a(r) and the
threshold A{r) versus the pattern ratio r of the theoretical
equations: There are two branches, the upper one of

DIRECTION COSIKE

which is stable and is very close to 1. This shows that
the recalled pattern is very close to the memorized one.
The lower branch is unstable, showing the average di-
ameter of the basin of attractor, It rapidly shrinks as r
becomes large, and the two branches disappear at the
bifurcation point, r = 0.16. When r is larger than this
value, there are no macroscopic equilibrium states ex-
cept for 2 = Q. This point corresponds to the relanve
capacity of the associative memory.

The behaviors of the detailed equations (6. 6)~(6 8)
are also qualitatively similar, although they do not fit
well quantltatwely

1

/\\\

TIME

FIGURE 7. Dynamic behaviors of recalling processes: Theory with r = 0.2.
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CONCLUDING REMARKS

We have proposed a new statistical neurodynamical
method of studying the autocorrelation type associative
network model. The theory can explain various inter-
esting dynamical phenomena observed by computer
simulation. The method can be applied to the analysis
of 2 net of stochastic behavior, a net of non-symmetric
connections, a net of bilateral connections, and so forth.

There remain a number of interesting theoretical
problems to be studied further. They are, for example,
the dependencies of the transient length or recalling
time T{n) on the number n of neurons, and the average
number and the distribution of spurious equilibrium
states. We need to develop the present method and
combine it to the analysis given in Amari (1974).
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APPENDIX A: ABSOLUTE CAPACITY

From (3.3), we have

log p{m)=n log{l - erf( \/%)]

By putting

= r(n),

n
m
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we see that im P{m) = 1 requires lim r{n) = co. When r is large,
we have
1 r-
erf(‘/’) = 1Ii;erf[ 2].
This yields

' L7 | P PN |
log Py(m) = Ve cxp[ 2} = cxp{ 3 +logn 5 log r].
In order that lim P,(m) = I holds, r(n) cannot be larger than

2 log n = loglog n + smaller order terms.

APPENDIX B: EYALUATION OF .THE
PROBABILITY DISTRIBUTION OF N,;

Without loss of generality, we assume that
st=(,1,..., 1.

Then, the direction cosine a(x) of x and s! is given by a(x} = (1/
n)Zx;. We also assume that wy = 0 for all i. This makes the following
calculations easier, although we can calculate o without this as-
sumption in almost the same maner. ‘The noise term is written as

N;=—E'ES,|$}IJ=—Z' EZ,I,, (Al)

where we put .
Tha = S{sfXj, a®l, j*L (A2)
Since E[N'] = 0 is assumed, the variance of ¥} is given by

=E((N{y] = (1/nY) Z Elzluzi).

ifaa

This summation consists of the four types of terms classified by their
indices:

1. terms with j = j*, &« = a" There are n{m — 1) such terrns, and
we put . . -

= E[(z§Y].

2. terms with j = j, a # a”t Thcrc are n{m — 1}m — 2) such
terms, ;

b= Elrfrl], at ot
3. terms withj % J', & = &' there are a{n — 1}(m — 2) such terms
= E[zsftzfﬁ‘n]' j+j‘°

4. terms with j % j', @ % a': There are ﬁ(n —{m-1) (n.z -2)
such terms

v = Efzlziz]l, J¥*J, a¥®&

When n is [arge, we have

= v, + rinvy + vy + rinty, (A
neglecting higher order terms, where we will show soon that v, = 1,
vz = 0, v is of order ™! and v, is of order n~2%.

Since zf, = %1, we have
vy =1,
Similarly, we have
vy = E[sispsi01=0. -

In order to calculate vy, we single qut the terms in xj which include
57 and 57, explicitly, as

x5 = sgn(a_; + Q@+ ;R + (1/n)sfspxity,
xb = sg(@; + Q'+ 55, R+ (V/n)spsgxi™),

S. Amari and K. Maginu

where

l \r " -

Q =;Z‘, = sfstxi!
’ l 2 " 4 - |
Q' = 25 %, sfekxkly

: 1
R == stxit
n

Z; denoting the summation over 8 # |, &, and Z} denoting the sum-
mation over k # i, . Then, we can assume that @, ¢, and R are
mutually asymptotically independent normal random variables with
mean 0. The variances of @ and @’ are ¢}, and the variance of R
is ¢, /m. We calculate v, by taking the expectation of the conditional
expectation

= E Efsispsisixixplss, spl,

where E[ - Is #, 5] is the conditional expectation conditioned on four
passible values oI' (s, 57). Here, we evaluate the direct correlations
of s{ s and x* in this manner, by neglecting the correlations with

However, these indirect correlations are not simply neglected,
but are taken into account through the distribution of &, ¢' and R.
In other words, the higher order corralations are also included through
the renormalization of the distribution of N}

Let us denote the conditional expectation by

Yn = E[zyuzu‘a[-f =psp=ql ) (A4)
where p, q #1, Then - -

vy= 2 Prob{sf=p, sf= -q}YN
7

1
=2 (Y Yot Yooy o Yo,

because Prob{.';‘ =p, s} g} = § for all four combinations of p-and
g. We fix x{™ and xj* and calculate ¥); and Y.y condmnncd on
these vanablcs Then, we have

Yn = Elxjxilsi = 1,55 = 1]
= Elsgn(a. + @+ R+ n~ %% Ya-, + @'+ R+ 7)),
Yis = Elsgaldi+ @ = R ~ n-xFYam + @ — R — %™,

In order to calculate 1,  WE EXDIESS the normal random variables
0, @', and R by using unit uncorrelated normal random variables .
and v,

Q+ R = oylu + (2m)7'0), @' + R = apoa(v + (2)™4)
in the case of ¥}, and

Q+R= o (u—(2m'v), Q -
in the case of ¥}.,. Then, we have

Yy=E[sgn(@d+u+ 0+ ) (@+v+d+'x)]

R = (v — @m)'u)

ete,, where

7= au o, X =n"'x o, X= n='xf e,

7=2m 'y, b= (2m) o
Moreover, from

Elsgn X1 =2 Prob{X >0} — 1,
we have
Yy =2Prob{{d+ u+d+ @ +e+a+H>0} -1,

which can be calculated by integrating the two-dimensional normal

density

plu, v} = (Zﬂ)"txp[_ %(”’ + v’)]
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over the region on which the term in the bracket is positive. Since &,
7, X and X' are small order terms, the sum of ¥}, and ¥,
Yu+ }’,... =2Pr0b{(5+ u+1'2+x"')(§+u+ ﬁ+f)>0}
—2Prob{(@+u+tv—XWa+v—-id—-3)>0}

can easily be caleulated, because the first order terms of Yy, and Y-y,
given by +Prob{(d + u) (7 + v} > 0}, are cancelled out. Therefore,
we calculate the small order term, which is decomposed as

Yu+ Y =2{Prob{{@+u+ 8+ 2@+ 0v)> 0}
—Prob{(d+u—-0—-2)(@+v)>0}]
+ 2 [Prob{(d + W) (@ + v+ & + X) > 0}
~Prob{(d + u) (@+v—Z—F) >0} (A5
- Let A and A’ be the regions given by
' A = {(us, 0@+ u+D+F)(a+)>0},
A= {(u, i@+ u— T~ %) (a+v)> 0}
in the (u, v)}-plane, respectively. Then, the former half of equation
{AS) is written as

J- plu, v)dudv — f plu, v)dudy = f plu, v)dudv.
73 -l A=A"

Since the signed incremental region 4 = 4 — A’ is bounded by the
two lines in the (i, v)-plane

l ~ - R
u= 2mv a—x=flv),

u“-Lu~E+f~ {v)
m g\,

and the sign of the region changes at v = —3, the integral is written
as

- . f(a) o p{u)

f dvp{v) f plu)du + J- dvp(v) J. Au)du,
7 - (o) = )

where p{) and p(v) are the unit normal densities. Since

2

noe—,

X

JORFOREEE

is a first order small term, the above integral is wﬁttcn as
P(R“)U:D (A} = g(v))p(v)dv + L (s(v) = f{v))p(u)du]
= n"P(&)[J:-' {~r"'v = 267 xp)p(v)dy

+ f o+ 2af.le)p(v)du:|
= mp@){2r p(a) + 207 % @)},
The latter half of the integral is obtained in a similar manner, giving
Yii+ Yiop= 4727 o @) + o (g + ) @A)
The term Y-, + Y-,y is the same as ¥}, + Yi-;. Among n X},
nd,-y are =1 and »{l — d,-,) are 1. Hence, averaging over x; and xp,

we have

nvy = 4 p(E-)} + 48,1 p(G-)FE,-1),

where @,_) = gy,/0-y.
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The term vy can be calculated in 2 similar manner. By singling
out the directly correlated terms in xJ™f and x§! as

Zhe = sisfsgn(a.; + P+ n-lsfspxih,
2her = sPsisgn(a., + P+ nlsesdxlN,
we see that P and P are asymptotically independent subject 1o M0,
o). Then, the expectation of zj;, 2}y is written as
Elzlazlie] = H{E[sgnl(d + u + ZX&+ v + X))
+ Elsgn{a + u — )@ + v ~ F)]
— Elsgn{d + u — )@ + v+ )]
—~ E[sgn{@ + u+ N + v — D)}
where
X = (o) 'xf
is fixed, and u and » are unit independent normal random variables.
This gives
artv, = &or-){ pld-1)}.

However, we can prove in Appendix C that E{N{] # 0. Therefore,
we need to subtract the term {E[N{]}® from ¢}. The term
{E[N}]}* is equal to nriv,. Hence, by summarizing these terms, we
have

gl = r+ 4§AY + 4ra p@)F(E).

APPENDIX C: MACROSCOPIC EQUATION
INCLUDING BIAS TERM

The noise term V| was assumned to be subject to N(0, ¢2) in the
previous simplified equation. However, a careful study shows the ex-
pectation of N} is not 0. It depends on x{™' {or more precisely
sixi™Y, so that we assume that N5 is subject to Mx{™'8,, 7) condi-
tionally on x{~'. We then derive the dynamical equations to determine
{a,, b, ¢;) which are the macroscopic state variables.
© Let -

G = (@ + b)o:, &= (a,— bl

For those neurons for which x§™! = +1, its activity a (i.e., the direction
cosine to s") at time ¢ -+ 1 is given by F(d,.), while the activity is given
by F(&,-) at time ¢ + 1 for those for which x| = —1. Therefore, the
total activity &, is given by

Ty = {(FE),
where { ) implies the following averaging operation,
Ay = [(1 + a-)fld) + (1 — a-)fld))f2.
In order to calculate b,, we decompose z{, as
4, = stspsenlay + Q5 + (m)sisfxi™

by singling out the term including 57, sf from ("L By taking the
conditional expectation of zi, conditioned on x{™, 57, 57, we have
the following relation

by = (2"/0':)(?(5:»-
Calculations of ¢},
o} = E[(N)"] — E[N{]?
proceed almeost similarly as in Appendix B, giving

ﬂ'tz+l =r+ 4<P(&¢))2 + 4("‘11/01)(17(Er»al+| -






